УДК 662.04:549.21

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ТЕРМОХИМИЧЕСКОЙ ПЕРЕРАБОТКИ ВЫСОКОЗОЛЬНОГО КАМЕННОГО УГЛЯ ПОД ДАВЛЕНИЕМ В НИЗКОТЕМПЕРАТУРНОМ КИПЯЩЕМ СЛОЕ

В. П. Пацков

Научно-технический центр угольных энерготехнологий НАН и Министерства топлива и энергетики Украины, 04070 Киев, Украина, CETC@i.kiev.ua

Рассмотрены математическая модель, алгоритм и программа расчета нестационарных режимов процесса воздушной газификации высокозольного каменного угля под давлением в зоне кипящего слоя реактора-газогенератора пилотной демонстрационной установки с циркулирующим кипящим слоем. Проанализировано влияние режимных параметров на протекание процесса. Отмечена возможность возникновения «горячих пятен» (кратковременных локальных разогревов) в различных точках слоя, максимальная температура в которых может быть близка или даже превышать точку шлакования топлива. Проанализированы возможные механизмы возникновения «горячих пятен».

ВВЕДЕНИЕ

Данная работа продолжает исследования [1] по созданию общей методологии математического моделирования, расчета и оптимизации сложных технологических схем термохимической переработки низкосортного, в том числе и высокозольного, энергетического угля в парогазовых установках с циркулирующим кипящим слоем (ЦКС) под давлением. Рассматриваются математическая модель, алгоритм и программа расчета нестационарных режимов процесса горения-газификации коксозольного остатка угля марки ГСШ в зоне кипящего слоя реактора-газогенератора пилотной демонстрационной установки ЦКС-1.0 [2], создаваемой в научно-техническом центре угольных энерготехнологий Минтопэнерго и НАН Украины и предназначенной для двухстадийной газификации высокозольного каменного угля в ЦКС под давлением до 2,5 МПа при высокой степени циркуляци коксозольного остатка топлива (до 100). Рассмотрение указанных вопросов необходимо как для дальнейшей разработки методологии расчета и оптимизации процесса в установках рассматриваемого типа, так и для решения практических вопросов управления процессами термохимической переработки высокозольного каменного угля в аппаратах с низкотемпературным кипящим слоем и в ЦКС, включая пуск и останов процесса, переходные режимы, поддержание режимов

безшлаковочной работы слоя, управление температурами слоя и газораспределительных решеток.

1. ФИЗИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

При математическом описании процесса горения-газификации полифракционного ансамбля частиц коксозольного остатка угля ГСШ в зоне кипящего слоя реакторагазогенератора пилотной демонстрационной установки [2] принимаются следующие допущения.

- 1. Зона кипящего слоя включает две фазы:
- а) плотную, содержащую твердые частицы коксозольного остатка топлива и золы, а также газ, проходящий между ними и необходимый для начала псевдоожижения;
- б) пузырьковую, представляющую собой газ, байпасирующий между частицами, причем при движении по слою пузыри меняют свой размер.
- 2. Процессы переноса в фазе пузырей протекают в режиме идеального вытеснения, а для описания процессов переноса по газу в плотной фазе принята модель, которая учитывает продольную эффективную диффузию и теплопроводность, а также фильтрацию компонентов в слое, что позволяет учесть отклонения от режима идеального перемешивания, связанные с циркуляцией твердых частиц, с переносом порций газа с движущимися пузырями, с тепло- и

массообменом между пузырями и газовым потоком в плотной фазе, с механизмом перемешивания, аналогичным тэйлоровской диффузии и обусловленным дисперсией пузырей по размерам [3].

- 3. Для анализа качественных закономерностей процессов циркуляции и превращений твердых частиц топлива в слое при относительно малых временах, соответствующих переходным режимам горения-газификации высокозольного каменного угля в зоне кипящего слоя реактора-газогенератора установки [2], рекомендуется [3] применение диффузионной модели, учитывающей эффективные коэффициенты продольного перемешивания и скорость циркуляции твердых частиц.
- 4. В плотной фазе протекают поверхностные гетерогенные реакции взаимодействия коксозольного остатка топлива с кислородом воздуха, подаваемым в слой в качестве дутья:

$$C + O_2 \rightarrow CO_2 + Q_1$$

$$C + 0.5O_2 \rightarrow CO + Q_2$$

реакция газификации кокса с диоксидом углерода:

$$C + CO_2 \rightarrow 2CO - Q_3$$

гомогенная реакция окисления оксида углерода:

$$CO + 0.5O_2 \rightarrow CO_2$$
.

- 5. В фазе пузырей отсутствуют твердые частицы и протекает гомогенная реакция окисления оксида углерода.
- 6. Начальный фракционный состав угля, подаваемый в аппарат, описывается функцией распределения частиц по размерам Розина Рамлера.
- 7. Коксовые частицы топлива сферические, гомогенная реакция окисления оксида углерода протекает в объеме газового потока плотной фазы и фазы пузырей.
- 8. Принимается AS-модель термохимического превращения отдельных частиц топлива при ссыпании золы с их внешней поверхности. Процесс ссыпания обусловлен интенсивным перемешиванием твердых частиц в слое, их столкновениями, дроблением и другими эффектами взаимодействия.

2. МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

На основе принятых допущений система уравнений переноса массы и энергии в зоне кипящего слоя реактора-газогенератора пилотной демонстрационной установки ЦКС-1.0 [2] в нестационарной постановке принимает вид:

а) плотная фаза слоя —

$$\varepsilon_{d}\rho_{1}^{d}\frac{\partial C_{j}^{d}}{\partial t} = D_{j}^{d}\frac{\partial}{\partial x} \left[\varepsilon_{d}\rho_{1}^{d}\frac{\partial C_{j}^{d}}{\partial x}\right] - \\
- u_{1}^{d}\varepsilon_{d}\rho_{1}^{d}\frac{\partial C_{j}^{d}}{\partial x} - (K_{bc})_{j}(\rho_{j}^{d} - \rho_{j}^{b}) + \\
+ \nu_{sj}\int_{r_{c}^{0}}^{r_{c}} W_{s}F^{(c)}f_{c}(r)dr + \nu_{4j}W_{4}, \quad (1)$$

$$j = \overline{1, m_g},$$

$$\varepsilon_d \rho_1^d c_{p,1}^d \frac{\partial T_1^d}{\partial t} = \lambda_1^d \frac{\partial^2 T_1^d}{\partial x^2} u_1^d \varepsilon_d \rho_1^d c_{p,1}^d \frac{\partial T_1^d}{\partial x} -$$

$$-\,H_{bc}(T_1^d-T_1^b)+\int\limits_{r_c^0}^{r_c}\Bigl\{H_{is}^{(c)}(T_{p,l}^{(c)}-T_1^d)+$$

$$+ \varepsilon_c \sigma_0 \left[\left(\frac{T_{p,l}^{(c)}}{100} \right)^4 - \left(\frac{T_1^d}{100} \right)^4 \right] F^{(c)} f_c(r) dr -$$

$$-H_{st}(T_1^d-T_w)+W_4Q_4+\int\limits_{r_a^0}^{r_a}\Big\{H_{is}^{(a)}(T_{p,l}^{(a)}-T_1^d)+$$

$$+ \varepsilon_a \sigma_0 \left[\left(\frac{T_{p,l}^{(a)}}{100} \right)^4 - \left(\frac{T_1^d}{100} \right)^4 \right] \right\} F^{(a)} f_a dr, \quad (2)$$

$$l=\overline{1,N}_r,\quad r=c,a;$$

$$t=0, \quad x=0: \quad C_j^d=C_j^0; \quad T_1^d=T_0; \quad (3)$$

$$x = H_b: \quad \frac{\partial C_j^d}{\partial x} = \frac{\partial T_1^d}{\partial x} = 0;$$
 (4)

б) фаза пузырей —

$$u_b^* \alpha_b^* \rho_1^b \frac{\partial C_j^b}{\partial x} + \alpha_b^* \rho_1^b \frac{\partial C_j^b}{\partial t} = \nu_{qj} W_q +$$

$$+ (K_{bc})_j (\rho_j^b - \rho_j^d), \quad j = \overline{1, m_g}; \quad (5)$$

$$u_b^* \alpha_b^* \rho_1^b c_{p,1}^b \frac{\partial T_1^b}{\partial x} + \alpha_b^* \rho_1^b c_{p,1}^b \frac{\partial T_1^d}{\partial t} =$$

$$= W_4 Q_4 + H_{bc} (T_1^b - T_1^d); \quad (6)$$

$$t = 0, \quad x = 0: \quad C_j^b = C_j^0, T_1^b = T_0; \quad (7)$$

в) распределение твердых частиц по размерам [4] —

$$D_{p,l}^{(c)} \frac{\partial^2 f_c}{\partial x^2} \pm u_{p,l}^{(c)} \frac{\partial f_c}{\partial x} - \frac{\partial}{\partial r} \left[\frac{f_c}{\rho_2} \left\{ \sum_{s=1}^{n_s} \nu_{sc} W_s + C_{2,l}^{(c)} K^{(c)} \right\} \right] = \frac{\partial f_c}{\partial t}, \quad l = \overline{1, N_c}; \quad (8)$$

$$D_{p,l}^{(a)} \frac{\partial^2 f_a}{\partial x^2} \pm u_{p,l}^{(a)} \frac{\partial f_a}{\partial x} -$$

$$-\frac{\partial}{\partial r} \left[\frac{f_a}{\rho_2} \left\{ C_{2,l}^{(a)} K^{(a)} \right\} \right] = \frac{\partial f_a}{\partial t}, \quad l = \overline{1, N_a}; \quad (9)$$

$$t = 0:$$
 $f_r(r) = f_r^0(r) = f_r^{(\pi)}(r), \quad r = c, a;$ (10)

$$x = 0: \quad D_{p,l}^{(r)} \frac{\partial f_r(r)}{\partial x} = u_{p,l}^{(r,\pi)} f_r^{(r,\pi)}(r) -$$

$$-u_{n,l}^{(r)}f_r(r), \quad l = \overline{1, N_r}, \quad r = c, a;$$
 (11)

$$x = H_b: \quad D_{p,l}^{(c)} \frac{\partial f_c(r)}{\partial x} = u_{wit} f_c(r), u_{p,l}^{(c)} \geqslant u_{wit},$$
$$D_{p,l}^{(c)} \frac{\partial f_c(r)}{\partial x} = 0, \quad u_{p,l}^{(c)} < u_{wit}; \quad (12)$$

г) отдельные частицы коксозольного остатка топлива и золы —

$$\frac{\partial}{\partial t} [\rho_1^s C_j^s] = \left\{ \beta_j \left(\rho_j^s - \rho_j^d \right) + \nu_{sj} W_s \right\} \times \\
\times (1 - \varepsilon_{\scriptscriptstyle T}) F^{(c)} (1 - \varepsilon_d) (1 - \alpha_b^*), \quad j = \overline{1, m_g}; \quad (13)$$

$$\rho_{2}c_{p,2}^{(c)}\frac{\partial T_{p,l}^{(c)}}{\partial t} = \left\{ \sum_{l=1}^{N_{c}} W_{s}Q_{s} + H_{is}^{(c)}(T_{p,l}^{(c)} - T_{1}^{d}) + \varepsilon_{c}\sigma_{0} \left[\left(\frac{T_{p,l}^{(c)}}{100}\right)^{4} - \left(\frac{T_{1}^{d}}{100}\right)^{4} \right] \right\} \times$$

$$\times (1 - \varepsilon_{T})F^{(c)}(1 - \varepsilon_{d}), \quad l = \overline{1, N_{c}}; \quad (14)$$

$$\rho_2 c_{p,2}^{(a)} \frac{\partial T_{p,l}^{(a)}}{\partial t} = \left\{ H_{is}^{(a)} \left(T_{p,l}^{(a)} - T_1^d \right) + \right.$$

$$+ \varepsilon_a \sigma_0 \left[\left(\frac{T_{p,l}^{(a)}}{100} \right)^4 - \left(\frac{T_1^d}{100} \right)^4 \right] \right\} \times$$

$$\times (1 - \varepsilon_{\scriptscriptstyle T}) F^{(a)}(1 - \varepsilon_d)(1 - \alpha_b^*), \quad l = \overline{1, N_a}; (15)$$

$$t = 0: \quad C_j^s = C_j^0, \quad T_{p,l}^{(c)} = T_{p,l}^{(a)} = T_2^0;$$
 (16)

$$u_1^b = u_{mf}/\varepsilon_{mf} = u_0/\varepsilon_d; (17)$$

$$P_0 = \rho_1^{(i)} R T_1^{(i)} \sum_{j=1}^{m_g} c_j^{(i)} / M_J;$$
 (18)

д) перенос тепла в стенках реактора [5] —

$$\frac{\partial T_w}{\partial t} = a_w \frac{\partial^2 T_w}{\partial x^2};\tag{19}$$

$$T_w(0,t) = T_0(t);$$
 (20)

$$T_w(H_b, t) = \overline{T}^* = \text{const};$$
 (21)

$$T_w(x,0) = T_w(0) + \frac{\overline{T^* - T_w(0)}}{\delta_w} x.$$
 (22)

Здесь t — время; ε_d — порозность слоя; ρ_1^d , ρ_1^b , ρ_1^s — плотности газовой смеси в плотной и пузырьковой фазах слоя и на поверхности топливных частиц; C_j^d — массовые доли j-го газового компонента в плотной и пузырьковой фазах слоя и на поверхности топливных частиц; $D_j^{(d)}$ — эффективный коэффициент диффузии в плотной фазе слоя; x — координата

высоты слоя; $(K_{bc})_j$ — коэффициент массообмена между плотной и пузырьковой фазами; r_c^0 , r_c — начальный и текущий размеры коксозольных фракций; W_s — скорость s-й гетерогенной реакции; s, n_s — номер и общее число гетерогенных реакций; W_4 — скорость гомогенной реакции окисления СО; $F^{(c)}$ — контурная удельная поверхность частиц; $f_c(r)$, $f_a(r)$ функции распределения коксозольных и зольных частиц по размерам; $u_{p,l}^{(c,\pi)}$ — линейная скорость частиц коксозольного остатка, поступающего из пиролизера; $\nu_{sj},\ \nu_{4j}$ — стехиометрические коэффициенты гомогенной и гетерогенной реакций по j-му газовому компоненту; m_g — общее число газовых компонентов в слое; $N_c,\ N_a$ — среднестатистическое число фракций коксозольного остатка и золы; $c_{p,1}^d,\ c_{p,1}^b$ — теплоемкости газовой смеси в плотной фазе и пузырях; $c_{p,2}^{(c)},\,c_{p,2}^{(a)}$ — теплоемкости топливных и зольных частиц соответственно; λ_1^d — эффективный коэффициент продольной теплопроводности в слое; H_{st} — коэффициент конвективного теплообмена коксозольных и зольных частиц с газовым потоком в плотной фазе; H_{bc} — коэффициент конвективного теплообмена между плотной и пузырьковой фазами; $H_{is}^{(c)}$, $\boldsymbol{H}_{is}^{(a)}$ — коэффициенты конвективного теплообмена между топливными и зольными частицами и газовым потоком в плотной фазе слоя; Q_s — тепловой эффект гетерогенной реакции; Q_4 — тепловой эффект реакции окисления CO; $\varepsilon_c,\, \varepsilon_a$ — степени черноты коксозольного остатка и золы; σ_0 — постоянная Больцмана; ν_{sc} стехиометрический коэффициент в s-й гетерогенной реакции по углероду; $f_c^0(r), f_c^{(\pi)}(r)$ — начальное распределение частиц и распределение частиц коксового остатка, поступающих из пиролизера; $T_{p,l}^{(c)},\,T_{p,l}^{(a)}$ — температуры частиц коксозольного остатка и золы; C_j^0 — входная концентрация газовых компонентов; T_0, T_2^0 входные температуры газового потока и угля; T_1^d, T_1^b — температуры газа в плотной фазе и пузырях; H_b — высота слоя; u_b^* — скорость всплывания газовых пузырей в слое; l — номер фракции; u_{wit} — скорость витания частиц; $K^{(c)}$ — константа скорости уноса коксозольных частиц; α_b^* — среднеинтегральная доля газовых пузырей в слое; $D_{p,l}^{(c)},\ u_{p,l}^{(c)},\ C_{2,l}^{(c)}$ — эффективный коэффициент продольного перено-

са, скорость циркуляции и массовая доля частиц l-й фракции коксозольного остатка, $D_{p,l}^{(a)}$, $u_{p,l}^{(a)},\,C_{2,l}^{(a)}$ — то же самое для золы; ho_2 — плотность угля; R — универсальная газовая постоянная; $F^{(a)}$ — контурная поверхность зольных частиц; $\varepsilon_{\rm \scriptscriptstyle T}$ — пористость топливных частиц; M_j — молекулярная масса j-го газового компонента; $u_{mf},\ \varepsilon_{mf}$ — линейная скорость и порозность слоя, соответствующие условиям начала псевдоожижения; u_0 — линейная скорость подачи топлива под слой; u_1^d — скорость фильтрации в плотной фазе; a — температуропроводность материала стенки; $\rho_1^{(i)}, \, T_1^{(i)}, \, C_j^{(i)}$ плотность, температура и концентрация j-го газового компонента в i-й фазе (i = d — плотная фаза, i = b — пузыри). Индекс w соответствует стенке реактора; верхние и нижние индексы a, c — золе и коксу, r = a, c.

3. ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ПАРАМЕТРОВ МОДЕЛИ

Порозность и рабочую высоту слоя оценивали на основании закона расширения неоднородного кипящего слоя [4]:

$$\varepsilon = \varepsilon_{mf} \left[\frac{\text{Re} + 0.02 \text{Re}^2}{\text{Re}_{mf} + 0.02 \text{Re}_{mf}^2} \right]^{0.1},$$

$$H_b = H_0 (1 - \varepsilon_{mf}) / (1 - \varepsilon), \tag{23}$$

$$\operatorname{Re} = u_0 \overline{d}_{p}^{0} / \eta_1, \quad \operatorname{Re}_{mf} = u_{mf} \overline{d}_{p}^{0} / \eta_1,$$

где H_0 — высота слоя в неподвижном состоянии; \bar{d}_p^0 — среднестатистический эквивалентный диаметр твердых частиц, оцениваемый по фракционному составу исходного топлива [6]; η_1 — кинематическая вязкость газовой смеси. Минимальную скорость начала псевдоожижения оценивали по критериальной формуле [4]

$$Re_{mf} = \frac{Ar}{1400 + 5,22\sqrt{Ar}},$$

где

$$Ar = \frac{g\overline{d}_p^0(\rho_2 - \rho_1)}{\eta_1^2 \rho_1}$$

— критерий Архимеда, ρ_1 , ρ_2 — плотности газа и угля. Скорость витания частиц в слое оценивали по критериальной формуле [4]

$$Re_{wit} = \frac{u_{wit}\overline{d}_p^0}{\eta_1} = \frac{Ar\varepsilon^{4,75}}{18 + 0.6\sqrt{Ar\varepsilon^{4,75}}}.$$

Эффективные продольные коэффициенты диффузии *j*-го газового реагента в плотной фазе принимали в первом приближении близкими к молекулярным коэффициентам диффузии данного компонента.

Коэффициенты межфазного массо- и теплообмена между плотной и пузырьковой фазами оценивали при расчетах по соотношениям известной модели Кунии — Левеншпиля [7]:

$$\begin{split} \frac{1}{(K_{bc})_{j}} &= \frac{1}{(K_{ce})_{j}} + \frac{1}{(K_{be})_{j}}, \quad j = \overline{1, m_{g}}; \\ K_{be} &= 4.5 \left(\frac{\varepsilon_{mf} u_{mf}}{u_{b}^{*}}\right) + 5.85 \left(\frac{D_{j} g^{0.5}}{\overline{d}_{b}^{5/4}}\right), \\ K_{ce} &= 6.78 \left(\frac{\varepsilon_{mf} D_{j} u_{b}^{*}}{\overline{d}_{b}^{3}}\right); \\ \frac{1}{H_{bc}} &= \frac{1}{H_{ce}} + \frac{1}{H_{be}}, \\ H_{bc} &= 4.5 \left(\frac{\varepsilon_{mf} u_{mf} \rho_{1}^{d} c_{p,1}^{d}}{\overline{d}_{b}}\right) + 10.4 \left(\frac{\lambda_{1}^{d} \rho_{1}^{d} c_{p,1}^{d}}{\overline{d}_{b}^{5/2}}\right); \\ H_{ce} &= 6.78 \left(\frac{\lambda_{1}^{d} \rho_{1}^{d} c_{p,1}^{d}}{\left(\varepsilon_{mf} u_{b}^{*} \overline{d}_{b}^{3}\right)^{0.5}}\right), \end{split}$$

где D_j — коэффициент молекулярной диффузии j-го газового компонента, \bar{d}_b — осредненный диаметр пузырей.

Для расчета осредненного по сечению слоя диаметра пузырей на высоте x над газораспределительным устройством использовали соотношения [6, 8]. Локальные скорости всплывания пузырей в слое оценивали по зависимостям [6–9]:

$$u_b^* = u_0 - (1 - \alpha_b^*) u_{mf} \varepsilon_{mf} + 0.711 \sqrt{g \overline{d}_b}$$

$$\left(\frac{\overline{d}_b}{\overline{d}_a} < 0.5\right),$$

$$u_b^* = u_0 - (1 - \alpha_b^*) u_{mf} \varepsilon_{mf} + 0.35 \sqrt{g \overline{d}_b} \qquad (24)$$

$$\left(\frac{\overline{d}_b}{\overline{d}_a} \geqslant 0.5\right),$$

где g — ускорение силы тяжести; d_a — диаметр аппарата; α_b^* — среднеинтегральная доля пузырей в слое, оцениваемая по соотношениям [3, 5-8].

Скорости поверхностных гетерогенных реакций горения коксозольного остатка рассчитывали по аррениусовским зависимостям с переменным наблюдаемым порядком реакции [10]. Скорость поверхностной реакции газификации кокса с СО₂ находили по уравнению, идентичному модели Лэнгмюра — Хиншельвуда [11]. Скорость гомогенной реакции окисления СО в плотной фазе и пузырях вычисляли по [12]. Эффективные коэффициенты продольной теплопроводности в слое оценивали по рекомендациям [4, 6], тепловые эффекты реакций — по [13]. Коэффициенты теплоотдачи от стенки к слою определяли по зависимости [6]

$$H_{st} \approx 0.8 \alpha_{\rm max}$$

где α_{\max} — максимальный коэффициент теплоотдачи в слое, вычисляемый по критериальным зависимостям [6]

$$Nu_{\text{max}} = 0.85 Ar^{0.19} + 0.006 Ar^{0.5} Pr_{1}^{0.33}, (25)$$

где

$$\Pr = \frac{c_{p,1}^d \mu_1^d}{\lambda_1^d}$$

— критерий Прандтля; μ_1^d — динамическая вязкость газовой смеси в плотной фазе.

Коэффициенты конвективного теплообмена между газом в плотной фазе и поверхностью топливных частиц оценивали на основании общепринятой критериальной зависимости [3, 6–9]

$$Nu_1 = 2,0+0,6Re^{0.5}Pr_1^{0.33}, Re = \frac{\overline{d}_{p,l}^{(c)}u_{mf}}{\eta_1^d \varepsilon_{mf}}.$$
 (26)

Коэффициенты конвективного теплообмена от инертных зольных частиц с газовым потоком в плотной фазе слоя оценивали по критериальным формулам [6]

$$Nu_1 = 10 + 0.23 (ArPr)^{0.333}$$

$$\mathrm{Nu} = \mathrm{Nu}_{\mathrm{max}} + (\mathrm{Nu}_{1} - \mathrm{Nu}_{\mathrm{max}}) \exp \left[-\frac{\overline{d}_{p,l}^{(c)}}{4\overline{d}_{p,l}^{(a)}} \right].$$

Здесь критерий Нуссельта $\mathrm{Nu_{max}}$ вычисляли по формуле (25); $\mathrm{Nu_1} = H_{is}^{(a)}\overline{d}_{p,l}^{(a)}/\lambda_1^d; \ \overline{d}_{p,l}^{(a)}$ — среднестатистический размер частиц l-й фракции зольных частиц.

Оценку эффективных коэффициентов продольного переноса в слое проводили на основе зависимости [3, 6]

$$D_{p,l}^{(r)} = \frac{1}{60} \sqrt{H_b^2 g}.$$

Скорость циркуляции твердых частиц в слое определяли исходя из расходных характеристик топлива. Константы скорости уноса частиц в слое оценивали на основании известной корреляции [14]

$$K(r) \approx \frac{Gf(r)}{\varphi_c W_b f_c(r)} \approx \frac{130 \rho_1^d u_0 F_a}{W_b} \times$$

$$\times \exp\left[-10.4 \left(\frac{u_{wit}}{u_0}\right)^{0.5} \left(\frac{u_{mf}}{u_0-u_{mf}}\right)^{0.25}\right],$$

где G — расход твердых частиц в уносе; f(r) — плотность распределения частиц в уносе; φ_c — доля углерода в слое [15]; W_b — масса слоя; F_a — площадь поперечного сечения аппарата.

Коэффициенты конвективного массообмена топливных частиц с газовым потоком в плотной фазе слоя также оценивали по критериальным зависимостям, идентичным (25), (26).

4. АЛГОРИТМ РАСЧЕТА

При численном анализе модели последовательно проводился расчет характеристик процесса в фазе пузырей, фазовых переменных, описывающих термохимическое превращение топливных частиц, функций распределения частиц по размерам и характеристик процесса в плотной фазе слоя.

Системы уравнений переноса в фазе пузырей (5)–(7) и на поверхности одиночных частиц (13)–(16) решали конечно-разностным релаксационным методом с применением явных и полунеявных разностных схем [16].

Решения уравнений переноса в плотной фазе (1), (2) и относительно функций распределения частиц по размерам (8)–(12) осуществляли методом прогонки [16, 17]. При этом интегралы в уравнениях (1) и (2) вычисляли методом

Симпсона [18], а источниковый член в уравнениях (8) и (9) — методом численного дифференцирования [19].

Истинные плотности газа в фазе пузырей, плотной фазе и на поверхности одиночных частиц определяли из уравнения состояния (18). Объемную долю пузырей в слое вычисляли по формуле [3–8]

$$u_1^d = u_{mf}(1 - \alpha_b^*) + u_b^* \alpha_b^*$$

с привлечением соотношений (17), (23) и (24).

Систему уравнений теплопереноса в стенках (19)–(22) решали методом прогонки [16, 17].

Для обеспечения устойчивого расчета искомых переменных в переходных режимах и сокращения времени счета применялась процедура автоматического выбора шага по времени при помощи экстраполяции Ричардсона (см. [17]), которая для рассматриваемого случая заключается в итерационном сопоставлении максимальных относительных погрешностей расчета температур газа в плотной фазе, среднеинтегральных температур коксозольного остатка и золы на полном временном шаге и двух полушагах.

Выход на стационарный температурный режим контролировали по максимальным относительным погрешностям вычисления указанных температур на двух соседних временных шагах.

5. ПРОГРАММА РАСЧЕТА

Для численной реализации на ЭВМ предложенного алгоритма разработана программа на языке FORTRAN-90 Microsoft for Windows (v. 1.0) [19]. Данная программа состоит из основного блока управления процессом вычислений и печати результатов расчета, подпрограмм расчета теплофизических свойств газовой смеси, характеристик процесса в фазе пузырей, коэффициентов межфазного обмена, скорости и теплового эффекта гомогенной реакции окисления СО, функций распределения коксозольных и зольных частиц по размерам, характеристик термохимического превращения одиночных топливных и зольных частиц, коэффициентов тепло- и массообмена топливных и инертных зольных частиц с газовым потоком в плотной фазе слоя, кинетики и тепловых эффектов поверхностных гетерогенных химических превращений, характеристик процесса в плотной фазе слоя, служебных подпрограмм

вычисления характеристик прямой и обратной прогонки, численного расчета интегралов, печати характеристик межфазного массо- и теплообмена, вычисления среднемассовых температур фаз и слоя.

Основными исходными данными расчета в программе являются фракционный состав топлива и золы, теплофизические свойства угля, золы и газовых компонентов, данные технического и элементного анализов исходного угля, коксозольного остатка и золы, конструктивные размеры аппарата, давление, массовые расходы воздуха и угля, начальные температуры топлива, золы, газов и стенок, состав исходного газа, макрокинетические параметры поверхностных гетерогенных реакций и гомогенной реакции окисления СО.

6. РЕЗУЛЬТАТЫ ЧИСЛЕННОГО АНАЛИЗА

Описанная программа была использована для исследования динамики зажигания высокозольного каменного угля марки ГСШ (Донецкий газопламенный семечковый штыб) в зоне кипящего слоя реактора-газогенератора разрабатываемой пилотной установки ЦКС-1.0 [1, 2]. Исследовалось влияние давления, начальной температуры газа, фракционного состава топлива, массы слоя, массовых расходов угля и воздуха на протекание процесса. Варьируемые параметры выбирались в диапазонах, рекомендуемых проектировщиками в качестве оптимальных режимов функционирования установки.

Основная особенность проведенных расчетов — это постоянный выход температур коксовых фракций за границы заданного рабочего диапазона (785 \div 950 °C), который сопровождается дальнейшей термической нестабильностью процесса выгорания топлива в переходных режимах (образование в слое так называемых «горячих пятен» — кратковременных локальных разогревов). Так, при массовом расходе топлива 200 ÷ 1400 кг/ч максимальные температуры слоя достигали значений 962 ÷ 967 °C, при массе слоя от 100 до 200 кг — 964 ÷ 1372 °C. При снижении числа фракций коксозольного остатка топлива максимальные температуры слоя составляли 1523 °C. Видно, что указанные значения могут быть близки к температуре начала шлакования топлива, которая для угля марки ГСШ составляет 1400 °C [3], или даже превышать ее. Этим фактом в

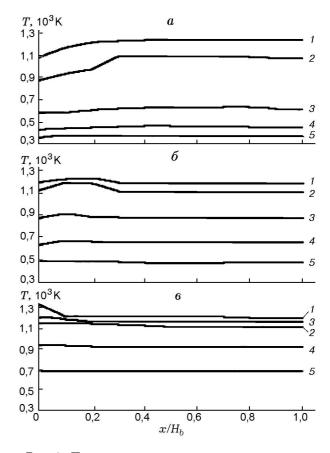


Рис. 1. Профили температур различных фракций кокса в момент достижения «горячего пятна» при $p_0=0.1$ (a), 0.25 (б) и 0.55 МПа (в): r_p^0 , м: $1-0.2\cdot 10^{-3}$; $2-0.3\cdot 10^{-3}$; $3-0.5\cdot 10^{-3}$; $4-0.8\cdot 10^{-3}$; $5-1.3\cdot 10^{-3}$

некоторой степени можно объяснить зашлаковывание слоя, особенно в его верхних точках, которое было отмечено в экспериментальных исследованиях процесса воздушной газификации угля Донбасса в ЦКС [20].

Результаты расчетов также показали возможность перемещения «горячих точек» по слою в зависимости от условий процесса. Так, при атмосферном давлении максимальная температура «горячей точки» составляла 970,8 °C и наблюдалась на выходе из слоя (рис. 1,a). При повышении давления эта температура возрастала до 972 °C, смещаясь к началу слоя (рис. 1,6,6 и рис. 2). В опытах по исследованию влияния давления «горячие пятна» наблюдались преимущественно при горении мелких фракций топлива.

Для объяснения возникновения «горячих пятен» в слое рассмотрим профили концентраций газовых компонентов по высоте слоя в

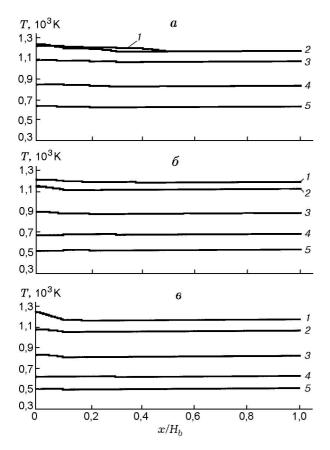


Рис. 2. Профили температур различных фракций кокса в момент достижения «горячего пятна» при $p_0=0.868$ (a), 1.65 (б) и 2.5 МПа (в): r_p^0 , м: $1-0.2\cdot 10^{-3}$; $2-0.3\cdot 10^{-3}$; $3-0.5\cdot 10^{-3}$; $4-0.8\cdot 10^{-3}$; $5-1.3\cdot 10^{-3}$

плотной фазе при $p_0=0.868$ МПа (рис. 3), профили скоростей гетерогенной реакции горения $C+O_2$ (рис. 4) и гомогенной реакции окисления CO (рис. 5) при разных давлениях. Интенсификация прироста концентраций на рис. 3, 4 обусловлена именно ускорением гомогенной реакции окисления CO и гетерогенной реакции $C+O_2$ при повышении давлении, причем, как видно из рисунков, наиболее существенный прирост концентраций и скоростей указанных реакций для заданного набора параметров модели наблюдается вблизи выхода из слоя.

Повышение давления мало сказывалось на характере изменении температуры газа в пузырях, а интенсивные изменения температуры газа в плотной фазе при более высоком давлении наступали позднее, что связано с возможным торможением процесса газификации коксозольного остатка топлива с CO₂ при повышенных

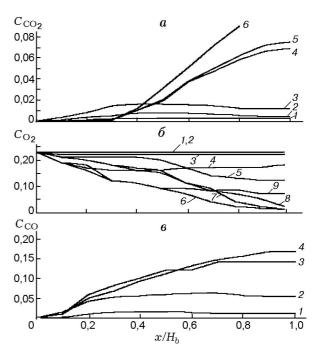


Рис. 3. Профили концентраций $CO_2(a)$, $O_2(\delta)$ и $CO(\epsilon)$ в плотной фазе слоя в различные моменты времени:

 $a - p_0 = 0.8$ МПа, t, с: $1 - 0.328;\ 2 - 0.533;\ 3 - 0.733;\ 4 - 0.942;\ 5 - 1.15;\ 6 - 1.52;\ 6 - p_0 = 0.8$ МПа, t, с: $1 - 0.62 \cdot 10^{-3};\ 2 - 0.344 \cdot 10^{-2};\ 3 - 0.155 \cdot 10^{-3};\ 4 - 0.103;\ 5 - 0.328;\ 6 - 0.503;\ 7 - 0.737;\ 8 - 1.15;\ 9 - 4.05;\ 6 -$ обозначения соответствуют рис. 3,a

давлениях. Аналогично поведение и температуры разных фракций топлива.

При повышении начальной температуры газа возрастали среднемассовые температуры газа в пузырях, плотной фазе, а также температуры кокса и слоя в целом.

Вариация массового расхода топлива существенно не влияла на изменение во времени указанных температур.

При вариации массы слоя среднемассовая температура газа в пузырях практически не менялась во времени, а другие вышеупомянутые температуры повышались.

При повышении массовой концентрации ${\rm CO_2}$ до 99 % (переход на расчет чисто газификационных режимов в зоне кипящего слоя) разработанная программа позволяет проводить устойчивые и эффективные расчеты как переходных, так и стационарных температурных режимов процессов газификации высокозольного каменного угля под давлением в низкотемпературном кипящем слое. Поэтому наряду с исследованиями динамики сжигания угля ГСШ

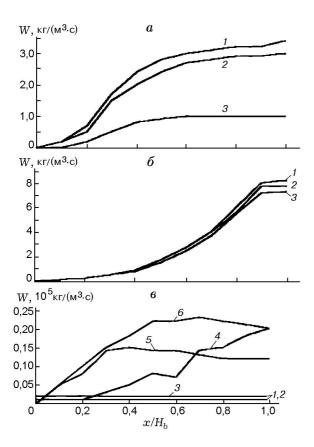


Рис. 4. Профили скорости гетерогенной реакции горения кокса $C+O_2$ (a, δ) и профили скорости гомогенной реакции окисления CO в пузырях (s):

 $\begin{array}{l} a - p_0 = 0.1 \ \mathrm{M\Pia}, \, t = 0.795 \ \mathrm{c}, \, r_p^0, \, \mathrm{m:} \, 1 - 0.05 \div 0.18; \\ 2 - 0.33; \, 3 - 0.5 \cdot 10^{-3}; \, \, \delta - p_0 = 0.8 \ \mathrm{M\Pia}, \, t = \\ 4.06 \ \mathrm{c}, \, r_p^0, \, \mathrm{m:} \, 1 - 0.05 \div 0.33; \, 2 - 0.5; \, 3 - 0.8 \cdot 10^{-3}; \\ 6 - p_0 = 0.1 \ \mathrm{M\Pia}, \, t, \, \mathrm{c:} \, 1 - 0.2 \cdot 10^{-3}; \, 2 - 0.64 \cdot 10^{-3}; \\ 3 - 0.128 \cdot 10^{-3}; \, 4 - 0.15; \, 5 - 0.344; \, 6 - 0.795 \end{array}$

в зоне кипящего слоя изучалось также влияние давления, начальной температуры газа и соотношений $\mathrm{CO}_2:\mathrm{O}_2$ в окружающей среде на процесс в режиме газификации.

В ходе вычислений не выявлено существенного влияния изменения концентраций CO_2 и CO на динамику среднемассовых температур фаз и слоя. Повышение давления незначительно повышало время выхода процесса на стационарный температурный режим, но, как и в случае горения, интенсифицировало процесс.

При $C_{\rm CO_2}=100$ %, $p_0=0.8$ МПа и $T_g^0=900$ °C имел место длительный стабильный счет с выходом на стационарный температурный режим в области начальной температуры.

При $p_0 = 0.1$ МПа, $T_q^0 = 850 \div 950$ °C и

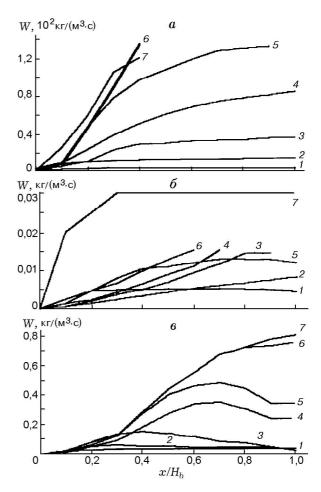


Рис. 5. Профили скорости гомогенной реакции окисления CO:

a — плотная фаза, $p_0=0.1$ МПа, t, с: 1 — 0,0128; 2 — 0,0269; 3 — 0,0397; 4 — 0,073; 5 — 0,0986; 6 — 0,15; 7 — 0,344; 6 — пузыри, $p_0=0.8$ МПа, t, с: 1 — 0,328; 2 — 0,533; 3 — 0,737; 4 — 0,942; 5 — 1,0; 6 — 1,15; 7 — 4,05; 6 — плотная фаза, $p_0=0.8$ МПа, значения t соответствуют рис. 5, a

 $CO_2: CO=1:0;\ 0.95:0.05;\ 0.9:0.1;\ 0.81:0.19$ отмечалась возможность теоретически полного превращения топлива.

Во всех других вариантах вычислений практически всегда температуры коксовых фракций выходили за границы необходимого рабочего диапазона температур процесса. Максимальные значения таких температур находились в пределах 970÷1193 °C. Как показал анализ проведенных расчетов, в случае газификационных режимов указанная особенность связана с изменением направления потоков в тех членах уравнений, которые отражают межфазный обмен «плотная фаза — пузыри», а также конвективный массо- и теплообмен между га-

зовым потоком, топливными и зольными частицами.

выводы

Разработанные математическая модель, алгоритм и программа вычислений дают возможность получать результаты, не противоречащие существующим представлениям о физико-химических закономерностях горениягазификации коксозольных остатков высокозольного каменного угля в низкотемпературном кипящем слое. Результаты работы могут быть использованы в инженернотехнологической практике как для автономного численного анализа данного класса процессов в аппаратах с низкотемпературным кипящим слоем, так и в качестве отдельного блока при дальнейшей разработке методов математического моделирования, вычисления и оптимизации переходных и стационарных режимов процессов термохимической переработки высокозольного каменного угля в технологических установках с ЦКС, подобных установке [2].

ЛИТЕРАТУРА

- 1. Корчевой Ю. П., Майстренко А. Ю., Пацков В. П. и др. Системный анализ процессов термохимической переработки угля в установках с циркулирующим кипящим слоем // Энергетика и электрификация. 1995. № 1. С. 42–45; Хим. пром-ть. 1995. № 1. С. 23–29.
- 2. Майстренко А. Ю., Дудник А. Н., Яцкевич С. В. Технологии газификации углей для парогазовых установок. Киев: Знание, 1993.
- 3. **Тодес О. М., Цитович О. Б.** Аппараты с кипящим зернистым слоем. Гидравлические и тепловые основы работы. Л.: Химия, 1981.
- 4. Протодьяконов И. О., Богданов С. Р. Статистическая теория явлений переноса в процессах химической технологии: Учеб. пособие для вузов. Л.: Химия, 1983.
- 5. Ружников С. Г., Янголов О. В., Щипко М. Л. и др. Моделирование и оптимизация условий запуска котлов с псевдоожиженным слоем // Инж.-физ. журн. 1990. Т. 59, № 1. С. 126–131.

- 6. **Расчеты** аппаратов кипящего слоя: Справочник / Под ред. И. П. Мухленова, Б. С. Сажина, В. В. Фролова. Л.: Химия, 1986.
- 7. **Кунии Д., Левеншпиль О.** Промышленное псевдоожижение. М.: Химия, 1976.
- 8. **Махорин К. Е., Хинкис П. А.** Сжигание топлива в псевдоожиженном слое. Киев: Наук. думка, 1989.
- 9. **Радованович М.** Сжигание топлива в псевдоожиженном слое / Пер. с англ. М.: Энергоатомиздат, 1990.
- Майстренко А. Ю. Кинетика взаимодействия коксов энергетических углей с газамиреагентами О₂ и СО₂ в кипящем слое под давлением // Экотехнологии и ресурсосбережение. 1997. № 2. С. 3–10.
- 11. **Майстренко А. Ю.** Влияние концентрации CO на скорость взаимодействия коксов каменных углей с CO₂ и в кипящем слое под давлением // Экотехнологии и ресурсосбережение. 1997. № 2. С. 9–15.
- 12. Weimer A. W., Glough D. E. Modelling of low pressure gasification in fluidised bed gasiefier reactor // Chem. Eng. Sci. 1981. V. 36, № 3. P. 549–557.
- 13. **Бесков С. Д.** Технохимические расчеты. М.: Высш. шк., 1966.
- 14. **Ейтс Дж.** Основы механики псевдоожижения с приложениями. М.: Мир, 1986.
- 15. **Шемякин М. Н., Орлик В. Н., Миши- на К. И.** Математическое моделирование процесса сжигания и газификации угля в кипящем слое // Химия твердого топлива. 1988. № 4. С. 128–133.
- Методы моделирования каталитических процессов на аналоговых и цифровых вычислительных машинах / М. Г. Слинько, В. С. Бесков, В. Б. Скоморохов и др. Новосибирск: Наука, 1972.
- 17. **Марчук Г. И.** Методы вычислительной математики. М.: Наука, 1980.
- 18. **Дьяконов В. П.** Справочник по алгоритмам и программам на языке Бейсик для персональных ЭВМ. М.: Статистика, 1977.
- Метклаф М., Рид Дж. Описание языка программирования Фортран-90 / Пер. с англ. М.: Мир, 1998.
- 20. **Майстренко А. Ю., Чернявский Н. В., Дудник А. Н. и др.** Газификация каменных углей Донбасса в ЦКС // Энергетика и электрификация. 1995. № 2. С. 1–4.

Поступила в редакцию $5/IV\ 2000\ {\rm г.,}$ в окончательном варианте — $5/IX\ 2000\ {\rm г.}$