УДК 544.47

СКЕЛЕТНЫЙ МЕХАНИЗМ ИНГИБИРОВАНИЯ И ГАШЕНИЯ МЕТАНОВОЗДУШНОГО ПЛАМЕНИ ДОБАВКАМИ ТРИМЕТИЛФОСФАТА

О. П. Коробейничев, Т. А. Большова, А. Г. Шмаков, В. М. Шварцберг

Институт химической кинетики и горения им. В. В. Воеводского СО РАН, 630090 Новосибирск korobein@kinetics.nsc.ru

Разработан скелетный механизм ингибирования и гашения метановоздушных пламен добавкой триметилфосфата. В него входят механизм окисления метана, состоящий из 19 элементарных стадий с участием 15 компонентов (включая N₂), и 4 элементарные реакции с участием 3 фосфорсодержащих соединений (PO₂, HOPO, HOPO₂). Разработанный скелетный механизм удовлетворительно предсказывает скорость распространения пламен с добавкой ингибитора в диапазоне коэффициента избытка горючего 0.7 ÷ 1.4 и может применяться при моделировании гашения пожаров.

Ключевые слова: горение метана, ингибирование, гашение пожара, триметилфосфат, скелетный механизм.

Горение твердых, жидких и газообразных веществ является источником пожаров, среди которых особое место занимают лесные. Пожары являются глобальной проблемой, так как наносят большой материальный и экологический ущерб. Разработка физических и математических моделей их возникновения, распространения и гашения, которые обладали бы предсказательной способностью, имеет важное научное и практическое значение.

В настоящее время бурно развиваются вычислительные методы в гидродинамике (CFD), которые позволяют исследовать трехмерную динамику процессов, происходящих при распространении и гашении пожаров, в том числе при использовании различных ингибиторов и пламегасителей. Соответствующие модели включают в себя уравнения движения среды, а также химические и фазовые превращения веществ, без учета которых невозможно успешное применение данных моделей. В работе [1] на основе анализа статистики по 16 детальным и скелетным механизмам горения углеводородов С1-С8 показано, что такие механизмы должны включать от десятков до сотен соединений и состоять из сотен и тысяч реакций. При этом переход к дизельным и авиационным топливам, несомненно, приведет к еще большему усложнению механизмов. Применение таких громоздких схем реакций не всегда оправданно, а часто практически невозможно,

поскольку требует больших затрат времени на проведение численных расчетов. Поэтому для увеличения производительности вычислений с сохранением приемлемой точности используют скелетные и редуцированные механизмы химических реакций.

В настоящее время разработано довольно много скелетных и глобальных механизмов горения некоторых топлив. В первую очередь необходимо отметить работы [2, 3], в которых разработаны скелетные и глобальные механизмы окисления водорода [2] и метана [3]. В работе [4] предложен четырехстадийный механизм горения водорода, а в [5] — четырехстадийный механизм горения синтез-газа. Работы [6–11] посвящены созданию сокращенных механизмов самовоспламенения и горения смесей н-гептана с воздухом, изооктана и его смесей с н-гептаном и н-пентаном. В работах [12, 13] на основе экспериментальных данных по составу продуктов пиролиза лесных горючих материалов, кинетики их окисления в реакторе идеального перемешивания, а также структуры их пламени разработан и тестирован ряд скелетных, редуцированных и глобальных механизмов горения продуктов газификации лесных горючих материалов, которые в дальнейшем будут полезны при моделировании лесных пожаров. Сокращенные механизмы ингибирования и гашения метановоздушного пламени химически активными соединениями в литературе практически отсутствуют.

Если сокращенные механизмы горения водорода и многих углеводородов к настояще-

[©] Коробейничев О. П., Большова Т. А., Шмаков А. Г., Шварцберг В. М., 2014.

№ п/п	Реакции	A^*	b	E^{**}
1	$H + O_2 = O + OH$	$6.73\cdot 10^{15}$	-0.5	16670
2	$O + H_2 = H + OH$	$5.06\cdot 10^4$	2.7	6 2 9 0
3	$\mathrm{H}_2 + \mathrm{OH} = \mathrm{H}_2\mathrm{O} + \mathrm{H}$	$1.17\cdot 10^8$	1.5	3457.4
4	$OH + OH = O + H_2O$	$3.35\cdot 10^4$	2.4	-1927
5	$\rm H + OH + M \longrightarrow H_2O + M$	$1.80\cdot 10^{23}$	-2.0	0
6	$\rm H + O_2 + M \longrightarrow \rm HO_2 + M$	$5.00\cdot10^{17}$	-0.8	0
7	$\mathrm{HO}_2 + \mathrm{H} \longrightarrow \mathrm{H}_2 + \mathrm{O}_2$	$4.48\cdot 10^{13}$	0	1068
8	$\mathrm{HO}_2 + \mathrm{H} \longrightarrow \mathrm{OH} + \mathrm{OH}$	$6.00\cdot 10^{13}$	0	295
9	$\rm CO + OH = \rm CO_2 + H$	$1.80\cdot 10^5$	1.9	-1160
10	$\rm HCO + M \longrightarrow \rm H + \rm CO + M$	$1.00\cdot 10^{14}$	0	15540
11	$\rm HCO + \rm H \longrightarrow \rm CO + \rm H_2$	$1.11\cdot 10^{14}$	0	0
12	$\mathrm{H} + \mathrm{CH}_3 + \mathrm{M} \longrightarrow \mathrm{CH}_4 + \mathrm{M}$	$2.00\cdot 10^{24}$	-3.0	0
13	$\mathrm{H} + \mathrm{CH}_4 \longrightarrow \mathrm{CH}_3 + \mathrm{H}_2$	$6.60\cdot 10^8$	1.6	10840
14	$O + CH_4 \longrightarrow OH + CH_3$	$1.02\cdot 10^9$	1.5	8 600
15	$\mathrm{OH} + \mathrm{CH}_4 \longrightarrow \mathrm{CH}_3 + \mathrm{H}_2\mathrm{O}$	$1.00\cdot 10^8$	1.6	3120
16	$CH_3 + HCO \longrightarrow CH_4 + CO$	$2.65\cdot 10^{13}$	0	0
17	$O + CH_3 \longrightarrow H + CH_2O$	$5.06\cdot 10^{13}$	0	0
18	$\mathrm{O} + \mathrm{CH}_3 \longrightarrow \mathrm{H} + \mathrm{H}_2 + \mathrm{CO}$	$3.37\cdot 10^{13}$	0	0
19	$\mathrm{H} + \mathrm{CH}_2\mathrm{O} \longrightarrow \mathrm{HCO} + \mathrm{H}_2$	$5.74 \cdot 10^7$	1.9	2742
20	$PO_2 + OH + M \longrightarrow HOPO_2 + M$	$1.60\cdot 10^{24}$	-2.3	285
21	$HOPO + OH \longrightarrow PO_2 + H_2O$	$3.72 \cdot 10^{13}$	-0.2	3 200
22	$\mathrm{HOPO}_2 + \mathrm{H} \longrightarrow \mathrm{PO}_2 + \mathrm{H}_2\mathrm{O}$	$5.16 \cdot 10^{19}$	-1.8	10726
23	$PO_2 + H + M \longrightarrow HOPO + M$	$9.00\cdot 10^{25}$	-2.0	645

Скелетный механизм ингибирования пламен метана добавками ТМФ

Примечание. Константы скорости выражены в виде $k = AT^b \exp[-E/(RT)]$. *Размерность моль, см³, с. **Размерность кал/моль.

му времени созданы, то о сокращенных механизмах ингибирования и гашения этих пламен такого сказать нельзя. В работах [14–24] были всесторонне исследованы характеристики пламен водорода, метана и пропана с добавками фосфорорганических соединений (ФОС), такие как структура ламинарного перемешанного и диффузионного пламен, скорость и пределы распространения пламени, и на основании полученных результатов разработаны и проверены детальные механизмы ингибирования и гашения этих пламен.

Цель данной работы — на основе детального механизма ингибирования пламен метана

и пропана добавками ФОС [16–24] разработать скелетный механизм ингибирования и гашения метановоздушного пламени добавками триметилфосфата и обосновать его применение в моделях тушения пожаров химически активными пламегасителями.

Методом численного моделирования исследовались метановоздушные пламена различного стехиометрического состава при начальной температуре горючей смеси 308 К и атмосферном давлении. Для описания горения метановоздушных смесей с добавкой ФОС нами на основе результатов исследований [16– 24] предложен скелетный механизм, состоящий

Рис. 1. Скорость распространения пламени смеси $CH_4/O_2/N_2$ при атмосферном давлении и начальной температуре $T_0 = 308$ К в зависимости от коэффициента избытка горючего: эксперимент: кружки — данные [23], квадраты — [27, 28], расчет: сплошные линии — по скелетному механизму, штриховая — по полному механизму [22]

из 23 реакций для 18 компонентов пламени (три из них — фосфорсодержащие соединения PO₂, HOPO, HOPO₂). Механизм включает в себя 5 обратимых и 18 необратимых реакций, представленных в таблице. Скорость свободного распространения пламени рассчитана с помощью программы PREMIX [25] из программного пакета СНЕМКІN II [26]. Проведено сравнение результатов расчета скорости пламени по разработанному скелетному механизму с результатами моделирования по полному механизму [22], который описывает горение метано- и пропановоздушных пламен с добавками ФОС. Данный механизм содержит 682 реакции с участием 121 соединения.

На рис. 1 представлены скорости распространения пламени смеси CH_4 /воздух без добавки в зависимости от коэффициента избытка горючего ϕ , рассчитанные по полному [22] и скелетному механизмам. На рисунке приведены также экспериментальные данные [23, 27, 28], полученные методом баланса потока тепла в горелку. Видно, что в диапазоне $0.85 < \phi <$ 1.35 результаты расчета по приведенным моделям удовлетворительно согласуются как между собой, так и с экспериментальными данными. Расхождение составляет около 10 % в об-

Рис. 2. Скорость распространения пламени смеси $CH_4/O_2/N_2$ с добавкой фосфорсодержащего компонента в зависимости от коэффициента избытка горючего (p = 1 бар, $T_0 = 308$ K): добавка 0.06 % (по объему) ТМФ: точки — эксперимент [23], штриховая линия — расчет по полному механизму [22]; добавка 0.06 % (по объему) PO_2 : сплошные линии — расчет по скелетному механизму

ласти стехиометрических и богатых пламен. В области бедных пламен результаты моделирования по скелетному механизму сильнее отличаются от данных экспериментов: при $\phi = 0.8$ расхождение составляет ≈ 20 %, а при $\phi = 0.7$ — около 50 %.

На рис. 2 приведены результаты расчета по полному механизму [22] скорости распространения метановоздушного пламени с добавкой триметилфосфата (ТМФ) 0.06 % (по объему) в зависимости от коэффициента избытка горючего, а также экспериментальные данные [23]. Наблюдается удовлетворительное согласие между экспериментом и расчетом по детальной модели.

Из расчета коэффициентов чувствительности скорости распространения пламени к константам скоростей основных реакций с участием ФОС следует, что максимальной чувствительностью обладают реакции

 $PO_2 + OH + M \longrightarrow HOPO_2 + M,$ (1)

 $HOPO + OH \longrightarrow PO_2 + H_2O,$ (2)

$$HOPO_2 + H \longrightarrow PO_2 + H_2O,$$
 (3)

$$PO_2 + H + M \longrightarrow HOPO + M.$$
 (4)

Анализ результатов этих расчетов показал, что основными ингибиторами горения в метановоздушных пламенах являются не ТМФ, а фосфорсодержащие продукты его превращения. Распад ТМФ до PO₂ происходит быстро и на скорость распространения пламени не влияет. Поэтому для описания ингибирующего влияния добавки на скорость в скелетный механизм были включены реакции (1)–(4). В дальнейших расчетах по скелетному механизму вместо ТМФ мы использовали добавку PO₂ с начальной концентрацией, равной начальной концентрации ТМФ.

Сформированный нами скелетный механизм ингибирования метановоздушного пламени добавками ТМФ включает в себя механизм окисления метана, состоящий из 19 элементарных стадий с участием 15 компонентов, и 4 элементарные реакции с участием 3 фосфорсодержащих веществ — PO₂, HOPO, HOPO₂. Таким образом, результирующий механизм содержит 23 элементарные стадии: 5 обратимых и 18 необратимых реакций. Результаты расчета скорости распространения метановоздушного пламени с добавкой PO₂ по этому скелетному механизму представлены на рис. 2.

Как видно из сравнения кривых на рис. 2, разработанный скелетный механизм предсказывает более завышенные значения скоростей пламен с добавками, чем детальный механизм [22]. Максимальное расхождение наблюдается для самого бедного пламени — 24 %. В других пламенах расхождение существенно меньше. В диапазоне коэффициентов избытка горючего $\phi = 1 \div 1.3$ скорости распространения пламени, рассчитанные по скелетному механизму, гораздо точнее совпадают с данными экспериментов [23], чем скорости, предсказанные при использовании полного механизма. В целом предложенный скелетный механизм удовлетворительно предсказывает скорость распространения пламен с добавкой ингибитора в диапазоне $\phi = 0.7 \div 1.4$ и рекомендуется к применению при моделировании гашения пожаров.

ЛИТЕРАТУРА

1. Law C. K. Combustion at a crossroads: Status and prospects // Proc. Combust. Inst. — 2007. — V. 31. — P. 1–29.

- Mauss F., Peters N., Rogg B., Williams F. A. Reduced reaction mechanisms for premixed hydrogen flames // Reduced Kinetics Mechanisms for Applications in Combustion Systems / N. Peters, B. Rogg (Eds). — New York: Springer-Verlag, 1993. — P. 29–43. — (Lecture Notes in Physics).
- Mauss F., Peters N. Reduced reaction mechanisms for premixed methane-air flames // Reduced Kinetics Mechanisms for Applications in Combustion Systems / N. Peters, B. Rogg (Eds). — New York: Springer-Verlag, 1993. — P. 58–75. — (Lecture Notes in Physics).
- Boivin P., Jimenez C., Sanchez A. L., Williams F. A. An explicit reduced mechanism for H₂ — air combustion // Proc. Combust. Inst. — 2011. — V. 33. — P. 517–523.
- Boivin P., Jiménez C., Sánchez A. L., Williams F. A. A four-step reduced mechanism for syngas combustion // Combust. Flame. — 2011. — V. 158. — P. 1059–1063.
- Maroteaux F., Noel L. Development of a reduced *n*-heptane oxidation mechanism for HCCI combustion modeling // Combust. Flame. 2006. V. 146. P. 246–267.
- Curran H. J., Gaffuri P., Pitz W. J., Westbrook C. K. A comprehensive modeling. Study of *n*-heptane oxidation // Combust. Flame. — 1998. — V. 114. — P. 149–177.
- Ra Y., Reitz R. D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels // Combust. Flame. — 2008. — V. 155. — P. 713–738.
- Harstad K., Bellan J. A model of reduced oxidation kinetics using constituents and species: Iso-octane and its mixtures with *n*-pentane, iso-hexane and *n*-heptane // Combust. Flame. — 2010. — V. 157, N 11. — P. 2184–2197.
 Tanaka S., Ayala F., Keck J. C. A reduced
- Tanaka S., Ayala F., Keck J. C. A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine // Combust. Flame. — 2003. — V. 133. — P. 467–481.
- Tsurushima T. A new skeletal PRF kinetic model for HCCI combustion // Proc. Combust. Inst. — 2009. — V. 32. — P. 2835–2841.
- Santoni T. P.-A., Simeoni A., Garo J.-P., Vantelon J.-P. Skeletal and global mechanisms for the combustion of gases released by crushed forest fuels // Combust. Flame. — 2009. — V. 156. — P. 1565–1575.
- Leroy V., Leoni E., Santoni P. A. Reduced mechanism for the combustion of evolved gases in forest fires // Combust. Flame. — 2008. — V. 154. — P. 410–433.
- 14. Коробейничев О. П., Большова Т. А. Эффект увеличения скорости разреженного водородокислородного пламени добавками триметилфосфата в рамках теории цепного распространения пламени Зельдовича // Физика горения и взрыва. — 2011. — Т. 47, № 1. — С. 15–21.

- 15. Зельдович Я. Б. Цепные реакции в горячих пламенах — приближенная теория скорости пламени // Кинетика и катализ. — 1961. — Т. 11, № 3. — С. 305–318.
- Korobeinichev O. P., Shvartsberg V. M., Shmakov A. G., Bolshova T. A., Jayaweera T. M., Melius C. F., Pitz W. J., Westbrook C. K. Flame inhibition by phosphorus-containing compounds in lean and rich propane flames // Proc. Combust. Inst. — 2005. — V. 30. — P. 2353–2360.
- Korobeinichev O. P., Shvartsberg V. M., Shmakov A. G., Knyazkov D. A., Rybitskaya I. V. Inhibition of atmospheric lean and rich CH₄/O₂/Ar flames by phosphorus-containing compound // Proc. Combust. Inst. — 2007. — V. 31(2). — P. 2741–2748.
- Jayaweera T. M., Melius C. F., Pitz W. J., Westbrook C. K., Korobeinichev O. P., Shvartsberg V. M., Shmakov A. G., Curran H. Flame inhibition by phosphoruscontaining compounds over a range of equivalence ratios // Combust. Flame. — 2005. — V. 140, N 1-2. — P. 103–115.
- Korobeinichev O. P., Rybitskaya I. V., Shmakov A. G., Chernov A. A., Bolshova T. A., Shvartsberg V. M. Inhibition of atmospheric-pressure H₂/O₂/N₂ flames by trimethylphosphate over range of equivalence ratio // Proc. Combust. Inst. — 2009. — V. 32. — P. 2591–2597.
- Коробейничев О. П., Рыбицкая И. В., Шмаков А. Г., Чернов А. А., Большова Т. А., Шварцберг В. М. Особенности механизма ингибирования водородокислородных пламен различного состава триметилфосфатом // Кинетика и катализ. — 2010. — Т. 51, № 2. — С. 168–175.
- 21. Shvartsberg V. M., Shmakov A. G., Bolshova T. A., Korobeinichev O. P. Mechanism for inhibition of atmospheric-pressure syngas/air

flames by trimethylphosphate // Energy Fuels. — 2012. - V. 26, N 9. - P. 5528-5536.

- 22. Organophosphorus Compounds Effect on Flame Speeds over a Range of Equivalence Ratios 2004. — https://www-pls.llnl.gov/?url= science_and_technology-chemistry-combustionorganophosphorus_over_range.
- Рыбицкая И. В., Шмаков А. Г., Коробейничев О. П. Определение скорости распространения углеводородовоздушных пламен с добавками фосфорорганических соединений при атмосферном давлении // Физика горения и взрыва. 2007. Т. 43, № 3. С. 9–14.
- 24. Князьков Д. А., Шварцберг В. М., Шмаков А. Г., Коробейничев О. П. Влияние фосфорорганических ингибиторов на структуру атмосферных бедных и богатых метанокислородных пламен // Физика горения и взрыва. — 2007. — Т. 43, № 2. — С. 23–31.
- Kee R. J., Grcar J. F., Smooke M. D., Miller J. A. PREMIX // Sandia National Laboratories Rept, 1994. — SAND85-8240.
- 26. Kee R. J., Rupley F. M., Miller J. A. CHEMKIN-II: A fortran chemical kinetics package for the analysis of gas phase chemical kinetics // Sandia National Laboratories Rept, 1994. — SAND89-8009B.
- 27. Bosschaart K. J., de Goey L. P. H. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method // Combust. Flame. 2004. V. 136. P. 261–269.
- Dyakov I. V., Konnov A. A., De Ruyck J., Bosschaart K. J., Brock E. C. M., de Goey L. P. H. Measurement of adiabatic burning velocity in methane-oxygen-nitrogen mixtures // Combust. Sci. Technol. — 2001. — V. 172. — P. 79–94.

Поступила в редакцию 14/II 2013 г.