УДК 629.76

СОПРЯЖЕННАЯ ЗАДАЧА МОДЕЛИРОВАНИЯ ВНУТРИБАЛЛИСТИЧЕСКИХ ХАРАКТЕРИСТИК БЕССОПЛОВЫХ РДТТ

Ю. М. Милёхин, А. Н. Ключников, В. С. Попов

Федеральный центр двойных технологий «Союз», 140090 Дзержинский, Fcdt@monnet.ru

Изложена физико-математическая постановка совместной газодинамической и геометрической задачи моделирования внутрикамерных процессов и расчета внутрибаллистических характеристик бессопловых РДТТ, разработаны метод и алгоритм решения задачи. Для расчета параметров в переднем объеме двигателя применены осредненные нестационарные уравнения внутренней баллистики, а для канала заряда и выходного конуса — одномерные газодинамические уравнения в квазистационарной постановке. Программный комплекс проверен расчетом внутрибаллистических характеристик двигателя, который утилизировался без соплового блока и моделировал внутрикамерные процессы бессоплового РДТТ в течение полного времени работы. Расчетными исследованиями определены конструктивные особенности, рабочие параметры двигателей и характеристики составов, влияющие на реализацию энергетики топлив в бессопловых РДТТ. Показано, что по основному энергетическому параметру — удельному импульсу тяги бессопловые РДТТ в зависимости от условий сравнения (одинаковые степени расширения и профили сопла и выходного конуса) незначительно уступают или практически сближаются с традиционными РДТТ.

Ключевые слова: бессопловой ракетный двигатель, твердое топливо, тяга двигателя, удельный импульс.

ВВЕДЕНИЕ

Бессопловые ракетные двигатели твердого топлива (БСРДТТ) применяются в качестве разгонных ступеней ракет класса воздухвоздух и воздух-поверхность, маршевые ступени которых относятся к категории интегрированных ракетно-прямоточных двигателей.

С целью упрощения конструкции и оптимизации массогабаритных характеристик ракет указанных классов их стартово-разгонная ступень, как правило, интегрируется с маршевой: в камере сгорания прямоточного контура размещается прочно скрепленный с корпусом заряд твердого топлива, не имеющий соплового блока. Цилиндрический канал заряда на выходе заканчивается раструбом, который в процессе горения выполняет функцию газодинамического сопла: обеспечение расхода и расчетного удельного импульса продуктов сгорания топлива. Отсутствие соплового блока в интегрированных ракетно-прямоточных двигателях является одним из важных эксплуатационных преимуществ схемы, поскольку исключается необходимость сброса элементов конструкции на активном участке траектории полета при переходе с режима разгона на маршевый режим.

Аналогичным преимуществом обладают бессопловые двигатели авиационных, градобойных ракет и др., когда одним из решающих требований выступают простота и дешевизна конструкции ракеты.

Практическое применение бессопловых РДТТ до последнего времени сдерживалось противоречивыми данными о реализуемости ими энергетического потенциала твердых топлив. Не оценивались специфические потери удельного импульса тяги БСРДТТ и их зависимость от внутрибаллистических параметров, конструктивных особенностей двигателя и заряда, выполняющего функцию сопла.

Цель данной работы состояла в формулировке физико-математической постановки совместной газодинамической и геометрической задачи моделирования внутрикамерных процессов и расчета внутрибаллистических и энергетических характеристик бессопловых РДТТ, в разработке метода и алгоритма решения задачи, в составлении программы расчета. Проведены расчетные исследования влияния конструктивных характеристик, рабочих параметров (низкого давления в двигателе, критической скорости потока в канале заряда и др.), баллистических характеристик составов

[©] Милёхин Ю. М., Ключников А. Н., Попов В. С., 2013.

на реализацию энергетики топлив в бессопловых РДТТ.

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ, ВЛИЯЮЩИЕ НА РАСЧЕТНЫЕ ПАРАМЕТРЫ БСРДТТ

На сегодняшний день наиболее распространенными конструкциями зарядов РДТТ являются скрепленные с корпусом заряды с цилиндрическими каналами, имеющие наклонные кольцевые проточки или щелевые участки, расположенные в области переднего или соплового дна.

С учетом этого факта в расчетной схеме БСРДТТ (рис. 1) предусмотрен передний объем, включающий в себя горящую поверхность переднего торца заряда (простейшая форма) или поверхности кольцевой, щелевой областей заряда (1), канал заряда (2–3) и выходной конус (3–4), горящая поверхность которого может быть конической или профилированной.

Для расчета газодинамических и внутрибаллистических характеристик при проектировании БСРДТТ требовалось решение вопросов, связанных с математическим моделированием рабочего процесса этих двигателей и разработкой программных средств. Применение методических подходов и алгоритмов расчета характеристик, используемых при проектировании традиционных РДТТ с соплом, в случае бессопловых РДТТ оказывается в значительной степени неприемлемым. В горящем канале заряда реализуются области дозвукового, звукового и сверхзвукового течения продуктов сгорания, а также зоны увеличения скорости горения за счет эрозионного эффекта, что приводит к возникновению повышенных перепадов давления по длине канала. На ускорение сверх-

Рис. 1. Схема утилизируемого двигателя и модельного бессоплового РДТТ с коническим каналом:

1 — передний объем, 2, 3, 4 — соответственно левая, правая границы канала заряда и выходного сечения конуса

звукового потока в выходном раструбе канала заряда влияют массоприход с горящей поверхности, изменяющийся геометрический контур раструба и, как следствие, образующиеся скачки уплотнения. В результате усложняется схема расчета и, что особенно важно, возникают дополнительные потери удельного импульса тяги.

Для корректного расчета параметров при существенном увеличении критического сечения потока, находящегося в разгорающемся канале заряда, необходимо решение нестационарных уравнений внутренней баллистики и газовой динамики. Однако скорость движения границ проходных сечений, определяемая скоростью горения топлива и, существенно меньше скорости звука $a (u/a \approx 10^{-4})$. Это дает возможность использовать в задаче квазистационарный подход, который заключается в последовательном, с временным шагом Δt решении системы стационарных газодинамических уравнений при фиксированных формах канала заряда и конуса, определяемых в рамках «геометрического расчета». На основании изложенного выше с учетом имеющегося опыта инженерных внутрибаллистических расчетов [1, 2] нами предложено для расчета параметров переднего объема применять осредненные уравнения внутренней баллистики в нестационарной постановке, а для канала заряда — одномерные газодинамические уравнения в квазистационарной постановке.

В результате удалось провести расчеты параметров БСРДТТ в течение всего времени работы (t > 100 с) на персональных компьютерах средней мощности за приемлемое для практического использования время счета ($2 \div 3$ ч).

УРАВНЕНИЯ ДЛЯ РАСЧЕТА ПАРАМЕТРОВ В ПЕРЕДНЕМ ОБЪЕМЕ

Система обыкновенных дифференциальных уравнений для изменения во времени осредненных по переднему объему параметров газа имеет вид [1]:

уравнение сохранения массы

$$V_1 \frac{dp_1}{dt} = \dot{m}_1 R \chi T_v - S_1 p_1 u_1 P_1^{\nu} - G_2 k R T_1, \,(1)$$

уравнение энергии (для температуры T)

$$m_1 c_v \frac{dT_1}{dt} = \dot{m}_1 c_v \left(\chi T_v - T_1 \right) - RT_1 G_2.$$
 (2)

Приход продуктов сгорания в передний объем:

$$\dot{m}_1 = S_1 \rho_{\rm T} u_1 P_1^{\nu}. \tag{3}$$

Расход продуктов сгорания из переднего объема за счет втекания в основной канал заряда через левую границу (сечение 2):

$$G_2 = F_2 \rho_2 \upsilon_2. \tag{4}$$

Дифференциальные соотношения: для баланса массы

$$\frac{dm_1}{dt} = \dot{m}_1 - G_2, \tag{5}$$

для свободного переднего объема

$$\frac{dV_1}{dt} = \frac{\dot{m}_1}{\rho_{\rm T}}.\tag{6}$$

Плотность продуктов сгорания в переднем объеме находили по уравнению состояния газа

$$\rho_1 = \frac{p_1}{RT_1}.\tag{7}$$

В качестве начальных условий задавали осредненное по объему камеры давление, рассчитанное по формуле Бори, и равновесную термодинамическую температуру.

В уравнениях (1)–(7) использованы следующие обозначения: Р — безразмерное давление; p — давление, МПа; ρ — плотность, кг/м³; v — скорость, м/с; t — время, с; V — свободный объем, м³; *m* — масса продуктов сгорания, кг; R — газовая постоянная, Дж/(кг · K); *k* — показатель адиабаты; *T* — температура, К; S — горящая поверхность заряда, M^2 ; и1 — коэффициент в законе скорости горения топлива, м/с; *ν* — показатель степени в законе скорости горения; G — расход продуктов сгорания, кг/с; F — площадь сечения, м²; c_v удельная теплоемкость, $Дж/(кг \cdot K); \chi$ — коэффициент полноты сгорания; индексами v, p обозначены параметры при постоянных объеме и давлении соответственно, индексом 1 — параметры в переднем объеме, индексами 2, 3 параметры на левой и правой границах канала соответственно, индексом 4 — параметры в выходном сечении конической части заряда, индексом «т» — характеристики топлива.

ГАЗОДИНАМИЧЕСКИЕ УРАВНЕНИЯ ДЛЯ КАНАЛА И ВЫХОДНОГО КОНУСА ЗАРЯДА

При решении газодинамической задачи для канала заряда, когда область интегрирования уравнений за счет выгорания канала изменяется на каждом шаге по времени и требуется перестраивать разностные сетки, естественно стремление к упрощению алгоритма расчета, переходу от решения многомерных уравнений газовой динамики к решению одномерных уравнений. Система уравнений установившегося одномерного движения продуктов сгорания представлена в ряде работ, в частности в [3], в удобно преобразованном виде. При известных геометрических характеристиках: периметре h_i , площади поперечного сечения канала заряда F_i и производной $(dF/dx)_i$ — параметры потока p_i, ρ_i, v_i в канале заряда и выходном конусе в каждый момент времени $t_i = i\Delta t$ определяли интегрированием системы обыкновенных дифференциальных уравнений [3]:

$$\begin{aligned} \frac{dv}{dx} &= \frac{\rho_{\rm T}hu}{\rho F} \frac{kRT}{a^2 - v^2} + \frac{k+1}{2} \frac{\rho_{\rm T}hu}{\rho F} \frac{v^2}{a^2 - v^2} - \\ &- \frac{v}{F} \frac{dF}{dx} \frac{a^2}{a^2 - v^2}, \\ \frac{dp}{dx} &= -\frac{\rho_{\rm T}huv}{F} \frac{kRT}{a^2 - v^2} - \frac{\rho_{\rm T}huv}{F} \frac{2a^2 + (k-1)v^2}{2(a^2 - v^2)} + \\ &+ \frac{\rho v^2}{F} \frac{dF}{dx} \frac{a^2}{a^2 - v^2}, \quad (8) \\ \frac{d\rho}{dx} &= -\frac{\rho_{\rm T}hu}{Fv} \frac{kRT}{a^2 - v^2} - \frac{\rho_{\rm T}hu}{Fv} \frac{2a^2 - (k+3)v^2}{2(a^2 - v^2)} + \\ &+ \frac{\rho}{F} \frac{dF}{dx} \frac{v^2}{a^2 - v^2}, \\ T &= \frac{p}{\rho R}, \quad a^2 = kRT. \end{aligned}$$

Здесь u(P, v) — эмпирический закон скорости горения топлива, включающий эрозионный эф-фект [4].

Граничные условия для системы задавались в зависимости от режима истечения продуктов сгорания и имели следующий вид.

При звуковом режиме истечения в сечении 2 (см. рис. 1) сохраняется полное давление

$$p_2 + \rho_2 v_2^2 = p_1, \tag{9}$$

в сечении 3 скорость потока (как и
 $p,\,\rho,\,T)$ достигает критического значения

$$\upsilon_3 = \sqrt{\frac{2k}{k+1}} \,\chi RT_p \tag{10}$$

(здесь T_p — равновесная температура продуктов сгорания при давлении p).

При дозвуковом режиме истечения в сечении 2 условие (9) сохраняется, а в сечении 3 заменяется условием равенства статического давления на выходе из канала наружному давлению $p_{\rm H}$:

$$p_3 = p_4 = p_{\rm H}.\tag{11}$$

Применяемая система уравнений справедлива как для дозвукового течения по каналу, так и для сверхзвукового течения по выходному конусу в области 3–4.

Однако в практических расчетах из интегрируемой области целесообразно исключить сечение канала заряда, где реализуются критические условия течения продуктов сгорания ($v = a_{\rm kp}$), чтобы избежать возникновения неустойчивости решения.

Известно, что для согласования расходных характеристик идеального изоэнтропического и реального (неизоэнтропического) течений в инженерных методиках [1, 3–5] вводится согласующий коэффициент $\varphi_2 = 1 - \Delta F/F$, уменьшающий эффективное критическое сечение сопла (цилиндрического насадка, канала) на величину, учитывающую влияние пространственности течения, вязкости продуктов сгорания и силы сопротивления потоку (сопротивление в результате вдува продуктов сгорания в расчете учитывалось). Экспериментально величина сужения поперечного сечения потока $\Delta F/F$ в области 3 позволяет по газодинамическим таблицам [6] определить все параметры для границы 3, отличающиеся от критических как для канала заряда (слева от границы), так и для выходного конуса (справа от границы).

Используя значения параметров на правой границе канала и на левой границе выходного конуса, минимально отличающиеся от критических, параметры в канале и конической части заряда определяли по методу Эйлера прогонкой справа налево и слева направо по формулам (8). В процессе итераций добивались выполнения граничных условий (9) на левой границе канала и (11) на правой границе выходного конуса (при дозвуковом режиме истечения).

Процесс прогонки по выходному конусу при звуковом режиме истечения усложняется образованием скачков уплотнения за счет немонотонности контура и газоприхода со стенок, а также за счет отрыва потока при действии наружного давления ($p_{\rm H} \ge p_4$).

При выполнении в канале выходного конуса условий

$$\frac{dv_j}{dx_j} < 0, \quad \frac{dp_j}{dx_j} > 0, \quad p_j = p_{\text{orp}} \leqslant p_{\text{H}},$$

в сечении *j* формируется скачок уплотнения (индексом «отр» обозначены условия отрыва потока). Первые два условия отражают необходимость смены скоростного режима течения посредством образования косого (прямого) скачка уплотнения за счет отклонения потока на угол δ на входе в цилиндрический участок сопла, третье соотношение — условие отрыва потока, сопровождаемого образованием косых скачков уплотнения. В расчетах принято $p_{\rm отр} = p_{\rm H}/2$.

Поскольку в процессе расчета невозможно заранее предсказать угол распространения скачка при отрыве потока от стенок конического канала с подводом массы, для обобщения схемы расчета для всех условий предусмотрена возможность задания серии мелких косых скачков с минимальным углом распространения $\alpha_{\min,j} = \arcsin(1/M_j)$, до тех пор пока не устранятся условия возникновения скачка и не восстановится «физичный» режим течения в сечении выходного конуса *j*. В результате расчетов прогонкой достигали выполнения условий, заданных на правой границе (в выходном сечении сопла 4). При сверхзвуковом потоке давление в сечении 4 должно быть больше заданного давления отрыва ($p_4 \ge p_{\text{отр}}$), при дозвуковом потоке — должно равняться наружному давлению $(p_4 = p_{\rm H})$.

Значения углов распространения косых скачков уплотнения, в том числе минимальных углов α_{\min} , когда поток за скачком не отклоняется, в зависимости от числа Маха М в сечении и показателя адиабаты для одномерного изоэнтропического потока приведены в газодинамических таблицах [7].

Зависимости для расчета параметров за скачком (индекс 2) при известных параметрах

перед скачком (индекс 1), полученные на основе соотношений для сечения разрыва [8], имеют следующий вид:

$$M_{1} = \frac{\upsilon_{1}}{\sqrt{kRT_{1}}},$$

$$p_{2} = p_{1} \left(\frac{2k}{k+1} M_{1}^{2} \sin \alpha - \frac{k-1}{k+1} \right),$$

$$\rho_{2} = \rho_{1} \frac{(k+1)M_{1}^{2} \sin^{2} \alpha}{(k-1)M_{1}^{2} \sin^{2} \alpha + 2},$$
(12)

 $T_2 =$

$$=\frac{[2kM_1^2\sin^2\alpha - (k+1)][(k-1)M_1^2\sin^2\alpha + 2]}{(k+1)^2M_1^2\sin^2\alpha}$$

 $M_2 =$

$$= \sqrt{\frac{2 + (k-1)M_1^2}{2kM_1^2 \sin^2 \alpha - (k-1)}} + \frac{2M_1^2 \cos^2 \alpha}{2 + (k-1)M_1^2 \sin^2 \alpha}$$
$$v_2 = M_2 \sqrt{kRT_2}.$$

Принимая параметры за скачком в качестве граничных, параметры до выходного сечения конуса рассчитывали по той же схеме по формулам (8). При этом сверхзвуковой поток после косого скачка ускорялся, а дозвуковой замедлялся. Оба потока характеризовались возросшей энтропией и увеличенными потерями удельного импульса [9].

Тягу и удельный импульс тяги БСРДТТ находили по формулам

$$R_{\rm дB} = (F\rho v^2)_4 + F_4(p_4 - p_{\rm H}),$$

$$I_{\rm yg} = v_4 + \frac{p_4 - p_{\rm H}}{\rho_4 v_4}.$$
(13)

Наряду с учитываемыми при расчетах газодинамическими потерями и потерями на скачках уплотнения удельного импульса, ряд других составляющих оценивали методами, рекомендованными в работе [4].

Секундный расход определяли как произведение плотности потока на площадь разгорающегося выходного сечения конуса, суммарный расход продуктов сгорания — интегрированием зависимости для расхода по времени:

$$\dot{m} = F_4 \rho_4 \upsilon_4, \quad m = \int_0^t \dot{m} dt.$$

Из-за низкого уровня давления и его перепадов в конце работы БСРДТТ при практических расчетах без ущерба для точности использовали нестационарные уравнения внутренней баллистики с осредненными параметрами (1)–(7). Расход через выходное сечение конуса 4 определяли с учетом наружного противодавления по формулам работы [1].

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗАРЯДА И ЕГО КОНИЧЕСКОЙ ЧАСТИ В ПРОЦЕССЕ РАБОТЫ БСРДТТ

Контур заряда при расчете поверхности горения и геометрических характеристик областей течения продуктов сгорания аппроксимировали последовательностью направленных отрезков с выделением границ характерных областей (передний объем, канал, сопловой конус). Полученные геометрические характеристики использовали для расчета параметров газового потока и построения расчетной сетки. Координаты точек контура (x, y) задавали в декартовой системе координат. Переход к новому контуру на следующем шаге по времени осуществляли сдвигом узловых *j*-х точек исходного контура перпендикулярно отрезкам на величину Δe_i , определяемую скоростью горения топлива в данной точке u_i и шагом по времени Δt :

$$\Delta e_j = u_j \Delta t. \tag{14}$$

Новые координаты j-й точки $x_j^{\scriptscriptstyle\rm H}, y_j^{\scriptscriptstyle\rm H}$ определяли из решения системы уравнений

$$\sqrt{(x_j^{\rm H} - x_j)^2 + (y_j^{\rm H} - y_j)^2} = \Delta e_j,$$

$$y_j^{\rm H} = a_N x_j^{\rm H} + b_N,$$
(15)

где x_j, y_j — координаты исходной точки, a_N, b_N — коэффициенты в уравнении нормали к исходному отрезку. Из двух решений системы выбирали такой вариант, когда найденные координаты точки $x_i^{\rm H}, y_i^{\rm H}$ лежали внутри заряда.

Более полно алгоритм построения контура, в том числе при соединении непересекающихся отрезков, выгорании угловых элементов и образовании так называемых «петель», изложен нами в справочнике [4].

Метод направленных отрезков достаточно оптимально позволяет увязать между собой решение газодинамической задачи и нахождение требуемых для решения системы уравнений геометрических параметров при последовательном к нему обращении на каждом временном шаге.

Схема перемещения горящего контура при выгорании заряда осесимметричной конструкции модельного БСРДТТ показана на рис. 1.

ИССЛЕДОВАНИЕ ВНУТРИБАЛЛИСТИЧЕСКИХ ПАРАМЕТРОВ МОДЕЛЬНОГО БСРДТТ

Крупногабаритные РДТТ, утилизируемые путем проведения огневых стендовых испытаний со снятыми сопловыми блоками, в ходе которых измерялись давление или тяга, могут рассматриваться как варианты модельных БСРДТТ при тестировании расчетных методов прогнозирования внутрибаллистических параметров.

Для тестирования методики мы воспользовались результатами утилизации двигателя, проводимой с замером давления в переднем объеме и тяги двигателя [10]. Опытная и расчетная зависимости давления от времени приведены на рис. 2 и свидетельствуют об удовлетворительной сходимости расчета с опытом. Максимальное расхождение давлений $\Delta p_{\rm max} \cong 0.1$ МПа на начальном нестационарном участке работы двигателя и $\Delta p \cong$ 0.05 МПа на квазистационарном участке в конце работы при низком уровне опытного давления связано, в первую очередь, с погрешностью закона скорости горения топлива, экстраполируемого с принятого для топлива диапазона давления на низкие его значения. Для БСРДТТ в случае применения топлива с традиционными баллистическими характеристиками необходимо определить закон скорости горения при низком давлении, близком к атмосферному. С целью обеспечения оптимальных уровней давления в камере двигателя требуются топлива с повышенной в 2–3 раза скоростью горения.

Полученное при испытании некоторое снижение удельного импульса тяги (до 10 %) по сравнению с термодинамическим значением связано с нерасчетностью профиля выходного конуса: конус фактически заканчивался цилиндрическим участком. Возникал эффект, имеющий место в эжектирующих установках: преобразование сверхзвукового потока в дозвуковой посредством серии образующихся косых скачков, в нашем случае — при наличии массо-

Рис. 2. Опытная и расчетная зависимости давления от времени для утилизируемого двигателя со снятым сопловым блоком

прихода со стенок конуса. Образование косых скачков приводило к дополнительным потерям удельного импульса [9].

Исследование внутрибаллистических и газодинамических параметров проводили на модельном БСРДТТ с коническим каналом (см. рис. 1).

Зависимости давления, пустотной тяги $R_{\rm n}$, удельного пустотного импульса тяги $I_{\rm yg}^{\rm n}$ и скорости потока v на выходе из конического канала модельного двигателя от времени на участке, для которого проводился газодинамический расчет, приведены на рис. 3.

Экспоненциальный характер падения давления в двигателе на начальном участке кривой, несмотря на возрастание поверхности горения, объясняется нелинейным характером

Рис. 3. Расчетные зависимости давления в переднем объеме (1), пустотной тяги (2), скорости потока на выходе из конического канала (3) и удельной пустотной тяги модельного БСРДТТ (4) от времени

увеличения площади критического сечения, расположенного в разгорающемся канале, определяемом соотношением

$$F_{\rm kp}(t) = F_{\rm kp0} \left(1 + \frac{2u_1 P^{\nu} t}{d_{\rm kp0}} \right)^2.$$
(16)

Здесь u_1 , ν — коэффициент и показатель степени в законе скорости горения, $d_{\kappa p0}$ — начальное значение диаметра критического сечения (диаметра на выходе из канала).

Квазистационарный характер кривой давления в конце работы двигателя связан с преобразованием критического сечения сопла в отверстие сопловой крышки корпуса, имеющей значительно меньшую скорость уноса материала при докритическом режиме истечения продуктов сгорания по сравнению со скоростью горения топлива в канале.

Зависимости скорости потока продуктов сгорания в выходном сечении конуса и пустотного удельного импульса тяги (кривые 3 и 4 соответственно) идут практически эквидистантно, отличаясь на величину статической добавки тяги F_4p_4 ($I_{yd}^n > v_4$ при $p_{\rm H} = 0$). Некоторое падение удельного импульса и скорости истечения в начале работы двигателя связано с уменьшением степени расширения конуса изза неравномерного разгара канала заряда.

Распределение давления и скорости потока по каналу заряда и выходному конусу для выбранных моментов времени t = 0.1, 8.2, 24.0 с показано на рис. 4. Видно, что характер изменения параметров в зависимости от координа-

Рис. 4. Распределение скорости потока и давления по каналу заряда и выходному конусу в различные моменты времени

ты x в различные моменты времени сохраняется.

Принятое при расчетах условие на правой границе канала заряда: достижение потоком критической скорости при постоянной равновесной температуре продуктов сгорания ($T_p =$ const) — приводит к тому, что кривые скорости потока, дозвуковой в канале и сверхзвуковой в выходном конусе, для различных моментов времени пересекаются в одной точке с координатами $v = v_{\rm kp}, x = x_{\rm kp}$. При этом строго соблюдается закон сохранения энергии: высокая потенциальная энергия потока за счет повышенного давления в канале приводит к реализации максимальной кинетической энергии на выходе из конуса (скорости потока). Чем ниже давление в двигателе, тем меньше достигаемая скорость потока в выходном конусе.

Известно [1], что удельный импульс традиционных РДТТ в пустоте (пустотный импульс), на который кроме скорости потока влияет также статическая добавка, не зависит от давления в камере, а является функцией степени расширения сопла: $I_{yq}^{n} = F(d_4/d_3)$. В условиях газоприхода продуктов сгорания с горящей поверхности выходного конуса на закономерности преобразования параметров потока, а следовательно, на зависимость удельного импульса от расширения конуса оказывают влияние особенности газоприхода (параметры закона скорости горения $u_1 \ u \ \nu$).

Расчетные исследования применительно к модельному БСРДТТ показали, что при со-

Рис. 5. Зависимости пустотного удельного импульса БСРДТТ от давления при различных значениях параметра ν

Рис. 6. Зависимости пустотного удельного импульса БСРДТТ от параметра ν

хранении показателя степени ν в законе скорости горения варьирование коэффициентом u_1 приводит к изменению уровня давления в двигателе и к незначительному (на $0.5 \div 1.0$ %) падению пустотного удельного импульса при повышении давления (рис. 5). При этом более существенным оказался тот факт, что величина пустотного удельного импульса главным образом определялась не давлением и коэффициентом u_1 , а показателем степени в законе скорости горения ν (рис. 6). Значение пустотного удельного импульса, близкое к термодинамическому, реализуется при $\nu \to 1$. В этом случае потери на неизоэнтропичность в процессе преобразования потока в выходном конусе с массоприходом по соотношениям (8) в параметры на срезе конуса оказываются минимальными и реализуется максимальный удельный импульс, соответствующий термодинамическому значению (см. рис. 6). Наоборот, потери максимальны в случае, когда газоприход в коническом канале не зависит от давления $(\nu \rightarrow 0)$, а определяется только коэффициентом u_1 , горящей поверхностью конического канала и текущим временем. Преобразование параметров потока в канале и на выходе из конуса при увеличенном, не связанном с давлением массоприходе осуществляется в условиях повышенного падения давления торможения и, соответственно, с большими потерями удельного импульса. Расчетное значение пустотного удельного импульса тяги БСРДТТ при этом минимально (см. рис. 6). Дополнительные газодинамические потери удельного импульса на неизоэнтропичность потока (на газоприход в канале выходного конуса) могут достигать $3 \div 3.5$ %.

Из приведенных результатов расчета следует, что наиболее благоприятные условия для реализации удельного импульса топлива в БСРДТТ возникают в случае, когда обеспечивается минимальный газоприход продуктов сгорания со стенок горящего выходного конуса. Эти условия обеспечиваются топливами, имеющими высокое значение показателя ν при существенно низких давлениях, реализующихся в ускоряющемся сверхзвуковом потоке. При минимальном газоприходе условия течения по выходному конусу БСРДТТ несущественно отличаются от условий течения по соплу штатных РДТТ. Расчетные удельные импульсы пустотной тяги двигателей в этих случаях сравниваются. Однако пустотная тяга БСРДТТ выше тяги РДТТ на коэффициент превышения расхода за счет разгара выходного конуса. Если дополнительный газоприход в выходном конусе не учитывали в суммарном расходе двигателя, то пустотный удельный импульс тяги БСРДТТ при сравнимых благоприятных условиях может превышать удельный импульс РЛТТ.

выводы

1. Сформулирована физико-математическая постановка совместной газодинамической и геометрической задачи моделирования внутрикамерных процессов и расчета внутрибаллистических характеристик бессопловых РДТТ, разработаны метод и алгоритм решения задачи.

2. Программный комплекс проверен расчетом внутрибаллистических характеристик утилизируемого двигателя со снятым сопловым блоком, моделирующим внутрикамерные процессы бессоплового РДТТ в течение полного времени работы. При использовании в качестве исходных данных для разработанной задачи фактических баллистических, термодинамических и геометрических характеристик двигателя и заряда в результате расчета получена зависимость давления от времени, удовлетворительно совпадающая с опытной.

3. На основе расчетных исследований установлено следующее:

за счет газоприхода с горящих стенок конической части заряда пустотный удельный импульс тяги БСРДТТ, как и «земной» удельный импульс, зависит от давления в двигателе и от параметров закона скорости горения топлива. В классическом РДТТ от давления зависит только «земной» удельный импульс;

наиболее благоприятные условия для реализации удельного импульса топлива в БСРДТТ возникают в случае топлива с высоким значением показателя ν в законе скорости горения при низких давлениях, реализующихся в ускоряющемся сверхзвуковом потоке в выходном конусе. В этих условиях энергетические характеристики БСРДТТ и штатных РДТТ становятся близкими;

неблагоприятные условия для ускорения образующейся в процессе горения конической части заряда массы топлива и реализации оптимальных энергетических характеристик создаются при слабой зависимости газоприхода от давления (при $\nu \rightarrow 0$). Дополнительные газодинамические потери на преобразование потока в конической части заряда при не связанном с давлением поступлении массы продуктов сгорания могут достигать $3 \div 3.5$ %.

ЛИТЕРАТУРА

- 1. Соркин Р. Е. Газотермодинамика ракетных двигателей на твердом топливе. М.: Наука, 1967.
- 2. Ракетно-прямоточные двигатели на твердых и пастообразных топливах. Основы проектирования и экспериментальной обработки / под ред. Ю. М. Милехина, В. А. Сорокина. — М.: Физматлит, 2010.

- Райзберг Б. А., Ерохин Б. Т., Самсонов К. П. Основы теории рабочих процессов в ракетных системах на твердом топливе. — М.: Машиностроение, 1972.
- Внутренняя баллистика РДТТ: справочник / под ред. А. М. Липанова, Ю. М. Милехина. — М.: Машиностроение, 2007.
- Шишков А. А. Газодинамика пороховых ракетных двигателей. — М.: Машиностроение, 1968.
- Таблицы газодинамических функций / под ред. Г. С. Рослякова. — М.: Изд-во МГУ, 1965.
- Бернадинер М. Г., Бурлакова В. В., Васильева Л. А., Голицын А. А., Тарасова Т. А. Таблицы газодинамических функций, параметров Прандтля — Майера и потока за скачками уплотнения. — М., 1968.
- 8. Абрамович Г. Н. Прикладная газовая динамика. — М.: Наука, 1969.
- Соломонов Ю. С., Милехин Ю. М., Ключников А. Н., Бурский Г. В., Попов
 В. С. Методический подход к оценке потерь удельного импульса ракетных двигателей из-за разрыва контура соплового блока // Физика горения и взрыва. — 2010. — Т. 46, № 5. — С. 112– 118.
- Бобович А. Б., Винниченко Ю. С., Гребенкин В. И., Рашковский С. А., Шишков А. А. Особенности протекания процессов в РДТТ при его бессопловом сжигании в процессе утилизации // Тр. МИТ. 1999. Т. 4, ч. 1.

Поступила в редакцию 19/VI 2012 г., в окончательном варианте — 23/XI 2012 г.