УДК 536.6+539.12.04

ДИАГНОСТИКА МОЩНЫХ ПУЧКОВ ЭЛЕКТРОНОВ С ПОМОЩЬЮ КАЛОРИМЕТРОВ ПОЛНОГО ПОГЛОЩЕНИЯ

А. П. Степовик, Д. В. Хмельницкий

Всероссийский научно-исследовательский институт технической физики, 456770 Снежинск

С целью исследования динамических эффектов в материалах при облучении на мощных ускорителях электронов рассмотрена возможность диагностики выведенного в атмосферу пучка с использованием калориметров полного поглощения. Приведена схема кольцевого калориметра, с помощью которого выполнены измерения переноса энергии на ускорителях ИГУР-3 и ЭМИР-М до значений $(2,0 \div 2,5) \cdot 10^2$ Дж/см². Рассчитана доля поглощаемой в калориметре энергии падающих электронов, показано влияние их спектра на результаты измерений, рассмотрены вопросы теплопередачи. Установлено, что по результатам измерений можно определить среднюю по объему калориметра температуру в момент окончания действия электронного импульса, которая однозначно связана с поглощенной в калориметре энергией электронов.

Ключевые слова: электронные пучки, мощный ускоритель, поглощенная энергия, диагностика, калориметр.

Одним из способов нагружения материалов коротким импульсом механического напряжения является облучение мощным электронным пучком (длительность $10^{-8} \div 10^{-7}$ с, полный ток пучка составляет десятки килоампер) [1]. Поглощение энергии за время, много меньшее механической инерционности материала, приводит к возникновению в нем термоупругих напряжений, что позволяет изучать откольные явления, а также измерять термодинамические и упругие параметры материалов [2, 3]. Связь между возникающим тепловым давлением P и поглощенной энергией электронов E_a выражается известным соотношением [4] $P = \Gamma dE_a$ (Γ — коэффициент Грюнайзена материала; d — его плотность).

Поглощенная энергия электронов зависит от спектра и значения переноса энергии падающих электронов, которое необходимо измерять при расчете давления. (Термин "перенос энергии ионизирующих частиц" означает отношение суммарной энергии (исключая энергию покоя) всех ионизирующих частиц, проникающих в объем элементарной сферы, к площади поперечного сечения этой сферы.) Распределение энергии по сечению выведенного в атмосферу пучка электронов в мощных ускорителях [1] недостаточно однородно, поэтому требуется разработка метода диагностики, обеспечивающего минимальное затенение чувствительным элементом поверхности облучаемых образцов (пленочная дозиметрия, фольговая калориметрия и т. д.).

Для измерения переноса энергии пучка электронов, которым облучались образцы материалов, применялись калориметры двух типов: фольговый и полного поглощения [5]. К достоинствам калориметрического метода следует отнести возможность регистрации нагрева калориметров после окончания действия помех, сопровождающих работу установок такого рода [6], а также малые размеры чувствительного элемента, что существенно из-за неоднородности излучения в сечении пучка.

Результаты измерений с помощью фольговых калориметров более подробно изложены в [5]. С использованием этих калориметров можно измерять величину переноса энергии

Рис. 1. Схема кольцевого калориметра: 1 — стальное кольцо; 2 — корпус; 3 — растяжки; 4 — кольцевой калориметр; 5 — центральный калориметр; 6 — термопары

электронов, падающих непосредственно на образец. Однако показания фольговых калориметров сильно зависят от материала образца (по данным наших измерений, показания могут различаться в 2–3 раза) из-за вклада в разогрев калориметров энергии отраженных от него электронов.

Использование калориметров полного поглощения позволило существенно уменьшить влияние отраженных электронов, однако с их помощью можно измерять величину переноса энергии только в окрестности образца. Погрешность измерений, обусловленная этим фактором, в значительной мере определяется степенью и видом неоднородности распределения энергии в поперечном сечении пучка электронов.

При отработке методики диагностики с помощью указанных калориметров на установках ИГУР-3 и ЭМИР-М [1] применялись локальные калориметры из меди и стали диаметром 3,5 ÷ 6 мм и толщиной 2 ÷ 3 мм. В тело калориметров с тыльной (по отношению к потоку электронов) стороны впаивались термопары, затем они приклеивались к пластине из текстолита (по сравнению с другими органическими материалами его стойкость к действию электронов наибольшая). При величине переноса энергии до 10 Дж/см² такие калориметры можно использовать неоднократно. Однако при больших значениях этого параметра (вследствие теплового удара) калориметры отлетали от платы, а при сильном разогреве отпаивались и разрушались термопары. В результате исследуемая область амплитуд динамических напряжений сужалась (до 100 МПа в алюминии).

С целью повышения стойкости калориметров к действию мощных импульсных пучков электронов разработана конструкция, схема которой представлена на рис. 1. Заземленное кольцо предназначено для защиты корпуса от действия электронов. Растяжки изготовлены из стальной проволоки диаметром 0,4 мм. В центральный калориметр запрессована одна термопара, в кольцевой — четыре (равномерно по окружности). Затенение образца диаметром 50 ÷ 60 мм, определяемое площадью центрального калориметра, при его диаметре 6 мм было несущественным. Термопары проложены в проточке в корпусе и выведены в виде жгута. В экспериментах с образцами диаметром 10 ÷ 15 мм в корпусе размещались несколько кольцевых калориметров (для каждого образца свой), центральные калориметры отсутствовали.

Изменение температуры калориметров регистрировалось с помощью самопишущих потенциометров ЭПП-09МЗ или миллиамперметров постоянного тока H-37 с усилителем И-37. Выбор аппаратуры обусловлен ее устойчивостью (вследствие значительной инерционности) к возникающим на установках электрическим помехам нано- и микросекундного диапазона длительности. При этом термоЭДС термопар измерялась примерно через 1 с после облучения электронами.

а — $E_{\text{max}} = 5,2$ МэВ (1 — $t' \approx 90$ нс, $\langle E \rangle = 2,59$ МэВ; 2 — $t' \approx 25$ нс, $\langle E \rangle = 2,68$ МэВ); $\delta - E_{\text{max}} = 1,05$ МэВ

При использовании разработанной конструкции для диагностики пучка электронов необходимо оценить тепловые характеристики калориметра, а также влияние спектра электронов и условий облучения на результаты измерений. При этом необходимо учитывать следующие обстоятельства. Во-первых, часть падающих на калориметр электронов отражается от его поверхности, часть электронов вылетает из объема калориметра через его боковые поверхности вследствие рассеяния и, наконец, часть энергии электронов при их торможении в веществе затрачивается на излучение фотонов. В результате на нагрев калориметра расходуется не вся энергия падающих электронов. Во-вторых, поскольку калориметр находится в атмосфере, необходимо учитывать изменение его температуры за счет охлаждения и перераспределения поглощенной энергии по объему. Для корректного учета влияния указанных выше факторов на точность диагностики пучка электронов рассмотрим их более подробно.

Для определения доли энергии электронов, поглощенной в материале калориметра, методом Монте-Карло по программе MCNP4A проведены расчеты распространения электронов в телах разной формы из железа ($d_{\rm Fe} = 7.8 \cdot 10^3 \, {\rm r/m^3}$). В качестве тел рассматривались кольца и диски из стали марки ст.3 толщиной h = 0.3 см, в том числе с такими же размерами, как у изготовленных калориметров (радиус диска $R_0 = 0.3$ см; внутренний радиус кольца $R_1 = 2.0$; 2.25 см, внешний $R_2 = 2.6$; 2.85 см). Источник электронов представлял собой плоскость, параллельную торцевой поверхности тела, и располагался на расстоянии 100 см от нее. Направление вылета электронов совпадало с направлением нормали к поверхности тела. На рис. 2 представлены три вида энергетического спектра электронов $\Phi(E)$: два "жестких" с одинаковыми значениями максимальной энергии $E_{\rm max} = 5.2$ МэВ для разных режимов работы установки ИГУР-3 (длительность импульса $t' \approx 90$; 25 нс) [1] и более "мягкий" с $E_{\rm max} = 1.05$ МэВ. Учитывался совместный перенос электронов и фотонов.

Результаты расчетов приведены в табл. 1 ($\langle E \rangle$ — средняя энергия электронов в пучке; E_a — энергия электронов и образовавшихся фотонов, поглощенных в калориметре; E_e , E_p — энергии электронов и фотонов, вылетевших из системы, в том числе E_{e1} , E_{e2} — энергии электронов, вылетевших из системы через другую торцевую поверхность и боковые поверхности соответственно; $\chi = E_a/\langle E \rangle$ — доля поглощенной в калориметре энергии). Все приведенные результаты нормированы на один электрон источника.

Таблица 1										
Вариант расчета	Размеры, см	$E_{\max},$ МэВ	$\langle E \rangle,$ MэB	$E_a,$ МэВ	$E_e,$ МэВ	$E_p,$ МэВ	$E_{e1},$ МэВ	$E_{e2},$ MəB	χ	
1	$R_0 = 5$	5,2	$2,59 \\ (0,5)$	$2,32 \\ (0,6)$	0,164 (3)	0,100 (3)	$\begin{array}{c} 2,3 \cdot 10^{-3} \\ (22) \end{array}$	0,021 (10)	0,898	
2	$R_0 = 5$	5,2	$2,68 \\ (0,5)$	2,40 (0,6)	$0,166 \ (3)$	0,111 (3)	$\begin{array}{c} 6.3 \cdot 10^{-3} \\ (13) \end{array}$	0,024 (10)	0,897	
3	$R_0 = 0.5$	5,2	$2,68 \\ (0,5)$	2,18 (0,6)	$0,390 \\ (2)$	0,110 (3)	$5.6 \cdot 10^{-3} \\ (14)$	$0,262 \ (3)$	0,813	
4	$R_0 = 0,3$	5,2	$2,68 \\ (0,5)$	$2,02 \\ (0,6)$	0,550 (2)	0,108 (3)	$\begin{array}{c} 4.8 \cdot 10^{-3} \\ (16) \end{array}$	$0,433 \ (3)$	0,755	
5	$R_1 = 2,0,$ $R_2 = 2,6$	5,2	2,68 (0,5)	2,22 (0,6)	0,355 (2)	0,110 (3)	$\begin{array}{c} 6.0 \cdot 10^{-3} \\ (16) \end{array}$	$0,231 \\ (3)$	0,827	
6	$R_1 = 2,25, R_2 = 2,85$	5,2	$2,68 \\ (0,5)$	2,22 (0,6)	$0,355 \\ (2)$	$0,111 \\ (3)$	$5,4 \cdot 10^{-3}$ (15)	$0,231 \\ (3)$	0,827	
7	$R_0 = 0,3$	1,05	$0,431 \\ (0,2)$	$0,358 \\ (0,5)$	$7,03 \cdot 10^{-2} \\ (0,7)$	$\begin{array}{c} 2,74 \cdot 10^{-3} \\ (3) \end{array}$	0	$\begin{array}{c} 9,94 \cdot 10^{-3} \\ (2) \end{array}$	0,831	
8	$R_1 = 2,0,$ $R_2 = 2,6$	1,05	$0,431 \\ (0,2)$	$0,363 \\ (0,5)$	$\begin{array}{c} 6,59\cdot 10^{-2} \\ (0,7) \end{array}$	$\begin{array}{c} 2,58 \cdot 10^{-3} \\ (3) \end{array}$	0	$5,22 \cdot 10^{-3} \\ (3)$	0,842	

 Π римечание. В скобках указана статистическая погрешность результатов расчетов (1 σ , %).

В вариантах 1, 2 расчета рассматривался калориметр в форме диска радиуса $R_0 = 5$ см для двух видов "жесткого" спектра электронов (рис. 2,*a*). Доля поглощенной энергии в калориметре для обоих спектров электронов оказалась одинаковой. Это означает, что значение χ определяется в основном средней энергией падающих электронов и слабо зависит от формы энергетического спектра.

Результаты расчетов показали, что форма калориметра существенно влияет на поглощение энергии электронов в нем: значения χ изменяются от 0,9 до 0,75 (табл. 1). Это связано в основном с увеличением доли электронов, вылетевших через боковые поверхности калориметра, при уменьшении его поперечных размеров. Доля энергии пучка, уносимая электронами, прошедшими через калориметр, очень мала (менее 0,5 % $\langle E \rangle$). Энергия фотонов, вылетевших из калориметра, не зависит от размеров поперечного сечения калориметра и составляет примерно 3 % начальной энергии электронов. Для обоих вариантов кольцевого калориметра, несмотря на различие внешнего и внутреннего радиусов (при одинаковой ширине кольца $R_2 - R_1$), результаты расчетов в пределах погрешности совпадают.

В вариантах 7, 8 средняя энергия электронов источника (рис. 2, 6) примерно в 6 раз меньше, чем для первых двух спектров (рис. 2, a), поэтому меньше пробег электронов в калориметре и потери энергии на излучение, а значит, выше доля поглощенной энергии.

Для учета влияния рассеяния электронов в воздухе на величину поглощенной в калориметре энергии проведены расчеты, моделирующие прохождение мононаправленных электронов через слой воздуха разной толщины (3 и 30 см) между источником и кольцевым калориметром. Результаты показали, что в пределах статистической погрешности $(1\sigma \approx 1 \div 2 \%)$ значение χ не изменилось.

Рис. 3. Зависимости температуры термопары от времени для центрального (a) и кольцевого (b) калориметров:

точки — данные экспериментов, линии — аппроксимация методом наименьших квадратов (номера линий соответствуют номерам в табл. 2)

Таблица 2	2
-----------	---

Централ	ьный кај	Кольцевой калориметр					
Номер линии на рис. 3,а	T_1 , °C	a_0	a_1	Номер линии на рис. 3,6	T_1 , °C	a_0	a_1
1	21,1	20,9	0,170	1	38,2	39,4	0,253
2	$50,\!9$	$51,\!3$	0,512	2	$46,\!55$	47,5	$0,\!454$
3	62,9	$63,\!8$	0,567	3	49,2	49,8	$0,\!470$
4	63,4	66,3	0,574	4	50,5	51,4	0,406
5	73,2	74,5	0,631	5	$52,\!6$	52,7	0,329
6	88,1	89,7	0,916	6	60,3	61,5	$0,\!487$
7	96,4	97,7	1,110				
8	170,4	174,2	1,730				

Для определения температуры T калориметра в месте размещения термопары по измеренному значению термоЭДС использовался аппроксимирующий полином [7]. Зависимости температуры калориметров от времени в процессе их охлаждения после облучения электронным пучком представлены на рис. 3. Коэффициенты аппроксимирующего полинома вида $T = a_0 - a_1 t$ для каждой из этих зависимостей, а также максимальный разогрев калориметров T_1 (первое измеренное значение температуры) приведены в табл. 2. Из представленных на рис. 3 данных следует, что для рассматриваемого времени регистрации $(1 \div 20 \text{ с})$ зависимость T(t) с достаточно высокой точностью (особенно для центрального калориметра) можно считать линейной.

Определим связь найденных экспериментально констант a_0 и a_1 с нагревом калориметра и его теплофизическими характеристиками. Изменение температуры калориметра после облучения электронным пучком происходит за счет теплопередачи в окружающий воздух в режиме свободной конвекции и теплового излучения. Влиянием теплопроводности через элементы крепления калориметра на процесс его остывания можно пренебречь из-за малого диаметра стальной проволоки, а также ее одновременного с калориметром нагрева электронным пучком.

Поскольку при охлаждении калориметра изменение его температуры за время измерения невелико, выражение для теплообмена на поверхности калориметра можно записать в виде

$$f = \alpha(T - T_{\infty}) + \sigma_s \varepsilon (T^4 - T_{\infty}^4) = \alpha^*(T)(T - T_{\infty}) \approx \alpha^*(T_1)(T - T_{\infty}).$$

где f — плотность теплового потока; T_{∞} — температура окружающей среды; α — коэффициент теплоотдачи в режиме свободной конвекции воздуха; $\sigma_s = 5,67 \cdot 10^{-8} \text{ Br}/(\text{m}^2 \cdot \text{K}^4)$ — постоянная Стефана — Больцмана; ε — степень черноты поверхности калориметра ($\varepsilon \approx 0,7$ [8]).

Из рассмотрения одномерной задачи об охлаждении тела, на поверхности которого происходит теплообмен с окружающей средой, следует, что характерное время изменения температуры определяется величиной $\tau_0 = \tau/x_1^2$ ($\tau = h^2 C d/\lambda$; h — размер тела; λ — теплопроводность материала; C — его удельная теплоемкость; d — плотность; x_1 — наименьший корень уравнения $x \operatorname{tg} x = L = \alpha^* h/\lambda$ [8]). В рассматриваемых условиях ($h = 0, 3 \operatorname{cm}$) даже при $E \approx 200 \ \text{Дж/см}^2$, что соответствует нагреву калориметра примерно на 180 °C, с учетом теплоотдачи в режиме свободной конвекции ($\alpha^* < 100 \ \text{Bt/}(\text{M}^2 \cdot \text{K})$) значение $L < 5 \cdot 10^{-3} \ll 1$ (для железа $\lambda = 57 \ \text{Bt/}(\text{M} \cdot \text{K})$ при $T = 100 \ ^{\circ}\text{C}$ [9]) и $\tau_0 \simeq C dh/\alpha \gg \tau$. Учитывая, что характерное время изменения средней температуры калориметра τ_0 много больше времени распространения тепла в пределах самого калориметра τ , при рассмотрении процесса остывания калориметра в моменты времени $t > \tau$ распределение температуры по его объему можно считать однородным. Тогда интегрирование уравнения теплопроводности по объему калориметра с учетом граничных условий приводит к уравнению

$$C(T)Vd \frac{dT}{dt} + \alpha^*(T)S_{\pi}(T - T_{\infty}) = 0$$
(1)

с начальным условием $T|_{t=0} = \langle T_0 \rangle$ ($\langle T_0 \rangle$ — средняя после облучения температура калориметра). В (1) V — объем калориметра; S_{π} — полная площадь его поверхности, на которой происходит теплообмен.

Так как экспериментальные зависимости температуры от времени при остывании калориметров линейны, найдем решение уравнения (1) в линейном по времени приближении:

$$T(t) = \langle T_0 \rangle - (\langle T_0 \rangle - T_\infty) t / \tau_0, \qquad \tau_0 = C(\langle T_0 \rangle) V d / (\alpha^* (\langle T_0 \rangle) S_{\pi}).$$
(2)

Отметим, что условие $t/\tau_0 \ll 1$, при котором справедливо данное выражение для рассматриваемого калориметра, выполняется при t < 40 с (для железа $C = 462 \text{ Дж/(кг \cdot K)}$ при T = 20 °C [9]). Сопоставляя вид первого выражения в (2) с полиномом, аппроксимирующим экспериментальные данные, получаем $a_0 = \langle T_0 \rangle$. Таким образом, экстраполируя экспериментальные зависимости в момент окончания действия электронного импульса, находим среднюю по объему калориметра температуру в этот момент времени.

Так как длительность импульса электронов много меньше характерного времени распространения тепла в калориметре ($\tau \approx 0,1$ с), можно считать, что выделение тепла в объеме калориметра происходит мгновенно и температура в каждой точке определяется поглощенной энергией частиц. По истечении времени $t \ge \tau$ температура будет равна средней по объему калориметра температуре. Отметим, что потери тепла калориметром за счет излучения в течение этого времени вследствие перегрева облучаемой поверхности (как показали расчеты, нагрев прилегающих к поверхности областей менее чем в два раза превышает средний нагрев калориметра) составят примерно 0,1 % падающей на него энергии электронов. Тогда с учетом зависимости удельной теплоемкости железа от температуры связь между температурой калориметра в момент окончания действия импульса $\langle T_0 \rangle$ и поглощенной в калориметре энергией частиц за время действия импульса E_a определяется соотношением

$$Vd \int_{T_{\infty}}^{\langle T_0 \rangle} C(T) \, dT = E_a = \chi WS,$$

где W — величина переноса энергии электронов в пучке (постоянная на облучаемой поверхности калориметра S).

Используя данные [10] о зависимости удельной теплоемкости железа от температуры в диапазоне от 250 до 600 K, величину W можно определить через известные значения T_{∞} и $\langle T_0 \rangle = a_0$ следующим образом:

$$W = hd(H(\langle T_0 \rangle) - H(T_\infty))/\chi,$$

$$H(T) = \int C(T) \, dT = \begin{cases} 422T + 67(T - 250)^2/300, & 250 \leqslant T \leqslant 400, \\ 489T + 85(T - 400)^2/400, & 400 \leqslant T \leqslant 600 \end{cases}$$

(*h* — толщина калориметра).

Используя экспериментальные данные по охлаждению калориметров (рис. 3), можно оценить среднее значение α^* . Действительно, из вида выражений (2) следует

$$\alpha^*(T_1) = a_1 C(\langle T_0 \rangle) V d / ((\langle T_0 \rangle - T_\infty) S_{\pi}).$$

Среди входящих в данное выражение величин неизвестной является температура окружающего воздуха, которая в проведенных экспериментах составляла 17 ÷ 22 °C. С учетом размеров центрального и кольцевого калориметров, а также определенных значений a_1 и $\langle T_0 \rangle = a_0$ (табл. 2) найдены коэффициенты α^* для каждого измерения при $T_{\infty} = 17, 22$ °C. По результатам расчетов для разных измерений определено среднее значение и средне-квадратичное отклонение: $\alpha^* = (31,8\pm6,8)$ Вт/(м² · K). Полученное значение гарантирует выполнение условия $L \ll 1$ для рассматриваемого калориметра, что в свою очередь позволяет использовать этот калориметр и описанную выше методику для определения величины переноса энергии в пучке электронов по данным измерений температуры калориметра в процессе его остывания.

Предложенная конструкция калориметра, неоднократно применявшаяся в экспериментах (см. [2, 11]), позволила измерять величину переноса энергии электронов на установках ИГУР-3 и ЭМИР-М до $(2,0 \div 2,5) \cdot 10^2$ Дж/см² (это соответствует давлениям порядка 2 ГПа в алюминии), что дало возможность исследовать откольные явления в меди и алюминиевых сплавах, измерить коэффициент Грюнайзена пироуглерода и т. д. Конструкция оказалась достаточно удобной в эксплуатации с точки зрения ее стойкости к действию электронного пучка и использования в виде отдельного цельного узла. Ее можно вставлять в устройство для облучения образцов, производить замену в случае повреждения при многократном использовании вблизи предельных значений переноса энергии и т. д. Можно оценить предел применимости данной конструкции калориметров при различных уровнях облучения. Предельное значение W определяется отколом лицевой поверхности материала калориметра (начальная стадия повреждения при однократном облучении пучком электронов) и зависит от ряда параметров: спектра и длительности пучка электронов установки, термодинамических параметров материала калориметра и др. Для калориметра из стали марки ст.3 на используемых установках предельное значение переноса энергии электронов составляет примерно 300 Дж/см², для калориметра из титана или углерода оно больше.

ЛИТЕРАТУРА

- Диянков В. С., Ковалев В. П., Кормилицын А. И. и др. Обзор экспериментальных установок ВНИИТФ для радиационных исследований // Физика металлов и металловедение. 1996. Т. 81, вып. 2. С. 119–123.
- Степовик А. П. О коэффициенте Грюнайзена пиролитического углерода УПВ-1 // ПМТФ. 1992. № 4. С. 150–152.
- Oswald R. B., Schallhorn D. R., Eisen H. A., McLeon F. B. Dynamic response of solids exposed to a pulsed-electron-beam // Appl. Phys. Lett. 1968. V. 13, N 8. P. 279–281.
- 4. Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966.
- Степовик А. П. Методические особенности измерения механических напряжений в материалах при их облучении мощными электронными пучками // Вопр. атом. науки и техники. Сер. Физика радиац. воздействия на радиоэлектрон. аппаратуру. 1999. Вып. 3/4. С. 132–138.
- 6. Степовик А. П., Кормилицын А. И. Пространственное распределение электромагнитного поля установки ИГУР-3 вблизи ускорительной трубки // Вопр. атом. науки и техники. Сер. Физика радиац. воздействия на радиоэлектрон. аппаратуру. 1996. Вып. 1/3. С. 203–206.
- 7. Рогельберг И. Л., Бейлин В. М. Сплавы для термопар: Справ. М.: Металлургия, 1983.
- 8. Карслоу Г., Егер Д. Теплопроводность твердых тел. М.: Наука, 1964.
- 9. Михеев М. А., Михеева И. М. Основы теплопередачи. М.: Энергия, 1977.
- 10. Физические величины: Справ. / Под ред. И. С. Григорьева, Е. З. Мейлихова. М.: Энергоатомиздат, 1991.
- Степовик А. П. Влияние условий прокатки на характер повреждения меди и алюминиевых сплавов при последующем динамическом нагружении // Физика металлов и металловедение. 1997. Т. 84, вып. 6. С. 104–108.

Поступила в редакцию 23/VII 2002 г., в окончательном варианте — 4/I 2003 г.