УДК 532.5:536

Влияние однородного магнитного поля на ламинарные режимы естественной конвекции в замкнутом объеме^{*}

Н.С. Бондарева¹, М.А. Шеремет^{1,2}

¹*Томский государственный университет*

²Томский политехнический университет

E-mail: Michael-sher@yandex.ru

Проведен численный анализ пространственных ламинарных режимов естественной конвекции в замкнутой полости при наличии однородного магнитного поля. Математическая модель, сформулированная в безразмерных естественных переменных "скорость–давление–температура", реализована численно методом контрольного объема. Детально изучено влияние чисел Рэлея ($10^3 \le \text{Ra} \le 10^5$) и Гартмана ($0 \le \text{Ha} \le 100$), ориентации вектора магнитной индукции ($0 \le \varphi \le \pi/2$), а также геометрического параметра ($0, 2 \le A \le 5$), отражающего относительную длину полости, на распределения скорости и температуры, а также на среднее число Нуссельта на характерной изотермической границе. Установлена возможность описания интегрального теплообмена в рассматриваемом пространственном объекте на основе двумерной модели.

Ключевые слова: естественная конвекция, однородное магнитное поле, приближение Буссинеска, ламинарный режим, численное моделирование.

Введение

Магнитные поля используются в различных отраслях промышленности для управления конвективными потоками жидких металлов и электропроводящих жидкостей, например, при выращивании объемных монокристаллов [1, 2], а также для приготовления однородных сплавов в индукционных печах [3]. Широкое применение магнитного поля основано на его возможности подавлять интенсивное конвективное перемешивание среды. На сегодняшний день известны общие характеристики и параметры такого воздействия, но нет четкой локальной картины, объясняющей формирование различных термогидродинамических режимов в узкоспециализированных технологических системах [1–3].

Изучению особенностей конвективного теплопереноса в замкнутых областях при наличии внешних магнитных полей посвящено большое количество теоретических и экспериментальных работ [1-10]. Так, например, в работе [3] проводился численный анализ режимов конвективного теплопереноса в электропроводном цилиндре, расположенном во внешнем неоднородном переменном магнитном поле. В осесимметричном приближении были установлены пространственно-временные распределения вектора напряженности магнитного поля в области расплава металла, плотности индукционных

^{*} Работа выполнена при финансовой поддержке РФФИ (грант № 14-08-31137 мол_а) и Совета по грантам Президента РФ для молодых российских ученых (грант МД-6942.2015.8).

[©] Бондарева Н.С., Шеремет М.А., 2015

Бондарева Н.С., Шеремет М.А.

токов и мощности источников энергии. Экспериментальный анализ режимов термогравитационной конвекции жидкого гелия (при числе Прандтля Pr = 0,024) в замкнутой кубической полости с двумя изотермическими вертикальными гранями и адиабатическими остальными стенками в условиях воздействия магнитного поля проведен в работе [4]. Показано, что вертикальная ориентация вектора магнитной индукции представляется наиболее эффективной по сравнению с другими возможными направлениями воздействия. В результате теоретического исследования стационарных режимов естественной конвекции электропроводящей жидкости внутри прямоугольной полости при наличии вертикально ориентированного вектора магнитной индукции [5] установлено, что слабые магнитные поля приводят к появлению нелинейных эффектов при высоких числах Рэлея. В случае же произвольно ориентированного внешнего магнитного поля [6] при высоких значениях числа Гартмана структура течения существенно зависит от угла наклона вектора магнитной индукции и от отношения сторон полости. Математическое моделирование установившихся режимов конвективного теплопереноса в замкнутой вертикальной трапециевидной полости при наличии магнитного поля проведено в работе [7]. Установлено, что максимальное среднее число Нуссельта на нижней изотермической стенке в результате неравномерного нагрева достигается при числе Рэлея $Ra = 10^7$ в случае квадратной полости, а минимальное среднее число Нуссельта было получено при $Ra = 10^3$ в случае трапециевидной полости с углом наклона вертикальной стенки к основанию 45°. На основе прямого численного моделирования проведен анализ совместного воздействия горизонтального магнитного поля и объемного внутреннего тепловыделения на режимы естественной конвекции электропроводящей жидкости, расположенной в вертикальном кольцевом канале [8]. Показано, что рост интенсивности магнитного поля (число Гартмана На ≥ 75) приводит к ламинаризации течения, а также отражается в формировании асимметричных термогидродинамических структур вследствие развития слоев Гартмана [9] на вертикальных цилиндрических поверхностях. С использованием коммерческого пакета вычислительной гидродинамики Fluent было проведено исследование пространственных режимов термогравитационной конвекции расплава свинец-литий внутри кубической полости с двумя изотермическими вертикальными гранями и остальными адиабатическими [10].

Целью настоящей работы является численный анализ магнитной естественной конвекции расплава металла ($\Pr = 0,02$) внутри замкнутого параллелепипеда с изотермическими противоположными вертикальными гранями x = 0 и x = L при постоянном поперечном сечении y = сопst квадратной формы и различных значениях геометрического параметра $A = L_y/L$. Особое внимание уделялось анализу условий, при которых результаты двумерных расчетов можно использовать для описания интегрального теплообмена в пространственном объекте.

Следует отметить, что в настоящее время известна только одна работа [11], детально отражающая влияние третьей координаты на режимы естественной конвекции (Pr = 0,71) при отсутствии магнитного поля в замкнутом параллелепипеде. В работе было установлено, что для описания интегрального теплообмена в кубических или более протяженных прослойках ($A \ge 1$) можно использовать результаты двумерных расчетов.

Математическая модель

Рассматривается тепловая гравитационная конвекция ньютоновской среды в замкнутом параллелепипеде при наличии однородного магнитного поля произвольной ориентации, определяемой углами α и φ (рис. 1). Область решения содержит две вертикальные противоположные изотермические грани с температурами $T_{\rm h}$ и $T_{\rm c}$ ($T_{\rm h} > T_{\rm c}$), остальные стенки являются адиабатическими. Внутри объема находится электропроводящая среда (Pr = 0,02). При проведении вычислительных экспериментов считается, что физические свойства среды постоянны за исключением плотности, а режим течения Рис. 1. Область решения задачи.

является ламинарным. Влияние выталкивающей силы вследствие неоднородности поля температуры описывается на основе приближения Буссинеска. Воздействие теплового излучения и джоулева нагрева пренебрежимо мало. Предполагается, что электрическое поле отсутствует, тогда $\vec{j} = \sigma(\vec{V} \times \vec{B})$, где \vec{j} — плотность тока,

 \vec{V} — вектор скорости, \vec{B} — вектор магнитной индукции, σ — электрическая проводимость жидкости. Считается также, что магнитное число Рейнольдса является небольшим и магнитное поле, вызванное движением электропроводящей жидкости, пренебрежимо мало.

Процесс переноса массы, импульса и энергии описывается системой стационарных трехмерных уравнений конвекции Обербека–Буссинеска в безразмерных естественных переменных "скорость–давление–температура" [11, 12] с учетом влияния силы Лоренца $\vec{F} = (\vec{j} \times \vec{B})$ [13].

В качестве масштабов расстояния, скорости, времени, температуры и давления были выбраны величины: *L*, $\sqrt{g\beta\Delta TL}$, $\sqrt{L/(g\beta\Delta T)}$, $\Delta T = T_{\rm h} - T_{\rm c}$, $\rho g\beta\Delta TL$. Безразмерные переменные имели вид:

$$X = x/L, \ Y = y/L, \ Z = z/L, \ U = V_x / \sqrt{g\beta\Delta TL}, \ V = V_y / \sqrt{g\beta\Delta TL},$$
$$W = V_z / \sqrt{g\beta\Delta TL}, \ \tau = t \sqrt{g\beta\Delta T/L}, \ \Theta = (T - T_c) / \Delta T, \ P = p / (\rho g\beta\Delta TL),$$

где L — размер полости вдоль осей 0x и 0z (рис. 1), g — ускорение свободного падения, β — термический коэффициент объемного расширения, ΔT — температурный напор, $T_{\rm h}$ температура на стенке x = 0, $T_{\rm c}$ — температура на стенке x = L; x, y, z — координаты декартовой системы координат, ρ — плотность среды, X, Y, Z — безразмерные координаты, соответствующие координатам x, y, z; V_x, V_y и V_z — составляющие вектора скорости в проекции на оси x, y, z соответственно, U, V, W — безразмерные скорости, соответствующие скоростям V_x, V_y, V_z ; t — время, τ — безразмерное время, Θ — безразмерная температура, p — давление, P — безразмерное давление.

Безразмерные уравнения Обербека-Буссинеска примут следующий вид:

$$\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} + \frac{\partial W}{\partial Z} = 0,$$
(1)

$$\frac{\partial U^{2}}{\partial X} + \frac{\partial (UV)}{\partial Y} + \frac{\partial (UW)}{\partial Z} = -\frac{\partial P}{\partial X} + \sqrt{\frac{\Pr}{Ra}} \left(\frac{\partial^{2}U}{\partial X^{2}} + \frac{\partial^{2}U}{\partial Y^{2}} + \frac{\partial^{2}U}{\partial Z^{2}} \right) + \\ + \operatorname{Ha}^{2} \sqrt{\frac{\Pr}{Ra}} \left\{ \sin(\varphi) \left[W \cos(\varphi) \cos(\alpha) - U \sin(\varphi) \right] - \\ - \cos^{2}(\varphi) \sin(\alpha) \left[U \sin(\alpha) - V \cos(\alpha) \right] \right\},$$

$$(2)$$

215

$$\frac{\partial(UV)}{\partial X} + \frac{\partial V^{2}}{\partial Y} + \frac{\partial(VW)}{\partial Z} = -\frac{\partial P}{\partial Y} + \sqrt{\frac{\Pr}{\operatorname{Ra}}} \left(\frac{\partial^{2}V}{\partial X^{2}} + \frac{\partial^{2}V}{\partial Y^{2}} + \frac{\partial^{2}V}{\partial Z^{2}} \right) + \\ + \operatorname{Ha}^{2} \sqrt{\frac{\Pr}{\operatorname{Ra}}} \left\{ \cos^{2}(\varphi) \cos(\alpha) \left[U \sin(\alpha) - V \cos(\alpha) \right] - \\ - \sin(\varphi) \left[V \sin(\varphi) - W \cos(\varphi) \sin(\alpha) \right] \right\},$$
(3)
$$\frac{\partial(UW)}{\partial X} + \frac{\partial(VW)}{\partial Y} + \frac{\partial W^{2}}{\partial Z} = -\frac{\partial P}{\partial Z} + \sqrt{\frac{\Pr}{\operatorname{Ra}}} \left(\frac{\partial^{2}W}{\partial X^{2}} + \frac{\partial^{2}W}{\partial Y^{2}} + \frac{\partial^{2}W}{\partial Z^{2}} \right) + \Theta + \\ + \operatorname{Ha}^{2} \sqrt{\frac{\Pr}{\operatorname{Ra}}} \cos(\varphi) \left\{ \sin(\alpha) \left[V \sin(\varphi) - W \cos(\varphi) \sin(\alpha) \right] - \\ - \cos(\alpha) \left[W \cos(\varphi) \cos(\alpha) - U \sin(\varphi) \right] \right\},$$
(4)

$$\frac{\partial (U\Theta)}{\partial X} + \frac{\partial (V\Theta)}{\partial Y} + \frac{\partial (W\Theta)}{\partial Z} = \frac{1}{\sqrt{\operatorname{Ra} \cdot \operatorname{Pr}}} \left(\frac{\partial^2 \Theta}{\partial X^2} + \frac{\partial^2 \Theta}{\partial Y^2} + \frac{\partial^2 \Theta}{\partial Z^2} \right), \tag{5}$$

здесь Ra = $g\beta\Delta TL^3/(va)$ — число Рэлея, v — кинематический коэффициент вязкости электропроводной среды, a — коэффициент температуропроводности электропроводной среды, Pr = v/a — число Прандтля, Ha = $LB_0\sqrt{\sigma/\mu}$ — число Гартмана, B_0 — абсолютная величина вектора магнитной индукции, μ — динамический коэффициент вязкости электропроводной среды.

Граничные условия для сформулированной задачи (1)–(5) имеют вид:

- на границе X = 0: U = V = W = 0, $\Theta = 1$;
- на границе X = 1: U = V = W = 0, $\Theta = 0$;
- на остальных границах: U = V = W = 0, $\partial \Theta / \partial \vec{n} = 0$.

Сформулированная краевая задача (1)–(5) с соответствующими граничными условиями решалась методом контрольного объема [12, 14, 15] на неравномерной структурированной сетке. Для аппроксимации конвективных слагаемых применялся степенной закон [14, 15], для диффузионных слагаемых — центральные разности. Для совместного определения полей скорости и давления применялась процедура SIMPLE [14, 15]. Разностные уравнения движения и энергии разрешались на основе итерационного метода переменных направлений. Построение неравномерной структурированной сетки осуществлялось следующим образом: $S_{i+1} = S_i + \alpha_s^i \Delta$ [16], где S_i определяет положение грани контрольного объема, Δ — шаг сетки, α_s — параметр сгущения. Сгущение разностной сетки проводилось к стенкам полости для корректной аппроксимации градиентов искомых характеристик.

Разработанный метод решения был протестирован на ряде модельных задач естественной конвекции в замкнутых областях. В первой тестовой задаче рассматривалась магнитная естественная конвекция в замкнутой квадратной полости с изотермическими вертикальными и адиабатическими горизонтальными стенками [17, 18]. Вектор магнитной индукции направлялся вдоль оси абсцисс. На рис. 2 и 3 наглядно представлено сравнение линий тока и изотерм при различных значениях числа Гартмана с данными работ [17, 18].

Во второй тестовой задаче проводилось исследование стационарных ламинарных режимов термогравитационной конвекции в кубической полости с двумя противоположными вертикальными изотермическими стенками и остальными адиабатическими

Теплофизика и аэромеханика, 2015, том 22, № 2

Рис. 2. Изолинии функции тока (верхний ряд) и изотермы (нижний ряд) при $Ra = 7 \cdot 10^3$, Ha = 25. Данные работ [17] (*a*), [18] (*b*) и настоящей работы (*c*).

гранями [11, 19, 20]. В качестве определяемой величины выступало среднее число Нуссельта на вертикальной изотермической грани в широком диапазоне изменения Ra (табл. 1). В расчетах использовалась неравномерная структурированная разностная сетка размерностью 54 × 54 × 54.

Результаты, представленные на рис. 2, 3 и в табл. 1, наглядно показывают, что используемый численный алгоритм решения приводит к достаточно хорошему согласованию с результатами других авторов.

Рис. 3. Изолинии функции тока (верхний ряд) и изотермы (нижний ряд) при $Ra = 7 \cdot 10^5$, Ha = 100. Данные работ [17] (*a*), [18] (*b*) и настоящей работы (*c*).

Ra	Результаты	Данные работ			
	настоящей работы	[11]	[19]	[20]	
10 ⁴	2,056	2,13	2,100	2,055	
10 ⁵	4,327	4,51	4,361	4,339	
10^{6}	8,391	9,24	8,770	8,656	

Зависимость среднего числа Нуссельта от числа Рэлея

Таблица 1

Результаты численного моделирования

Численные исследования проведены при следующих значениях определяющих параметров: $10^3 \le \text{Ra} \le 10^5$, $0 \le \text{Ha} \le 100$, Pr = 0.02, $\alpha = 0$, $0 \le \phi \le \pi/2$, $0.2 \le A \le 5$. Проанализировано влияние основных комплексов, характеризующих процесс, а также проведено сопоставление с результатами решения двумерной задачи [21].

Влияние числа Рэлея

На рис. 4 представлены пространственные поля скорости и температуры при Ha = 50, $\varphi = 0$, A = 1, соответствующие различным значениям числа Рэлея. В первом ряду рис. 4 показаны контурные поля вертикальной компоненты скорости и траектории движения среды.

Независимо от значения числа Рэлея внутри кубической полости формируется глобальное вихревое течение, отражающее наличие восходящих потоков вблизи нагреваемой стенки X = 0 и нисходящих потоков около охлаждаемой стенки X = 1. Следует отметить, что при малых значениях числа Рэлея ($\text{Ra} \le 10^4$) определяющим механизмом переноса энергии внутри полости является теплопроводность (рис. 4a, 4b), что обусловлено воздействием магнитного поля интенсивности Ha = 50. Доминирование отмеченного механизма передачи энергии подтверждается распределением изотерм параллельно изотермическим вертикальным стенкам. При $\text{Ra} = 10^5$ (рис. 4c) искривление линий постоянной температуры характеризует формирование тепловых пограничных слоев вблизи изотермических стенок и развитие конвективного механизма теплопереноса, что отражается в существенном повышении температуры в верхней части анализируемого объема по сравнению со случаями, когда $\text{Ra} = 10^3$ и $\text{Ra} = 10^4$. Рассматривая конфигурацию

Рис. 4. Пространственные поля скорости и температуры при Ha = 50, $\varphi = 0$, A = 1. Ra = 10³ (*a*), 10⁴ (*b*), 10⁵ (*c*).

течения, можно отметить, что при малых значениях числа Рэлея ($Ra = 10^3$) внутри полости формируется двухъядерный конвективный вихрь со строгой вертикальной ориентацией (рис. 4*a*). Отмеченная центральная структура вихря занимает область вдоль координаты *Y*, составляющую ≈ 40 % от длины полости. Увеличение числа Рэлея в десять раз (рис. 4*b*) проявляется, с одной стороны, в сохранении двухъядерной структуры вихря, а с другой стороны, в изменении ее ориентации — заметен поворот линии, соединяющей центры двух ядер, в направлении по часовой стрелке на $\approx 20^\circ$. Такие изменения, по всей видимости, обусловлены развитием конвективной составляющей теплопереноса. При $Ra = 10^5$ (рис. 4*c*) происходит объединение двух ядер с интенсификацией как течения, так и теплопереноса.

Отдельно необходимо отметить особенности формирующейся гидродинамической структуры внутри полости. Помимо глобального вихря, включающего в себя восходящие потоки вблизи вертикальной нагреваемой стенки и нисходящие течения около противоположной охлаждаемой стенки, появляются поперечные перетоки меньших масштабов в виде спиралевидных траекторий со стороны адиабатических вертикальных стенок. Эти дополнительные течения вдоль оси *Y* со стороны вертикальных стенок сталкиваются в центральной части полости и под действием направленного горизонтального градиента температуры формируют ядра глобального конвективного вихря. Следует также отметить интенсификацию течения при увеличении числа Рэлея. Судя по значениям вертикальной компоненты скорости, увеличение числа Рэлея в сто раз (от 10^3 до 10^5) проявляется в повышении скорости в десять раз, что теоретически можно обосновать известным соотношением для максимальной скорости конвекции $V_c = \sqrt{g\beta\Delta TL} = \sqrt{va \cdot \text{Ra}/L}$. При этом зоны наиболее интенсивного течения с ростом Ra перемещаются от центральной части вблизи изотермических стенок к вертикальным адиабатическим граням.

На рис. 5 представлено сравнение изолиний функции тока Ξ и температуры Θ в двумерном (сплошные линии) и трехмерном (штриховые линии в сечении *Y* = 0,5) случаях при На = 50, φ = 0, *A* = 1 и различных значениях числа Рэлея. Необходимо отметить,

что линии тока в рассматриваемом сечении кубической полости (трехмерная постановка) были получены в результате решения задачи Дирихле для уравнения Пуассона $\partial^2 \Xi / \partial X^2 + \partial^2 \Xi / \partial Z^2 = \partial U / \partial Z - \partial W / \partial X$.

В рассматриваемом режиме воздействия внешнего магнитного поля (Ha = 50) распределение изотерм в среднем сечении кубической полости незначительно отличается от результатов, полученных на основе двумерной модели [21]. В свою очередь изолинии функции тока Ξ отличаются как по конфигурации, так и по значениям Ξ . Анализируя представленные распределения, можно отметить, что двумерная постановка не позволяет отдельно выделить два ядра глобального конвективного вихря при Ra = 10⁴, а при Ra = 10³ масштабы двух ядер в двумерном случае значительно меньше аналогичных данных трехмерной модели. При этом интенсивность циркуляции среды в двумерном случае выше по сравнению с результатами, полученными в трехмерной модели, что обусловлено отсутствием перетоков массы, импульса и энергии по третьей координате: $|\Xi|_{max,3D}^{Ra=10^3} = 0,0084 < |\Xi|_{max,2D}^{Ra=10^3} = 0,0106$, $|\Xi|_{max,3D}^{Ra=10^4} = 0,0263 < |\Xi|_{max,2D}^{Ra=10^4} = 0,0338$, $|\Xi|_{max,3D}^{Ra=10^5} = 0,0568 < |\Xi|_{max,2D}^{Ra=10^5} = 0,0744$.

Влияние числа Гартмана

На рис. 6 представлено сравнение изолиний функции тока Ξ и температуры Θ в двумерном (сплошные линии) и трехмерном (штриховые линии в сечении Y = 0,5) случаях при Ra = 10^5 , $\varphi = 0$, A = 1 и различных значениях числа Гартмана.

Анализируя влияние интенсивности магнитного поля в трехмерном случае (Ha = 0 (рис. 6a), Ha = 50 (рис. 5c), Ha = 100 (рис. 6b)), можно отметить, что рост На проявляется в ослаблении конвективного теплопереноса ($|\Xi|_{max,3D}^{Ha=0} = 0,096 > |\Xi|_{max,3D}^{Ha=50} = 0,057 > |\Xi|_{max,3D}^{Ha=100} = 0,021$) и доминировании механизма теплопроводности. При этом

Ha = 0 (a), 100 (b).

Теплофизика и аэромеханика, 2015, том 22, № 2

Рис. 7. Зависимость среднего числа Нуссельта от
чисел Рэлея и Гартмана и размерности задачи при
$\varphi = 0, A = 1.$
Размерность задач: 2D — На = 0 (1), 50 (2), 100 (3);
3D — Ha = 0 (4), 50 (5), 100 (6).

структура течения, например при Ha = 100, представляет собой двухъядерный конвективный вихрь, подобный формирующемуся вихрю при Ra = 10^3 и Ha = 50 (рис. 5*a*). Следует также отметить, что при отсутствии внешнего магнитного поля (Ha = 0, рис. 6*a*) в трехмерном случае внутри полости обра-

зуется конвективная структура, ядро которой смещено относительно центра полости, что связано с рассматриваемой средой (Pr = 0,02).

Сравнивая результаты двумерной и трехмерной моделей, можно отметить, что при наличии магнитного поля умеренной интенсивности (Ha \geq 50) для Ra = 10⁵ распределение изотерм в среднем сечении кубической полости достаточно хорошо описывается данными плоского приближения. При этом конфигурация изолиний функции тока и значения Ξ отличаются. Расхождения в распределениях линий тока при совпадении изотерм обусловлены нетепловой природой силы Лоренца.

Проведен анализ влияния чисел Рэлея и Гартмана на среднее число Нуссельта

 $\left(\left. \operatorname{Nu}_{\operatorname{avg}} = \int_{0}^{1} \int_{0}^{1} \left| \frac{\partial \Theta}{\partial X} \right|_{X=0} dY dZ \right)$ на вертикальной нагреваемой стенке X = 0 (рис. 7). Увеличе-

ние числа Рэлея приводит к росту среднего числа Нуссельта, а рост числа Гартмана отражается в снижении Nu_{avg} независимо от размерности задачи. Следует отметить, что в двумерном случае при фиксированной интенсивности внешнего магнитного поля Nu_{avg}

превышает соответствующее значения для трехмерной постановки, что связано с прогревом полости только со стороны одного отрезка, а не со всей поверхности, как это происходит в пространственной постановке. При этом отмеченное расхождение уменьшается с ростом числа Гартмана вследствие ослабления конвективного механизма переноса тепла.

Влияние угла наклона вектора магнитной индукции

На рис. 8 представлены изолинии функции тока Ξ и температуры Θ в двумерном (сплошные линии) и трехмерном (штриховые линии в сечении Y=0,5) случаях при Ra = 10⁵, Ha = 50, A = 1 и различных значениях угла наклона φ вектора магнитной индукции ($\alpha = 0$). Влияние угла наклона φ на структуру течения и теплоперенос в кубической полости при Ha = 50 обобщает результат, полученный ранее в двумерном случае [6], — при высоких числах Гартмана изменение ориентации вектора магнитной индукции приводит к модификации структуры течения при незначительных изменениях поля температуры. Изменение угла φ в диапазоне от 0 (рис. 5*c*) до $\pi/2$ в трехмерном случае приводит к вытягиванию ядра глобального конвективного вихря вдоль оси абсцисс и повороту оси этого вихря относительно координаты Y по часовой стрелке. При этом в случае $\varphi = \pi/2$ наблюдается формирование двухъядерного глобального вихря. В свою очередь двумерное приближение отражает вытягивание ядра вихря не так интенсивно, как пространственная модель, и при $\varphi = \pi/2$ размеры сформировавшихся двух ядер существенно меньше по сравнению с результатами, полученными в трехмерном приближении.

На рис. 9 представлены зависимости среднего числа Нуссельта на вертикальной нагреваемой стенке X = 0 от числа Рэлея и угла наклона φ вектора магнитной индукции

 $\varphi = \pi/4$ (*a*), $\pi/2$ (*b*).

при Ha = 50. При фиксированном значении числа Рэлея можно отметить нелинейное влияние угла наклона φ на значения Nu_{avg} как в двумерном, так и в пространственном случаях. Максимальное значение Nu_{avg} достигается при угле наклона $\varphi = \pi/4$ независимо от размерности задачи. Эффект достаточно интересный, тем более, что при Pr = 0,7 такой зависимости интенсивности теплопереноса от ориентации вектора магнитной индукции не наблюдается. По всей видимости, основной причиной, приводящей к такой нелинейной зависимости среднего числа Нуссельта от угла наклона вектора магнитной индукции при Pr = 0,02, является взаимодействие между тепловыми пограничными слоями, толщина которых в случае расплава металла (Pr = 0,02) значительно больше, чем для среды с числом Прандтля (Pr = 0,7).

При малых значениях числа Рэлея ($\text{Ra} \le 4 \cdot 10^4$) изменение угла незначительно отражается на среднем числе Нуссельта, при увеличении $\text{Ra} > 4 \cdot 10^4$ влияние φ заметно усиливается.

Влияние геометрического параметра $A = L_v/L$

Известно, что численный анализ конвективного теплопереноса в пространственных объектах требует значительных временных затрат. Наличие внешнего магнитного поля может привести к увеличению времени вычислений. Поэтому при проведении подобных

Рис. 9. Зависимость среднего числа Нуссельта от параметров Ra, φ и размерности задачи.

Размерность задач: 2D — $\varphi = 0$ (1), $\pi/4$ (2), $\pi/2$ (3); 3D — $\varphi = 0$ (4), $\pi/4$ (5), $\pi/2$ (6).

исследований возникает вопрос, связанный с возможностью использования результатов двумерного приближения для описания интегрального теплообмена в трехмерном объекте.

В текущем параграфе проводится анализ влияния геометрического параметра $A = L_y/L$, отражающего изменение длины изотермических граней вдоль координаты *Y*, на структуру течения и теплоперенос.

На рис. 10 представлены изолинии функции тока Ξ и температуры Θ в двумерном (сплошные линии) и трехмерном (штриховые линии в сечении Y = 0,5) случаях при Ra = 10⁵, Ha = 50, $\varphi = 0$ и различных значениях геометрического параметра A. Влияние

A = 0,2 (a), 0,5 (b), 2 (c), 5 (d).

Рис. 11. Зависимость среднего числа Нуссельта
от параметров Ra, A и размерности задачи
при Ha = 50, $\varphi = 0$.
Размерность задач: $3D - Ra = 10^3 (1), 10^4 (2), 10^5 (3),$
$2D - 10^3$ (4), 10^4 (5), $Ra = 10^5$ (6).

геометрического параметра относится только к пространственной постановке задачи, поэтому в двумерном случае распределения изолиний Ξ и Θ для каждого значения A идентичны. Следует отметить, что в случае узких параллелепипедов при A = 0,2 (рис. 10*a*) внутри формируется двухъядерная мало-

интенсивная вихревая структура. При этом влияние конвективного механизма незначительно вследствие небольшого поперечного размера параллелепипеда. Расширение полости (A = 0,5, рис. 10b) приводит к уменьшению размеров двух ядер конвективного вихря и выравниванию поля температуры за счет развития тепловых пограничных слоев. При A = 1 формируется одноядерный конвективный вихрь, подобный результатам двумерной модели, но меньшей интенсивности. Дальнейшее увеличение геометрического параметра приводит к росту скоростей движения среды и полному совпадению термогидродинамических структур для плоского и пространственного приближений (рис. 10d).

На рис. 11 представлены зависимости среднего числа Нуссельта на вертикальной нагреваемой стенке X = 0 от числа Рэлея, геометрического параметра A и размерности задачи при Ha = 50, $\varphi = 0$. Символами отмечены значения Nu_{avg} в двумерном приближении независимо от величины A, поскольку в плоском случае этот параметр отсутствует. Необходимо отметить, что при отсутствии внешнего магнитного поля для Pr = 0,7 интегральную теплоотдачу можно рассчитывать с использованием двумерной модели при $A \ge 1$ [11]. В случае магнитной естественной конвекции применение результатов

двумерной модели для описания интегрального теплообмена также возможно при $A \ge 1$ для умеренных внешних магнитных полей. При этом конфигурация течения в среднем сечении трехмерного объекта будет незначительно отличаться только при $A \ge 2$.

В табл. 2 представлена более полная информация относительно зависимости среднего числа Нуссельта на вертикальной нагреваемой стенке от чисел Рэлея и Гартмана, угла наклона φ вектора магнитной индукции и геометрического параметра *A* в сравнении с данными двумерной модели при Pr = 0,02. Полученные результаты для Nu_{avg} также можно использовать для верификации разрабатываемых численных алгоритмов моделирования магнитной естественной конвекции в замкнутых областях.

Заключение

Численно решена стационарная задача ламинарной естественной конвекции расплава металла (Pr = 0,02) внутри замкнутого параллелепипеда при наличии однородного магнитного поля. Представлены пространственные поля скорости и температуры, а также распределения изолиний функции тока и температуры, отражающие влияние определяющих комплексов — $10^3 \le \text{Ra} \le 10^5$, $0 \le \text{Ha} \le 100$, $0 \le \varphi \le \pi/2$, $0,2 \le A \le 5$ — на структуру течения и теплоперенос. Установлено, что среднее число Нуссельта на вертикальной изотермической стенке является возрастающей функцией числа Рэлея и убывающей функцией числа Гартмана. Повышение числа Гартмана проявляется в ослаблении

Таблица 2

Ra	На	φ	Двумерный случай	Трехмерный случай				
				A = 0,2	A = 0,5	<i>A</i> = 1	<i>A</i> = 2	<i>A</i> = 5
10 ³	0	-	1,0908	1,0021	1,0225	1,0437	1,0622	1,0791
	50	0	1,0004	1,0024	1,0015	1,0005	1,0004	1,0004
		$\pi/4$	1,0005	1,0016	1,0012	1,0003	1,0004	1,0004
		$\pi/2$	1,0004	1,0023	1,0020	1,0008	1,0004	1,0004
	100	0	1,0004	1,0042	1,0043	1,0014	1,0002	1,0001
		4	1,0001	1,0049	1,0048	1,0013	1,0001	1,0001
		2	1,0000	1,0050	1,0043	1,0004	1,0002	1,0001
10 ⁴	0	-	1,8345	1,1960	1,4494	1,6130	1,7079	1,7670
	50	0	1,0371	1,0176	1,0272	1,0321	1,0348	1,0360
		$\pi/4$	1,0528	1,0191	1,0355	1,0433	1,0484	1,0506
		$\pi/2$	1,0366	1,0161	1,0264	1,0331	1,0342	1,0355
	100	0	1,0031	1,0055	1,0061	1,0033	1,0028	1,0029
		$\pi/4$	1,0045	1,0045	1,0063	1,0034	1,0040	1,0042
		$\pi/2$	1,0029	1,0074	1,0087	1,0027	1,0028	1,0027
10 ⁵	0	-	3,2192	2,5170	2,8526	2,9952	3,1052	3,1967
	50	0	2,0758	1,7559	1,9430	2,0093	2,0428	2,0604
		$\pi/4$	2,1800	1,8464	2,0411	2,1064	2,1402	2,1599
		$\pi/2$	2,1027	1,7642	1,9526	2,0334	2,0666	2,0857
	100	0	1,2365	1,1693	1,2013	1,2159	1,2234	1,2318
		$\pi/4$	1,3530	1,2355	1,2833	1,3200	1,3383	1,3478
		$\pi/2$	1,2408	1,1664	1,2367	1,2330	1,2362	1,2375

Зависимость среднего числа Нуссельта от Ra, Ha, φ и A

конвективного теплопереноса и доминировании механизма теплопроводности. При высоких числах Гартмана изменение ориентации вектора магнитной индукции приводит к модификации структуры течения при незначительных изменениях поля температуры. Максимальное значение среднего числа Нуссельта на изотермической вертикальной грани достигается при угле наклона $\varphi = \pi/4$ независимо от размерности задачи. Применение результатов двумерной модели для описания интегрального теплообмена в параллелепипеде возможно при $A \ge 1$ для умеренных внешних магнитных полей, при этом конфигурация течения в среднем сечении трехмерного объекта будет незначительно отличаться только при $A \ge 2$.

Список литературы

- **1. Кирко И.М., Кирко Г.Е.** Магнитная гидродинамика. Современное видение проблем. Ижевск: РХД, 2009. 632 с.
- 2. Davidson P.A. An introduction to magnetohydrodynamics. Cambridge: Cambridge University Press, 2001. 431 p.
- 3. Никулин И.Л., Перминов А.В. Математическая модель конвекции никелевого расплава при индукционном переплаве. Решение магнитной подзадачи // Вест. Пермского нац. иссл. политехн. ун-та. Механика. 2013. № 3. С. 192–209.
- **4. Okada K., Ozoe H.** Experimental heat transfer rates of natural convection of molten gallium suppressed under an external magnetic field in either the *X*, *Y*, or *Z* direction // ASME. J. Heat Transfer. 1992. Vol. 114, No. 1. P. 107–114.
- Benos L.Th., Kakarantzas S.C., Sarris I.E., Grecos A.P., Vlachos N.S. Analytical and numerical study of MHD natural convection in a horizontal shallow cavity with heat generation // Intern. J. Heat and Mass Transfer. 2014. Vol. 75. P. 19–30.
- 6. Yu P.X., Qiu J.X., Qin Q., Tian Zh.F. Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field // Intern. J. Heat and Mass Transfer. 2013. Vol. 67. P. 1131–1144.
- Hossain M.S., Alim M.A. MHD free convection within trapezoidal cavity with non-uniformly heated bottom wall // Intern. J. Heat and Mass Transfer. 2014. Vol. 69. P. 327–336.

- 8. Kakarantzas S.C., Sarris I.E., Vlachos N.S. Natural convection of liquid metal in a vertical annulus with lateral and volumetric heating in the presence of a horizontal magnetic field // Intern. J. Heat and Mass Transfer. 2011. Vol. 54, No. 15. P. 3347–3356.
- 9. Heiser W.H., Shercliff J.A. A simple demonstration of the Hartmann layer // J. Fluid Mech. 1965. Vol. 22. P. 701–707.
- Wang H.Y., Zhang X.D., Ding K.K., Wang W. Numerical simulation of nature convection and heat transfer of the liquid LiPb in cubic enclosure with a magnetic field // Fusion Engng and Design. 2010. Vol. 85. P. 1215–1219.
- 11. Терехов В.И., Эканд А.Л. Трехмерная ламинарная конвекция внутри параллелепипеда с нагревом боковых стенок // Теплофизика высоких температур. 2011. Т. 49, № 6. С. 905–911.
- **12. Sheremet M.A.** Mathematical simulation of nonstationary regimes of natural convection in a cubical enclosure with finite-thickness heat-conducting walls // J. of Engng Thermophysics. 2013. Vol. 22, No. 4. P. 298–308.
- 13. Куликовский А.Г., Любимов Г.А. Магнитная гидродинамика. М.: Логос, 2011. 328 с.
- 14. Versteeg H.K., Malalasekera W. An introduction to computational fluid dynamics. The finite volume method. N.Y.: Wiley, 1995. 257 p.
- **15.** Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. М.: Энергоатомиздат, 1984. 152 с.
- Liaqat A., Baytas A.C. Conjugate natural convection in a square enclosure containing volumetric sources // Intern. J. Heat and Mass Transfer. 2001. Vol. 44, No. 17. P. 3273–3280.
- Sarris I.E., Zikos G.K., Grecos A.P., Vlachos N.S. On the limits of validity of the low magnetic Reynolds number approximation in MHD natural-convection heat transfer // Numerical Heat Transfer: Part B. 2006. Vol. 50, No. 2. P. 157–180.
- Pirmohammadi M., Ghassemi M. Effect of magnetic field on convection heat transfer inside a tilted square enclosure // Intern. Commun. in Heat and Mass Transfer. 2009. Vol. 36, No. 7. P. 776–780.
- Fusegi T., Hyin J.M., Kuwahara K. A numerical study of 3D natural convection in a differently heated cubical enclosure // Intern. J. Heat and Mass Transfer. 1991. Vol. 34, No. 6. P. 1543–1557.
- 20. Бессонов О.А., Брайловская В.А., Никитин С.А., Полежаев В.И. Тест для численных решений трехмерной задачи о естественной конвекции в кубической полости // Математическое моделирование. 1999. Т. 11, № 12. С. 51–58.
- 21. Бондарева Н.С., Шеремет М.А. Влияние однородного магнитного поля на режимы естественной конвекции в замкнутой квадратной полости // Современные проблемы математики и механики: мат. III Всерос. молодежной науч. конф., Томск 23–25 апреля 2012. Томск: Изд-во ТГУ, 2012. С. 83–88.

Статья поступила в редакцию 17 мая 2014 г.