УДК 532.529

ВЗАИМОДЕЙСТВИЕ УДАРНЫХ ВОЛН С КОМБИНИРОВАННЫМ РАЗРЫВОМ В ДВУХФАЗНЫХ СРЕДАХ. 2. НЕРАВНОВЕСНОЕ ПРИБЛИЖЕНИЕ

А. А. Жилин, А. В. Федоров

Институт теоретической и прикладной механики СО РАН, 630090 Новосибирск

На основе численного моделирования нестационарных процессов изучается взаимодействие ударной волны с неподвижным комбинированным разрывом, разделяющим две двухкомпонентные смеси с различными начальными объемными концентрациями. Для численных расчетов применялись модифицированный метод "крупных частиц" и высокоточная разностная схема класса TVD, адаптированная к расчету двухфазных течений. Показано, что параметры потока, определенные по аналитическим зависимостям и полученные на основе численных расчетов при больших временах протекания процесса, совпадают. При взаимодействии ударной волны с комбинированным разрывом тип проходящей или отраженной ударной волны может совпадать или отличаться от типа падающей. Подтверждена возможность существования перепада давления на границе комбинированного разрыва, ранее предсказанная аналитически.

В работе [1] приведены постановка задачи о взаимодействии ударной волны (УВ) с разрывом пористости смеси и ее решение в равновесном приближении. Проанализируем результаты численных расчетов начально-краевой задачи (1), (2) из [1], выполненных в неравновесном приближении механики гетерогенных сред.

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ

Для численного решения системы гиперболических уравнений (1) с начальнокраевыми условиями (2) из [1] использованы модифицированный метод "крупных частиц" и высокоточная разностная схема класса TVD.

Метод "крупных частиц". Поставленные задачи решены методом "крупных частиц" первого порядка аппроксимации [3]. Конечно-разностные уравнения для определения скоростей на промежуточном по времени слое с учетом силы Архимеда, выражения для объемной концентрации тяжелого компонента на новом временном слое и условия устойчивости представлены в работе [4]. При расчетах течений со скачками уплотнения использовалась искусственная вязкость в виде, предложенном в [5].

Метод TVD. Для решения поставленной задачи методом TVD необходимо представить исходную систему уравнений в полностью дивергентном виде. Возможность приведения системы уравнений механики гетерогенных сред к дивергентному виду показана в [6] для уравнений модели, не учитывающей различие давлений компонентов смеси. Оказалось, что законы сохранения для математической модели, учитывающей различие давлений компонентов смеси и изменение их объемных концентраций, также могут быть записаны в дивергентном виде

$$\frac{\partial \rho_1}{\partial t} + \frac{\partial (\rho_1 u_1)}{\partial x} = 0, \qquad \frac{\partial \rho_2}{\partial t} + \frac{\partial (\rho_2 u_2)}{\partial x} = 0, \qquad \frac{\partial u_1}{\partial t} + \frac{\partial (u_1^2/2 + \ln |\rho_1/m_1|)}{\partial x} = \frac{F_S}{\rho_1}, \qquad (1)$$

$$\frac{\partial (\rho_1 u_1 + \rho_2 u_2)}{\partial t} + \frac{\partial (\rho_1 u_1^2 + \rho_2 u_2^2 + P)}{\partial x} = 0, \qquad \frac{\partial (\rho_2 m_2)}{\partial t} + \frac{\partial (\rho_2 u_2 m_2)}{\partial x} = \rho_2 R,$$

где $P = \rho_1 + a^2 \rho_2 + Cm_2 - 1$ (другие обозначения см. в [1]).

Представляя исходную систему (1) в векторном виде

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}}{\partial x} = \boldsymbol{G} \tag{2}$$

и находя правые и левые собственные векторы матрицы Якоби $\partial F(U)/\partial U = J$ с осредненными параметрами по полусумме значений в соседних узлах сетки ($\hat{x} = (x_i + x_{i+1})/2 = x_{i+1/2}$), используем разностный аналог системы (2), записанный согласно [7] в виде

$$\frac{\boldsymbol{U}_i^{n+1} - \boldsymbol{U}_i^n}{\Delta t} + \frac{\boldsymbol{F}_{i+1/2}^n - \boldsymbol{F}_{i-1/2}^n}{\Delta x} = \boldsymbol{G}_i^n.$$

Таким образом, вектор решения U на новом временном слое n+1 определяется по явной формуле, а векторы потоков $\bar{F}_{i+1/2}^n$ — по стандартному алгоритму [7] с привлечением диффузионных и антидиффузионных членов.

В [8, 9] проведено сравнение результатов расчетов, выполненных по схеме TVD и модифицированному методу "крупных частиц", с точным решением для двух типов ударноволновых конфигураций в гетерогенных средах. Показано, что применение схем класса TVD для решения задач механики гетерогенных сред является более эффективным. Эффективность схемы оценивалась по времени счета и шагу разностной сетки.

В расчетах, проводимых методом "крупных частиц", число Куранта менялось в диапазоне от 0,2 до 0,1. При этом большие числа Куранта соответствуют непрерывным (дисперсионным) УВ, а меньшие — замороженным УВ (с внутренними и (или) головными скачками уплотнения). В численных расчетах с использованием метода TVD число Куранта принималось равным 0,9.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ЧИСЛЕННЫХ РАСЧЕТОВ

Влияние пористости за комбинированным разрывом на волновую картину. Изучим процесс взаимодействия падающей УВ замороженно-дисперсионного типа $(D = -1.5; m_{10}^* = 0.9)$ с комбинированным разрывом (КР), за которым m_{10}^{**} изменяется от 0,7 до 0,1. Для случая $m_{10}^{**} = 0,7$ на рис. 1 показано изменение во времени скоростей и давлений компонентов смеси. Вертикальной штриховой линией показано начальное положение границы КР (x = 140). Исходная УВ (t = 0) устойчиво распространяется по смеси до КР в интервале времени $t = 0 \div 20$ и взаимодействует с КР, распадаясь при этом на проходящую УВ замороженно-дисперсионного типа, которая продолжает свое движение в том же направлении, что и падающая УВ, и отраженную УВ дисперсионного типа. Проходящая УВ успевает сформироваться до момента t = 60 и распространяется со

Рис. 1. Распределение скоростей и давлений компонентов смеси при взаимодействии замороженно-дисперсионной УВ (D = -1.5, $m_{10}^* = 0.9$) с КР ($m_{10}^{**} = 0.7$)

Таблица 1

m_{10}^{*}	m_{10}^{**}	u_{fin}	P_{fin}	m_{1fin}	$u_{\rm KP}$	$P_{\rm KP}$	D_{tr}	m_{1tr}	D_r	m_{1r}
0,9	$0,7 \\ 0,5 \\ 0,3 \\ 0,1$	-0,792	1,384	0,800	$-0,704 \\ -0,605 \\ -0,515 \\ -0,410$	$1,632 \\ 1,948 \\ 2,252 \\ 2,658$	-1,550 -1,645 -1,920 -2,533	$\begin{array}{c} 0,486\\ 0,269\\ 0,127\\ 0,033 \end{array}$	$\begin{array}{c}\\ 0,415\\ 0,470\\ 0,533\end{array}$	$0,785 \\ 0,768 \\ 0,752 \\ 0,732$
0,5	$0,9 \\ 0,7 \\ 0,6 \\ 0,4 \\ 0,3 \\ 0,1$	-0,452	1,236	0,320	$\begin{array}{r} -0,556\\ -0,505\\ -0,479\\ -0,422\\ -0,390\\ -0,310\end{array}$	$\begin{array}{c} 0,859\\ 1,035\\ 1,131\\ 1,353\\ 1,488\\ 1,848\end{array}$	$\begin{array}{r} -1,325 \\ -1,370 \\ -1,420 \\ -1,610 \\ -1,765 \\ -2,390 \end{array}$	$\begin{array}{c} 0,834\\ 0,545\\ 0,424\\ 0,230\\ 0,155\\ 0,040 \end{array}$	BP BP — 1,118 1,215	$\begin{array}{c} 0,358\\ 0,339\\ 0,330\\ 0,310\\ 0,299\\ 0,274\end{array}$
0,2	$\begin{array}{c} 0,7 \\ 0,5 \\ 0,3 \\ 0,1 \end{array}$	-0,075	0,263	0,167	$-0,103 \\ -0,094 \\ -0,083 \\ -0,065$	$\begin{array}{c} 0,161 \\ 0,192 \\ 0,234 \\ 0,303 \end{array}$	$-1,040 \\ -1,120 \\ -1,305 \\ -1,880$	$\begin{array}{c} 0,669 \\ 0,458 \\ 0,260 \\ 0,079 \end{array}$	BP BP BP 1,513	$\begin{array}{c} 0,178 \\ 0,175 \\ 0,170 \\ 0,163 \end{array}$

Параметры смеси, устанавливающиеся после взаимодействия падающей УВ (D=-1,5) с КР

скоростью $D_{tr} = -1,55$ (t = 80, 100). Следует отметить, что максимальное давление в тяжелой фазе до взаимодействия с КР составляет 2,525, а после взаимодействия уменьшается до 1,748. При этом конечное равновесное давление за падающей и проходящей УВ увеличивается от $P_{fin} = 1,384$ до $P_r = 1,632$.

При заданных начальных данных перепад объемной концентрации на КР небольшой: $\Delta m = 0,2$. За падающей УВ, движущейся к КР, объемная концентрация тяжелого компонента возрастает (t = 20), т. е. происходит компактирование этой фазы. Достигая КР, падающая УВ взаимодействует с КР, при этом КР начинает перемещаться в направлении движения УВ с постоянной скоростью вслед за проходящей УВ. В проходящей УВ m_2 возрастает так же, как в падающей. Следом за проходящей УВ движется КР, разделяющий области с разными объемными концентрациями за проходящей и отраженной волной, при этом перепад объемных концентраций составляет 0,299 (табл. 1). Таким образом, перепад увеличивается на 50 %. За отраженной УВ m_2 возрастает.

Следует отметить, что для установления отраженной дисперсионной УВ требуется намного больше времени, чем для установления проходящей УВ.

Исследуем случай, когда объемная концентрация фаз за комбинированной границей равна $m_{10}^{**} = 0.5$. Падающая замороженно-дисперсионная УВ с внутренней УВ в легкой фазе и непрерывным течением в тяжелой, взаимодействуя с КР, распадается на две дисперсионных УВ. Первая распространяется в том же направлении, что и падающая УВ, но с более высокой скоростью $D_{tr} = -1.645$. Вторая движется в противоположном направлении относительно падающей УВ со скоростью $D_r = 0.415$. Форма профилей давления проходящей и отраженной УВ является монотонно возрастающей.

При исследовании распределения средних плотностей легкого компонента в различные моменты времени можно отметить, что за фронтом КР имеется небольшая область с повышенными плотностью и объемной концентрацией несущей фазы. Природа этого явления аналогична рассмотренной в [10] для случая отражения УВ от жесткой стенки. Максимальная плотность легкого компонента составляет 2,294, что на 0,031 больше конечного равновесного значения, а максимальная объемная концентрация равна 0,778 при конечном равновесном значении 0,768. Соответственно объемная концентрация и плотность частиц меньше, чем в конечном равновесном состоянии. Таким образом, увеличение

Рис. 2. Распределение скоростей и давлений компонентов смеси при $D = -1,5, m_{10}^* = 0,9, m_{10}^{**} = 0,1$

перепада объемной концентрации перед КР и за ним приводит к появлению перемещающегося слоя с повышенными (пониженными) объемной концентрацией и плотностью легкого (тяжелого) компонента.

При дальнейшем уменьшении концентрации первой фазы $(m_{10}^{**} = 0,3, \Delta m = 0,6)$ происходит усиление отраженной УВ, которая теперь является замороженно-дисперсионной, и ослабление проходящей УВ дисперсионного типа. После установления проходящая и отраженная УВ распространяются со скоростями, соответствующими определенным аналитически в равновесном приближении в [1]. Скорость КР, определенная в численном нестационарном расчете, также соответствует скорости КР, полученной аналитически в равновесном приближении. Скорости проходящей и отраженной УВ становятся больше, чем при $m_{10}^{**} = 0,5$ или $m_{10}^{**} = 0,7$ (табл. 1). Профиль давления для тяжелого компонента в отраженной УВ становится немонотонным, возникает локальный максимум $P_2^{\text{max}} = 2,280$. Это значение P_2^{max} больше конечного равновесного значения 2,253, но меньше значения $P_2^{\text{max}} = 2,525$, достигаемого в падающей УВ. Профили плотностей и объемных концентраций фаз подобны рассмотренным ранее при $m_{10}^{**} = 0,5$ с той лишь разницей, что амплитуда отраженной УВ и КР возросла, а проходящей УВ уменьшилась. Амплитуда всплеска (провала) плотности и объемной концентрации легкой (тяжелой) фазы также возросла.

В случае $m_{10}^{**} = 0,1$ проходящая УВ является дисперсионной, а отраженная замороженно-дисперсионной (рис. 2). Скорость проходящей УВ больше скорости падающей. Отметим, что скорость распространения проходящих УВ при уменьшении m_{10}^{**} возрастает. Это связано с увеличением плотности смеси за КР. Например, при $m_{10}^{**} = 0.7$; 0,5; 0,3; 0,1 скорость проходящей УВ $D_{tr} = -1.55$; -1.645; -1.92; -2.533, а плотность $\rho_0^{**} = 1,495; 1,825; 2,155; 2,485$ соответственно. Давление в проходящей УВ монотонно увеличивается в обоих компонентах, в отраженной УВ давление легкого компонента скачкообразно возрастает во внутренней УВ, а давление тяжелого возрастает до $P_2^{\max} = 2,760,$ а затем убывает до конечного значения $P_r = 2,658$. Сравнивая рассматриваемый случай с реализованным при $m_{10}^{**} = 0,3$, отметим, что относительная амплитуда всплеска давления в тяжелой фазе увеличивается: $\Delta P_2 = P_2^{\max} - P_r = 0,105$ и $\Delta P_2 = 0,026$ или $\Delta \bar{P}_2 = (P_2^{\max} - P_r)/P_r = 3,97$ % и $\Delta \bar{P}_2 = 1,16$ % соответственно. На рис. 2 видна небольшая зона с различными давлениями фаз, расположенная между участками с установившимися значениями давлений фаз за проходящей и отраженной УВ. Положение зоны неравновесности давлений совпадает с границей КР. Таким образом, удается подтвердить теорию КР, изложенную в [2], где доказано существование перепада давления на КР. Поведение объемных концентраций и плотностей фаз аналогично их поведению при $m_{10}^{**} = 0,3.$

Рис. 3. Взаимодействие падающей дисперсионной УВ (D = -1.5, $m_{10}^* = 0.5$) с КР ($m_{10}^{**} = 0.9$)

Изменение пористости смеси перед КР. Исследуем взаимодействие падающей УВ дисперсионного типа, распространяющейся со скоростью D = -1,5 по смеси при $m_{10}^* = 0,5$, с КР, за которым значение m_{10}^{**} дискретно изменяется от 0,1 до 0,9. При взаимодействии с более плотной средой ($m_{10}^{**} = 0,1$; 0,3; 0,4) падающая УВ распадается на отраженную и проходящую УВ дисперсионного типа. Профили скоростей и давлений компонентов смеси являются монотонными как для падающей УВ, так и для отраженной и преломленной УВ. Как и следовало ожидать, скорость проходящей УВ с уменьшением амплитуды падающей УВ с 0,792 при $m_{10}^* = 0,9$ до 0,452 при $m_{10}^* = 0,5$ уменьшается, а скорость отраженной УВ увеличивается. Скорость распространения границы КР и давление на нем уменьшаются при уменьшении m_{10}^* (см. табл. 1).

При увеличении объемной концентрации легкого компонента за границей KP $(m_{10}^{**} =$ 0,6; 0,7; 0,9) картина течения меняется, так как плотность смеси за КР меньше плотности перед КР. На рис. 3 показано распределение давления до и после взаимодействия дисперсионной УВ с КР, за границей которого $m_{10}^{**} = 0,9$. Из рис. 3 следует, что падающая дисперсионная УВ, распространяющаяся по плотной смеси (t = 100, 200), приближается к границе разрыва пористости (t = 250) и взаимодействует с менее плотной средой. В результате взаимодействия падающая УВ распадается на проходящую замороженно-дисперсионную УВ и отраженную волну разрежения. Проходящая замороженно-дисперсионная УВ характеризуется монотонно убывающими профилями скорости и монотонно возрастающими давлениями компонентов смеси, например при $m_{10}^{**} = 0.6$, либо монотонно возрастающим профилем давления в легком компоненте и максимумом давления в тяжелом: $P_2^{\max} = 1,048; 1,361$ при $m_{10}^{**} = 0.7; 0.9$ соответственно. Эти значения P_2^{max} превышают значения конечного равновесного давления на КР $P_{\rm KP} = 1,035; 0,859$ соответственно. Заметим, что значение локального максимума давления во втором компоненте P_2^{\max} при $m_{10}^{**}=0.9$ превышает конечное равновесное давление за падающей УВ ($P_{fin} = 1,236$). На рис. 3 показана перестройка падающей дисперсионной УВ в УВ замороженно-дисперсионного типа при прохождении в менее плотную среду $(m_{10}^{**} = 0,9)$. Отметим, что скорость проходящей УВ меньше скорости падающей и при увеличении m_{10}^{**} уменьшается.

Аналогичная картина течений реализуется при прохождении слабой УВ (D = -1,5, $m_{10}^* = 0,2$) дисперсионного типа через КР. При этом скорость распространения КР является самой низкой (см. табл. 1).

Влияние скорости падающей УВ. Увеличение скорости падающей УВ (до D = -2,5), распространяющейся по среде с $m_{10}^* = 0,1$; 0,5 и взаимодействующей с менее плотной средой ($m_{10}^{**} > m_{10}^*$), приводит к увеличению скорости КР и проходящей УВ, а также к росту давления на КР и в конечном равновесном состоянии (табл. 2). В случае взаимодействия падающей УВ с более плотной средой, т. е. при $m_{10}^{**} < m_{10}^*$, она распадается на проходящую УВ с подобными профилями скоростей и давлений компонентов (при этом амплитуда скорости уменьшается, а амплитуда давления увеличивается с ростом плот-

m_{10}^{*}	m_{10}^{**}	u_{fin}	P_{fin}	m_{1fin}	$u_{\rm KP}$	$P_{\rm KP}$	D_{tr}	m_{1tr}	D_r	m_{1r}
0,9	$\begin{array}{c} 0,7 \\ 0,5 \\ 0,3 \\ 0,1 \end{array}$	-1,963	5,719	0,624	$-1,703 \\ -1,558 \\ -1,440 \\ -1,328$	7,840 9,260 10,526 11,586	-2,450 -2,630 -2,947 -3,400	$\begin{array}{c} 0,260 \\ 0,119 \\ 0,051 \\ 0,013 \end{array}$	$-0,472 \\ -0,374 \\ -0,294 \\ -0,214$	$0,575 \\ 0,549 \\ 0,529 \\ 0,511$
0,5	$\begin{array}{c} 0,9\\ 0,7\\ 0,6\\ 0,4\\ 0,3\\ 0,1 \end{array}$	-1,325	6,047	0,151	$\begin{array}{r} -1,583 \\ -1,453 \\ -1,389 \\ -1,261 \\ -1,197 \\ -1,063 \end{array}$	$\begin{array}{r} 3,981 \\ 4,974 \\ 5,498 \\ 6,625 \\ 7,236 \\ 8,575 \end{array}$	$\begin{array}{r} -2,155\\ -2,294\\ -2,381\\ -2,642\\ -2,813\\ -3,238\end{array}$	$\begin{array}{c} 0,678\\ 0,321\\ 0,221\\ 0,100\\ 0,064\\ 0,015 \end{array}$	BP BP 0,998 1,050 1,163	$\begin{array}{c} 0,190\\ 0,168\\ 0,159\\ 0,144\\ 0,137\\ 0,124 \end{array}$
0,1	$0,7 \\ 0,5 \\ 0,3$	-0,375	2,332	0,035	$-0,540 \\ -0,499 \\ -0,447$	$1,131 \\ 1,414 \\ 1,786$	-1,402 -1,555 -1,855	$0,534 \\ 0,305 \\ 0,142$	BP BP BP	$0,052 \\ 0,046 \\ 0,041$

Параметры смеси, устанавливающиеся после взаимодействия падающей УВ (D=-2,5) с КР

ности среды на KP) и отраженную УВ дисперсионного типа с монотонными профилями скорости и давления. Отметим, что ширина отраженной УВ с ростом m_{10}^{**} увеличивается.

Таким образом, увеличение скорости приводит к результатам, аналогичным результатам, полученным при D = -1.5. Различными будут лишь скорости распространения и амплитуды сформированных УВ.

Рассмотрим подробнее случай D = -2.5, $m_{10}^* = 0.9$, когда падающая УВ замороженнодисперсионного типа взаимодействует со средой с большей плотностью, в которой объемная концентрация первой фазы m_{10}^{**} дискретно изменяется от 0,1 до 0,7 с шагом 0,2. Во всех случаях падающая УВ распадается на проходящую и отраженную УВ. Особенность рассматриваемого варианта расчета заключается в том, что относительно неподвижного наблюдателя отраженная УВ движется за КР и проходящей УВ. Это связано с тем, что отраженная волна сносится течением, формирующимся за фронтом падающей УВ.

На рис. 4 показано взаимодействие падающей УВ $(D = -2.5, m_{10}^* = 0.9)$ с КР, за границей которого в смеси $m_{10}^{**} = 0.5$. В сечении x = 120 расположена граница КР, разделяющая две области: $x \in [0, 120)$, где $m_{10} = m_{10}^{**} = 0.5$, и $x \in [120, 150]$, где $m_{10} = m_{10}^* = 0.9$. Из рис. 4 следует, что при t = 5 заданная конфигурация УВ (t = 0) устойчиво рас-

Рис. 4. Распределение скоростей и давлений компонентов смеси при взаимодействии замороженно-дисперсионной УВ (D = -2.5, $m_{10}^* = 0.9$) с КР ($m_{10}^{**} = 0.5$)

Таблица 2

Таблица З

m_{10}^*	m_{10}^{**}	u_{fin}	P_{fin}	m_{1fin}	$u_{\rm KP}$	P_{KP}	D_{tr}	m_{1tr}	D_r	m_{1r}
0,9	$0,7 \\ 0,5 \\ 0,3 \\ 0,1$	-2,823	10,852	0,525	-2,502 -2,320 -2,189 -2,099	$15,159 \\18,123 \\20,503 \\22,236$	-3,230 -3,360 -3,590 -3,970	$0,192 \\ 0,085 \\ 0,036 \\ 0,009$	-1,145 -1,035 -0,948 -0,887	$0,475 \\ 0,453 \\ 0,437 \\ 0,427$
0,4	$0,9 \\ 0,7 \\ 0,5 \\ 0,3 \\ 0,1$	-1,903	12,497	0,070	$\begin{array}{r} -2,330 \\ -2,150 \\ -1,983 \\ -1,825 \\ -1,674 \end{array}$	$7,716 \\9,604 \\11,523 \\13,483 \\15,495$	$\begin{array}{r} -2,840 \\ -2,980 \\ -3,200 \\ -3,440 \\ -3,720 \end{array}$	$\begin{array}{c} 0,578 \\ 0,236 \\ 0,106 \\ 0,044 \\ 0,011 \end{array}$	BP BP BP 0,867	$\begin{array}{c} 0,092\\ 0,081\\ 0,073\\ 0,067\\ 0,062\end{array}$
0,1	$0,9 \\ 0,7 \\ 0,5 \\ 0,3$	-1,128	9,246	0,015	$-1,634 \\ -1,512 \\ -1,390 \\ -1,262$	$\begin{array}{r} 4,216 \\ 5,318 \\ 6,513 \\ 7,814 \end{array}$	$-2,200 \\ -2,350 \\ -2,575 \\ -2,875$	$\begin{array}{c} 0,671 \\ 0,311 \\ 0,145 \\ 0,061 \end{array}$	BP BP BP BP	$\begin{array}{c} 0,025\\ 0,021\\ 0,018\\ 0,016\end{array}$

Параметры смеси, устанавливающиеся после взаимодействия падающей УВ (D = -3,3) с КР

пространяется по смеси, находящейся перед КР. При t = 10 она взаимодействует с КР и распадается на проходящую УВ замороженно-дисперсионного типа и отраженную УВ дисперсионного типа. В момент времени t = 20 переднюю часть проходящей УВ можно считать сформировавшейся, в то время как зону релаксации скоростей до равновесного значения, реализующегося на КР ($u_{\rm KP}$), можно считать установившейся только в момент t = 30. В последующие моменты времени t = 40, 50 полностью сформировавшаяся проходящая УВ устойчиво распространяется по смеси с $m_{10}^{**} = 0,5$ и постоянной скоростью $D_{tr} = -2,63$. Отраженная УВ формируется непосредственно после взаимодействия падающей УВ с КР. В момент t = 20 выделяется ее основной профиль, а при t = 30 процесс формирования можно считать законченным. При $t = 40 \div 150$ отраженная УВ дисперсионного типа устойчиво распространяется в направлении проходящей УВ. Следует отметить, что изменения направления движения отраженной УВ не произошло, так как отраженная УВ сносится течением, возникающим за фронтом падающей УВ.

Изменение m_{10}^{**} от 0,1 до 0,7 приводит к уменьшению разности скоростей D_{tr} и D_r $(|\Delta D| = |D_{tr} - D_r|)$. Например, при $m_{10}^{**} = 0,1$ $|\Delta D| = 3,186$, при $m_{10}^{**} = 0,3$ $|\Delta D| = 2,653$, при $m_{10}^{**} = 0,7$ $|\Delta D| = 1,978$.

Рассмотрим случай, когда скорость падающей УВ больше скорости звука в чистых материалах ($a_i < D = -3,3$). Падающая УВ при $m_{10}^* = 0,1$ является УВ дисперсионнозамороженного типа. При взаимодействии такой УВ с менее плотной средой ($m_{10}^{**} = 0,3$; 0,5; 0,7; 0,9) падающая УВ распадается на проходящую УВ и волну разрежения. Амплитуда скорости проходящей УВ больше, чем падающей (табл. 3). При этом с ростом m_{10}^{**} увеличение амплитуды скорости составляет 11,9; 23,2; 34,0; 44,9 % для соответствующих значений m_{10}^{**} , а амплитуда давления в проходящей УВ уменьшается на 15,5; 29,6; 42,5; 54,4 % соответственно. Из сравнения полученных изменений скорости и давления с аналогичными данными, полученными при D = -2,5, следует, что относительный рост амплитуды скорости и давления с увеличением скорости падающей УВ уменьшается почти на 10 %. Для всех рассмотренных значений m_{10}^{**} скорость проходящей УВ меньше, а ее тип отличен от типа падающей УВ. В частности, при прохождении падающей УВ в смесь с $m_{10}^{**} = 0,3$; 0,5 он меняется на дисперсионный с немонотонным профилем скорости в первом компоненте и давления во втором. При $m_{10}^{**} = 0,7$; 0,9 проходящая УВ является УВ замороженно-дисперсионного типа с внутренним разрывом в легком компоненте.

Рис. 5. Взаимодействие дисперсионнозамороженной УВ ($D = -3,3, m_{10}^* = 0,1$) с КР ($m_{10}^{**} = 0,7$)

Таблица 4

Относительное изменение расстояния между проходящей и отраженной УВ при $m^{\ast}_{10}=0.9$

**	$(D_{tr} - D_r)/D_{tr}$						
m_{10}	D = -1,5	D = -2,5	D = -3,3				
0,1	1,210	0,937	0,777				
0,3	1,245	0,900	0,736				
$_{0,5}$	1,252	0,858	0,692				
0,7		0,807	0,646				

На рис. 5 показано распределение давления и скорости компонентов смеси при взаимодействии падающей УВ (D = -3,3; $m_{10}^* = 0,1$) с КР, за которым $m_{10}^{**} = 0,7$. Начальное положение границы КР соответствует координате x = 150 (на рис. 5 оно показано вертикальной штриховой линией). Видно, что падающая дисперсионно-замороженная УВ устойчиво распространяется по смеси (t = 10), взаимодействует с границей КР (t = 20) и распадается на проходящую замороженно-дисперсионную УВ, движущуюся по смеси при $t = 30 \div 80$, и отраженную волну разрежения (ВР).

В случае $m_{10}^* = 0.9$ падающая УВ является УВ замороженного типа с двухфронтовой конфигурацией. При взаимодействии падающей УВ с КР, за границей которого $m_{10}^{**} = 0.1$; 0,3; 0,5; 0,7, она распадается на проходящую и отраженную УВ. При этом отраженная УВ движется в том же направлении, что и проходящая.

В табл. 4 представлены результаты расчета относительного изменения расстояния между проходящей и отраженной УВ $(D_{tr} - D_r)/D_{tr}$ при $m_{10}^* = 0.9$ для различных скоростей падающих УВ при одних и тех же значениях m_{10}^{**} . Из табл. 4 следует, что при D = -1.5 расстояние между проходящей и отраженной УВ увеличивается с ростом m_{10}^{**} , а при D = -2.5; -3.3 уменьшается, так как происходит изменение направления движения отраженной УВ.

Взаимодействие волны разрежения с КР. Волна разрежения инициировалась из разрывных начальных данных ступенчатого вида, при этом $D = -1,2, m_{10}^* = 0,2$. Как показано в [11], передний фронт ВР распространяется с переменной скоростью, изменяющейся от замороженной (C_f) до равновесной (C_e) скорости звука, а задний — с наименьшей скоростью звука в смеси, т. е. со скоростью звука легкого компонента a_1 . При взаимодействии ВР с более плотной средой за границей КР ($m_{10}^{**} = 0,1$) проходящая и отраженная волны являются ВР. В проходящей ВР скорость изменяется от 0 до $u_{\rm KP} = 0,086$, давление от 0 до $P_{\rm KP} = -0,317$, а объемная концентрация легкого компонента от 0,1 до $m_{1\,tr} = 0,138$. Отраженная ВР распространяется в смеси с параметрами, устанавливающимися за проходящей ВР ($u_{fin} = 0,102, P_{fin} = -0,280, m_{1\,fin} = 0,256$). Равновесные параметры, устанавливающиеся за отраженной ВР, соответствуют параметрам перед движущимся КР ($P_{\rm KP}$, $u_{\rm KP}$, $m_{1r} = 0.265$). В отличие от случая взаимодействия УВ с КР при взаимодействии ВР с КР последний движется в противоположном направлении относительно проходящей ВР или в направлении движения отраженной ВР с постоянной скоростью $u_{\rm KP}$.

При взаимодействии падающей ВР с менее плотной средой $(m_{10}^{**} > m_{10}^*)$ она распадается на проходящую ВР, на которой скорости компонентов смеси увеличиваются, а давления уменьшаются, и отраженную волну, поджимающую смесь, формирующуюся за падающей ВР, за которой происходит увеличение скорости и давления компонентов. С ростом m_{10}^{**} $(m_{10}^{**} = 0.3; 0.5; 0.7; 0.9)$ скорость, устанавливающаяся за проходящей ВР, увеличивается (0.113; 0.129; 0.141; 0.151 соответственно), а скорость распространения уменьшается, при этом амплитуда давления проходящей ВР также уменьшается (-0.254; -0.215; -0.185;-0.157 соответственно). В отраженной волне сжатия с увеличением m_{10}^{**} $(m_{10}^{**} = 0.3; 0.5; 0.7; 0.9)$ увеличивается как амплитуда скорости (0.011; 0.027; 0.039; 0.049 соответственно), так и амплитуда давления (0.026; 0.065; 0.095; 0.123 соответственно).

Перепад объемной концентрации легкого (тяжелого) компонента на границе КР при прохождении ВР через КР не является постоянным. Например, при $m_{10}^{**} = 0,1$ до взаимодействия ВР с КР перепад составляет $\Delta m_0 = 0,1$, после взаимодействия $\Delta m_{fin} = 0,127$, т. е. увеличивается на 27 %, при $m_{10}^{**} = 0,3$ увеличение составляет лишь 13 %, при $m_{10}^{**} = 0,5 - 6$ %, при 0,7 - 1,4 %, при $m_{10}^{**} = 0,9$ перепад после взаимодействия ВР с КР уменьшается на 2 %.

В табл. 5 представлены данные о типах падающих, проходящих и отраженных волн для различных начальных параметров смеси.

Сопоставление результатов аналитических и численных расчетов. В табл. 1–3 приведены значения параметров потока в равновесных состояниях за падающей УВ (u_{fin} , P_{fin} , m_{1fin}), а также параметров, установившихся после взаимодействия УВ с КР (D_{tr} , D_r , u_{KP} , P_{KP} , m_{1tr} , m_{1r}), для различных соотношений начальных объемных концентраций на КР и скоростей падающей УВ. Из анализа данных табл. 1–3 следует:

— с ростом m_{10}^{**} абсолютное значение скорости проходящей УВ, давление на КР и скорость отраженной УВ и границы КР уменьшаются вследствие уменьшения плотности смеси за КР;

— с увеличением m_{10}^* возрастают давление на KP, скорость проходящей УВ и KP, а скорость отраженной УВ уменьшается, что вызвано ростом амплитуды скорости и давления в падающей УВ;

— повышение скорости падающей УВ приводит к естественному росту скорости границы КР и давления на КР.

Особенностью рассматриваемого процесса является различный характер изменения скорости отраженной УВ. Как следует из табл. 1–3, с увеличением модуля скорости падающей УВ скорость отраженной УВ, движущейся в противоположном направлении относительно начального положения границы КР ($D_r > 0$), постепенно уменьшается и становится равной нулю ($D_r = 0$) при некотором значении $D = D^*$. Дальнейшее увеличение ее скорости ($|D| > |D^*|$) приводит к сносу отраженной УВ ($D_r < 0$), т. е. она движется в направлении прошедшей УВ и границы КР.

При сравнении значений параметров, устанавливающихся после взаимодействия падающей УВ с КР, полученных в численных расчетах нестационарной задачи (см. табл. 1–3), с результатами, определенными в равновесном приближении (см. табл. 1–3 в [1]), отмечен ряд закономерностей. В частности, различие результатов численных и аналитических расчетов увеличивается:

— при увеличении объемной концентрации легкого компонента m_{10}^* перед границей KP, т. е. при увеличении амплитуды скорости и давления в падающей УВ;

Типы волн										
m_{10}^{*}	m_{10}^{**}	Падающая	Проходящая	Отраженная						
D = -1,2										
	0,1	BP	BP	BP						
	0,3	BP	BP	BC						
0,2	0,5	BP	BP	BC						
	0,7	BP	BP	BC						
	0,9	BP	BP	BC						
D = -1,5										
	0,1	ДУВ	ДУВ	ДУВ						
0.2	0,3	ДУВ	ДУВ	BP						
0,2	0,5	ДУВ	ДУВ	BP						
	0,7	ДУВ	ДУВ	BP						
	0,1	ДУВ	ДУВ	ДУВ						
	0,3	ДУВ	ДУВ	ДУВ						
0.5	0,4	ДУВ	ДУВ	ДУВ						
0,0	0,6	ДУВ	ЗДУВ	BP						
	0,7	ДУВ	ЗДУВ	BP						
	0,9	ДУВ	ЗДУВ	BP						
	0,1	ЗДУВ	ДУВ	ЗДУВ						
$0,\!9$	0,3	ЗДУВ	ДУВ	ЗДУВ						
	0,5	ЗДУВ	ДУВ	ДУВ						
	0,7	ЗДУВ	ЗДУВ	ДУВ						
D = -3,3										
	0,3	ДЗУВ	ЗДУВ	BP						
0.1	0,5	ДЗУВ	ЗДУВ	BP						
0,1	0,7	ДЗУВ	ЗДУВ	BP						
	0,9	ДЗУВ	ЗДУВ	BP						
	0,1	ДЗУВ	ДЗУВ	ДУВ						
	0,3	ДЗУВ	ДЗУВ	ДУВ						
0,4	0,5	ДЗУВ	ДЗУВ	BP						
	0,7	ДЗУВ	ЗДУВ	BP						
	0,9	ДЗУВ	ЗДУВ	BP						
0.9	0,1	ЗУВ	ДЗУВ	ДУВ						
- ,0	0,3	ЗУВ	ДЗУВ	ДУВ						
	0,5	ЗУВ	ЗУВ	ДУВ						
	0,7	ЗУВ	ЗУВ	ДУВ						

Таблица 5

Примечание. ВР — волна разрежения; ВС — волна сжатия; ДУВ — дисперсионная ударная волна; ЗДУВ — замороженно-дисперсионная ударная волна; ДЗУВ — дисперсионно-замороженная ударная волна; ЗУВ — замороженная ударная волна двухфронтовой конфигурации.

— росте объемной концентрации легкого компонента за границей КР;

— увеличении скорости падающей УВ.

Отметим, что различие между равновесными параметрами, определенными аналитическими методами и полученными в численных расчетах, выполненных с помощью разностной схемы TVD, меньше, чем при использовании модифицированного метода "крупных частиц".

выводы

Численное исследование взаимодействия волн с КР позволяет сделать следующие выводы.

Падающие УВ различного типа, взаимодействуя с КР, распадаются на УВ, тип которых зависит от соотношений компонентов в начальном состоянии смеси. Выявлены особенности поведения параметров в зависимости от скорости падающей УВ.

При взаимодействии с КР волны разрежения распадаются на волны разрежения или волны сжатия в зависимости от начальных концентраций компонентов в смеси.

ЛИТЕРАТУРА

- 1. Жилин А. А., Федоров А. В. Взаимодействие ударных волн с комбинированным разрывом в двухфазных средах. 1. Равновесное приближение // ПМТФ. 2002. Т. 43, № 3. С. 45–58.
- 2. **Федоров А. В., Фомин В. М.** К теории комбинированного разрыва в газовзвесях // Физическая газодинамика реагирующих сред. Новосибирск: Наука. Сиб. отд-ние, 1990. С. 128–134.
- 3. Губайдуллин А. А., Ивандаев А. И., Нигматулин Р. И. Модифицированный метод "крупных частиц" для расчета нестационарных волновых процессов в многофазных дисперсных средах // Журн. вычисл. математики и мат. физики. 1977. Т. 17, № 6. С. 1531–1544.
- 4. Жилин А. А., Федоров А. В. Распространение ударных волн в двухфазной смеси с различными давлениями компонентов // ПМТФ. 1999. Т. 40, № 1. С. 55–63.
- Федоренко Р. П. Применение разностных схем высокой точности для численного решения гиперболических уравнений // Журн. вычисл. математики и мат. физики. 1962. Т. 2, № 6. С. 1122–1128.
- 6. Руев Г. А., Рождественский Б. Л., Фомин В. М., Яненко Н. Н. Законы сохранения систем уравнений двухфазных сред // Докл. АН СССР. 1980. Т. 254, № 2. С. 288–293.
- Harten A. High resolution schemes for hyperbolic conservation laws // J. Comput. Phys. 1983. V. 49, N 3. P. 357–393.
- 8. Жилин А. А. Структура и распространение ударных волн в двухкомпонентных смесях: Дис....канд. физ.-мат. наук. Новосибирск, 1999.
- Жилин А. А. Применение схемы TVD для расчета двухфазных течений с различными скоростями и давлениями компонентов // Тр. конф. молодых ученых, посвященной 10-летию Ин-та вычисл. технологий СО РАН, Новосибирск, 25–26 дек. 2000 г. Новосибирск: Ин-т вычисл. технологий, 2001. Т. 2. С. 61–65.
- Жилин А. А., Федоров А. В. Отражение ударных волн от жесткой границы в смеси конденсированных материалов. 2. Неравновесное приближение // ПМТФ. 1999. Т. 40, № 6. С. 3–10.
- 11. Жилин А. А., Федоров А. В. Отражение ударной волны от жесткой стенки в смеси жидкого металла и твердых частиц // Физика горения и взрыва. 2000. Т. 36, № 4. С. 97–107.