УДК 546.05:547.458.8

Влияние надмолекулярной структуры целлюлозы на морфологию волокон оксида алюминия, полученного золь-гель методом

И. С. МАРТАКОВ¹, П. В. КРИВОШАПКИН¹, М. А. ТОРЛОПОВ¹, Е. Ф. КРИВОШАПКИНА¹, В. А. ДЕМИН^{1,2}

¹Институт химии Коми НЦ Уральского отделения РАН, ул. Первомайская, 48, Сыктывкар 167982 (Россия)

E-mail: gmartakov@gmail.com

²Сыктывкарский лесной институт, филиал ФБГОУ ВПО "Санкт-Петербургский государственный лесотехнический университет им. С. М. Кирова", ул. Ленина, 39, Сыктывкар 167982 (Россия)

(Поступила 26.07.13; после доработки 12.09.13)

Аннотация

Золь-гель методом с использованием хлопковой целлюлозы в качестве темплата получены микроразмерные в поперечном сечении волокна оксида алюминия. Изучено влияние надмолекулярной структуры целлюлозы на свойства керамических волокон. Показано, что начальная морфология и надмолекулярная структура целлюлозы оказывают значительное влияние на процесс темплатного синтеза.

Ключевые слова: оксид алюминия, волокно, целлюлоза, золь-гель метод, темплатный синтез

введение

На современном этапе развития химической технологии особый интерес представляют керамические волокна. На их основе можно создавать материалы нового поколения легкие, прочные, износоустойчивые, пригодные для применения при повышенных температурах и в агрессивных средах. В качестве перспективного материала для их получения можно рассматривать оксид алюминия. Его использование расширит области применения керамических волокон и существенно удешевит их. Кроме того, оксид алюминия производят из широко распространенных природных минералов (бокситов, нефелинов, каолинитов). Высокая химическая и термическая стабильность, твердость оксида алюминия обусловлены его кристаллической структурой. Оксид алюминия кристаллизуется в нескольких модификациях, наиболее устойчивая из которых α-Al₂O₃ (корунд). Промышленные методы формования таких высокотемпературных волокон, как правило, включают получение золей оксидов металлов [1-3].

Керамические волокна изготавливают в том числе методом темплатного синтеза [4–7], который основан на способности полимерных волокон набухать в растворах солей или золях гидратированных оксидов металлов и поглощать неорганические соединения либо образовывать с ними комплексы с последующим выжиганием органического компонента [8]. После сорбции солей из растворов или наноразмерных частиц золей волокна сушат и термически обрабатывают для удаления кристаллизационной, гидратной воды и темплата [9]. Полученные таким образом оксидные волокнистые материалы сохраняют текстуру исходного полимерного волокна.

Керамические волокна, полученные темплатным синтезом, отличаются высокой ре-

акционной активностью при адсорбционном взаимодействии с газовыми и жидкими средами, а также химической инертностью к агрессивным средам. Благодаря этому их можно использовать в качестве носителей катализаторов, фильтрующих сред, теплоизолирующих засыпок и слоев, средств капиллярного транспорта. Кроме того, керамические волокна характеризуются высокой дисперсностью и монофракционным составом оксида алюминия, а потому перспективны для создания высокопрочных керамик, разнообразных композиционных материалов конструкционного и функционального назначения, как с улучшенными, так и с особыми свойствами [8]. В этой связи исследования по разработке физико-химических и технологических принципов получения волокон оксида алюминия имеют актуальное значение.

Авторы [4-8] получили волокна оксидов металлов с поперечными размерами от 4 до 10 мкм, используя целлюлозу в качестве темплата, и показали, что при данном методе синтеза их структура зависит от морфологии волокон целлюлозы. Однако влияние надмолекулярной структуры темплата на морфологию оксидов металлов в настоящее время изучено слабо.

Цель данной работы — исследование влияния надмолекулярной структуры целлюлозы (темплата), изменяющейся в процессе мерсеризации, на морфологию оксида алюминия.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы

Золь гидратированного оксида алюминия. В качестве исходного реагента использован гексагидрат хлорида алюминия AlCl₃· 6H₂O классификации "х. ч.", а в качестве гидролизующего агента – раствор аммиака с концентрацией 7 моль/дм³. Синтез золя гидратированного оксида алюминия проведен методом контролируемого гидролиза при постоянном перемешивании и комнатной температуре; процесс заканчивали при конечном значении рН 5–5.5. Низкомолекулярные вещества удаляли из золей диализом через полупроницаемую полимерную мембрану (CelluSep 1230-45); завершение процесса контролировали качественной реакцией на хлорид-ионы [10]. Полученный золь представляет собой опалесцирующую агрегативно-устойчивую систему, которую характеризовали по величине динамической вязкости, содержанию дисперс-ной фазы, размеру частиц.

Хлопковая целлюлоза и мерсеризированная хлопковая целлюлоза. В качестве исходного материала использована беленая хлопковая целлюлоза (СП-1400). Мерсеризированная целлюлоза получена обработкой исходной хлопковой целлюлозы раствором гидроксида натрия с концентрацией 5.2 моль/дм³ с дальнейшей промывкой и сушкой [11]. Она отличается высоким содержанием α-формы целлюлозы (собственно (1→4)-β-D-полиангидроглюкопираноза), очень низким содержанием гемицеллюлоз и других сопутствующих веществ, высокой степенью полимеризации и большей длиной волокон по сравнению с другими целлюлозными материалами.

Алюмооксидные волокна. Керамические волокна получены пропиткой волокон природной или мерсеризированной целлюлозы в золе гидратированного оксида алюминия [8, 12] при соотношении масс $m(Al_2O_3)/m(C_6H_{10}O_5)_n =$ 1: 25. После пропитки золем волокна высушивали на воздухе при комнатной температуре в течение 1 сут, затем обжигали. Обжиг проведен постадийно изотермическими выдержками, температура которых соответствует процессам десорбции воды и деструкции целлюлозных волокон. Выбран следующий режим обжига: скорость нагрева от 20 до 600 °С - 2 °С/мин, от 600 до 1300 °С - 5 °С/мин, с выдержками в течение 1 ч при 200, 450, 600 и 1300 °С.

Методы

Плотность золей определена пикнометрическим методом. Значение динамической вязкости установлено с помощью капиллярного вискозиметра ВПЖ-3 (диаметр капилляра 0.56 мм). Массовая доля дисперсной фазы в системе определена гравиметрическим методом. Размер частиц определен с помощью прибора Malvern ZetasizerNano ZS методом динамического светорассеяния.

Образцы целлюлозы	Степень упорядоченности		Индекс кристалличност и $I_{\rm \scriptscriptstyle K}$
	$\overline{K_1}$	K_2	_
Исходная	1.5	1.0	0.82
Мерсеризированнная	1.3	1.0	0.53

ТАБЛИЦА 1

Степень упорядоченности и индексы кристалличности исходной и мерсеризированной хлопковой целлюлозы

Рентгенофазовый анализ (РФА) образцов проведен на рентгеновском дифрактометре XRD-6000 фирмы Shimadzu с CuK_{α} -излучением в интервале углов отражения $2\theta = 5-70^{\circ}$.

Индекс кристалличности целлюлозы $I_{\rm \kappa}$ определяли по методу Сегала [14]:

 $I_{\rm k} = I_{002} - I_{\rm a}/I_{002}$ где I_{002} – интенсивность рефлекса 002; $I_{\rm a}$ – интенсивность рассеяния при угле $2\theta \approx 19^{\circ}$.

ИК-спектры исследуемых образцов сняты на ИК-Фурье-спектрометре IRPrestige-21 в средней инфракрасной области $4000-400 \text{ сm}^{-1}$ с запрессовкой образцов в таблетки КВг. Степени упорядоченности целлюлозы K_1 , K_2 рассчитаны по методу Нельсона и О'Коннора [15]:

 $K_1 = A_{1429} / A_{897}$

 $K_2 = A_{1372}/A_{2900}$ где A – интенсивность.

Выбор режима температурной обработки и

оценка тепловых эффектов проведены на основе данных дифференциальной сканирующей калориметрии (ДСК), которые получены в интервале температур 25–1250 °С при скорости нагрева 5 °С/мин (прибор Netzsch STA 409 PC/PG).

Морфология волокон целлюлозы и оксида алюминия изучена с помощью сканирующей электронной микроскопии (СЭМ) на приборе VEGA3 TESCAN в режиме BSE (режим обратнорассеянных электронов).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В процессе мерсеризации наблюдается переход целлюлозы от структурной модификации I в структурную модификацию II. Мерсеризированная целлюлоза характеризуется более низким индексом кристалличности, большей рентгеноаморфностью, менее упорядоченной упаковкой макромолекул и измененными параметрами кристаллической решетки. Один из показателей изменений в ходе мерсеризации – индекс кристалличности, который определяется с помощью РФА (рис. 1) [13].

Из данных табл. 1 следует, что при мерсеризации кристалличность целлюлозы понижается, т. е. целлюлоза частично переходит в аморфное состояние. Это согласуется с литературными данными по мерсеризации целлюлозы [14].

Данные о степени упорядоченности целлюлозы, рассчитанные по ИК-спектрам по методу Нельсона и О'Коннора, также указывают на су-

Рис. 1. Ренттенограммы исходной (1) и мерсеризированной (2) хлопковой целлюлозы.

Рис. 2. ИК-спектры волокон исходной (1) и мерсеризи-

рованной (2) хлопковой целлюлозы.

Рис. 3. Микрофотографии волокон исходной хлопковой целлюлозы.

щественное снижение индекса кристалличности, что кореллирует с данными РФА (см. табл. 1).

По данным рис. 2, на ИК-спектрах мерсеризированной и исходной хлопковой целлюлозы максимумы поглощения практически совпадают. Широкая полоса поглощения в области 3700-3100 см⁻¹ ИК-спектра целлюлозы связана с валентными колебаниями гидроксильных групп, вовлеченных в водородные связи. Отмечено небольшое смещение максимума полосы образца мерсеризированной целлюлозы, валентных колебаний ОН-групп в высокочастотную область. Изменение контура этой полосы при смещении максимума в сторону более высоких частот свидетельствует об уменьшении доли групп, включенных в более сильные водородные связи, т. е. о разрыхлении структуры мерсеризированной цел-

Рис. 4. Микрофотографии волокон мерсеризированной хлопковой целлюлозы.

Рис. 5. Кривые ТГ и ДСК образца мерсеризированной хлопковой целлюлозы.

люлозы по сравнению с исходной хлопковой целлюлозой. Отношение интенсивностей полос при 1429 и 897 см⁻¹ в качестве показателя степени упорядоченности лучше отражает изменения, которые происходят в целлюлозе при мерсеризации, и коррелирует с индексом кристалличности.

Мерсеризированная целлюлоза, несмотря на сильное набухание в растворе щелочи, при последующей промывке и сушке сохраняет геометрические размеры волокон исходной хлопковой целлюлозы (рис. 3 и 4). Поверхность мерсеризированного волокна более гладкая и ровная.

На рис. 5 и 6 показаны кривые ТГ и ДСК при нагревании целлюлозы в атмосфере воздуха. Кривые ДСК для образца исходной хлопковой целлюлозы не приведены, посколь-

Рис. 6. Кривые ТГ и ДСК образца мерсеризированной хлопковой целлюлозы, пропитанной золем гидратированного оксида алюминия.

ку они в целом схожи с данными для образцов мерсеризированной хлопковой целлюлозы. При нагревании целлюлозы в кислородсодержащей среде на ДСК кривой (см. рис. 5) проявляются эндотермические эффекты: в области температур 90-100 °C десорбируется поглощенная влага; при 200-250 °C наблюдается дегидратация, начинается распад гликозидных связей целлюлозы (т. е. происходит деполимеризация); при 300-350 °C развиваются процессы глубокой термической деструкции целлюлозы, а также образования и улетучивания левоглюкозана, сопровождающиеся значительными потерями массы. В области 420-450 °C экзотермический эффект связан с конденсацией легколетучих продуктов, образованием новых связей, появлением ароматических структур. Наибольшая скорость потери массы отмечается в интервале температур 380-540 °C, что связано с окислением органической матрицы и образованием летучих соединений. Этому процессу на кривой ДСК соответствуют экзоэффекты.

Для образца хлопковой целлюлозы, пропитанной золем, на кривых ДСК наблюдаются аналогичные эффекты в указанных интервалах, свойственные собственно целлюлозе (см. рис. 6). Однако характер кривой ДСК для этого образца иной. При 320-350 °C появляется эндоэффект, связанный с разложением остаточного количества хлорида аммония (продукт гидролиза хлорида алюминия). При повышении температуры от 540 до 600 °C скорость потери массы заметно снижается, выгорание углерода прекращается и начинает формироваться оксид металла с волокнистой текстурой. Дальнейшее увеличение температуры термической обработки до 1300 °С не приводит к изменению массы образцов. В процессе термического окисления целлюлозы, пропитанной золем гидратированного оксида алюминия, зарождаются и растут зерна оксида алюминия. Из них формируется линейная цепочечная структура, которая повторяет форму исходного целлюлозного волокна.

В качестве пропитывающей системы в работе использован золь гидратированного оксида алюминия со следующими характеристиками: массовая доля оксида алюминия (5.8±0.3) %, динамическая вязкость (5.9±0.7) мПа · с, размер частиц (76.5±1.2) нм.

Рис. 7. Микрофотографии оксида алюминия, полученного обжигом хлопковой целлюлозы, которая пропитана золем гидратированного оксида алюминия.

Рефлексы на рентгенограммах алюмооксидных волокон свидетельствуют о формировании устойчивой α-фазы оксида алюминия. Образование кристаллического оксида алюминия начинается при температуре обжига ~600 °C в виде γ-фазы, а свыше 1100 °C происходит бездиффузионное превращение γ-глинозема в α-форму Al₂O₃ (корунд), которая остается неизменной при последующих циклах нагрева – охлаждения.

На рис. 7 видно, что исходная форма целлюлозы сохраняется, однако при использо-

Рис. 8. Микрофотографии оксида алюминия, полученного обжигом мерсеризированной хлопковой целлюлозы, которая пропитана золем гидратированного оксида алюминия.

вании в качестве темплата немерсеризированной целлюлозы корундовое волокно состоит из плохо спеченных кристаллитов. Напротив, в случае мерсеризированной хлопковой целлюлозы образуются хорошо спеченные волокна оксида алюминия диаметром 2–5 мкм, сохранившие форму темплата (рис. 8). Благодаря этому можно задавать текстуру оксидных волокон на начальных стадиях темплатного синтеза с применением целлюлозных материалов.

ЗАКЛЮЧЕНИЕ

Разработан метод темплатного синтеза керамических волокон, суть которого состоит в пропитке целлюлозных волокон золем гидратированного оксида алюминия и последующей термической обработке. Это позволяет синтезировать алюмооксидные волокна с широким спектром применений.

Показано, что мерсеризация критическим образом влияет на надмолекулярную структуру целлюлозы. В результате внутренняя поверхность целлюлозы увеличивается, что, в свою очередь, сказывается на процессах заполнения капилляров, пор и сорбции целлюлозой наноразмерных частиц золя.

Установлено, что мерсеризация улучшает свойства получаемого корундового волокна. При использовании в качестве темплата мерсеризированной целлюлозы получается оксид алюминия с хорошо сформированной волокнистой структурой, что обусловлено свойствами темплата. Волокна имеют диаметр от 2 до 5 мкм. В случае немерсеризированной хлопковой целлюлозы образуются плохо спеченные рыхлые волокна Al₂O₃, что, несомненно, ухудшает их физико-механические показатели.

Работа выполнена при финансовой поддержке инициативного проекта фундаментальных исследований, выполняемых в УрО РАН (проект № 12-У-3-1014).

СПИСОК ЛИТЕРАТУРЫ

- 1 Афанасов И. М., Лазоряк Б. И. Высокотемпературные керамические волокна. М.: Изд-во МГУ, 2010. 51 с.
- 2 Claus B., Schwaller D. //Adv. Sci. Technol. 2006. Vol. 50. P. 1–8.
- 3 Bunsell A. R., Berger M. H. Fine Ceramic Fibers. NY: MarcelDekker, 1999.
- 4 Ермоленко И. Н., Ульянова Т. М., Витязь П. А., Федорова И. Л. Волокнистые высокотемпературные материалы. М.: Наука и техника, 1991.
- 5 US Pat. No. 3,385,915, 1968.
- 6 Fan T. X., Chow S. K., Zhang D. //Progr. Mater. Sci. 2009. Vol. 54. P. 542–659.
- 7 Liu W. W., Zeng C. F., Zhang L. X., Wang H., Xu N. // Mater. Chem. Phys. 2007. Vol. 103. P. 508-514.
- 8 Sun R. Q., Sun L. B., Chun Y., Xu Q.-H., Wu H. // Micropor. Mesopor. Materials. 2008. Vol. 111. P. 314–322.
- 9 Hall S. R. Biotemplating: Complex Structures from Natural Mater. Singapore: World Sci. Publ., 2009.
- 10 Петрухин О. М. Аналитическая химия. Химические методы анализа. М.: Химия, 1992.
- 11 Роговин З. А. Химия целлюлозы. М.: Химия, 1972.
- 12 Vityaz P. A., Fyodorova I. L., Yermolenko I. N., Ulyanova T. M. //Ceram. Int. 1983. Vol. 9. P. 46–48.
- 13 Карливан В. П. Методы исследования целлюлозы. Рига: Зинатне, 1981.
- 14 Никитин В. М., Оболенская А. В., Щеголев В. П. Химия древесины и целлюлозы. М.: Лесн. пром-сть, 1978.
- 15 Nelson M. L., O'Connor R. T. // J. Appl. Polym. Sci. 1964. Vol. 8. P. 1311–1324.