СТРОЕНИЕ ЗОНЫ РАЗГРУЗКИ ПАРОГИДРОТЕРМ В РАЙОНЕ ВЕРХНЕ-ПАУЖЕТСКОГО ТЕРМАЛЬНОГО ПОЛЯ (ЮЖНАЯ КАМЧАТКА)

Феофилактов С. О., Рычагов С. Н., Букатов Ю. Ю., Нуждаев И. А., Денисов Д. К.

Аннотация

На примере Паужетского геотермального месторождения (Южная Камчатка) проведены комплексные геолого-геофизические исследования с целью получения новых данных о строении и физической природе зон разгрузки парогидротерм. В температурном, геоэлектрическом, магнитном и гравиметрическом полях выделена изометричная концентрически-зональная структура, которая пространственно коррелирует с приподнятым тектоническим блоком, установленным ранее в районе Верхне-Паужетского термального поля. В центральной области этой структуры расположен блок уплотненных пород, предположительно кварц-адуляровых метасоматитов, образованных на доголоценовом этапе развития Паужетской гидротермальной системы. Породы образуют физическую неоднородность в структуре водоносного горизонта, играющую большую роль в распределении потоков восходящих термальных, смешанных и метеорных вод под Верхне-Паужетским термальным полем. Центральная область изометричной структуры оконтурена зоной, состоящей из локальных аномалий положительных значений магнитного поля. Широкое развитие в недрах Паужетской гидротермальной системы субинтрузивных тел (силлов, даек, корней экструзий) от среднего до риолитового состава позволяет предполагать магматическую природу выделенных аномалий. Периферические области коррелируют с крупными зонами разгрузки высокотемпературных гидротерм. Таким образом, показано, что строение зон циркуляции различных типов вод в районе Верхне-Паужетского термального поля определяется концентрически-зональной структурой приподнятого тектонического блока и распределением физических неоднородностей, как первичных (магматического или вулканогенно-осадочного происхождения), так и образованных вследствие гидротермально-метасоматического изменения исходных пород.

Ключевые слова:

геотермальное месторождение, приподнятый тектонический блок, термальное поле, геофизические аномалии, водоносный горизонт, физические неоднородности

СТРОЕНИЕ ЗОНЫ РАЗГРУЗКИ ПАРОГИДРОТЕРМ В РАЙОНЕ ВЕРХНЕ-ПАУЖЕТСКОГО ТЕРМАЛЬНОГО ПОЛЯ (ЮЖНАЯ КАМЧАТКА)

С.О. Феофилактов, С.Н. Рычагов, Ю.Ю. Букатов, И.А. Нуждаев, Д.К. Денисов

Институт вулканологии и сейсмологии ДВО РАН, бульвар Пийпа д. 9, Петропавловск-Камчатский, Россия, 683006

ВВЕДЕНИЕ

Исследования авторского коллектива направлены на решение фундаментальной научной задачи, имеющей и большое практическое значение в области геотермии и современного минералорудообразования: на примере Паужетского геотермального месторождения – выделение блоков пород, контролирующих восходящие потоки гидротермальных флюидов; определение физической (геологической) природы зон теплового питания и разгрузки парогидротерм и металлоносных растворов. Данная проблема актуальна практически для всех геотермальных месторождений мира и Курило-Камчатского региона [Комплексные ..., 1985; Рычагов, 1993; Stimac et al., 2010; Uchida et al., 1996]. Земная кора областей современного и четвертичного вулканизма характеризуется высокой степенью неоднородности на всех иерархических уровнях [Красный, 1984; Лоншаков, 1979; Садовский и др., 1984; Туезов, 1975]. Гидротермальные системы вулканических регионов приурочены к геодинамически активным геологическим структурам: сочленениям региональных тектонических блоков, зонам разрывных тектонических нарушений, глубинным разломам [Иванов, 1956, 1961; Кононов, 1983; Геотермальные ..., 2005]. Метаморфизм пород, инфильтрация термальных и метеорных вод, кипение парогазового флюида, выщелачивание и механическое переотложение минеральных компонентов, другие процессы приводят к дальнейшему изменению геологической среды. Происходит активное формирование вторичных неоднородностей: толщ, слоев и горизонтов метаморфических и метасоматических фаций; блоков пород с контрастными петрофизическими свойствами; зон термодинамических и геохимических характеризующихся определенными физико-химическими параметрами; барьеров, участков повышенной трещиноватости и брекчированности (проницаемости) в первичных и новообразованных породах. Особенно интенсивно эти процессы происходят в зонах восходящих потоков гидротермальных флюидов и в области разгрузки парогидротерм. Поэтому достоверность геологических и геофизических моделей геотермальных

месторождений определяется уровнем знаний о физической природе структурных неоднородностей, слагающих гидротермальные системы.

Паужетское геотермальное месторождение и одноименная современная гидротермальная система считаются одними из наиболее изученных на Камчатке [Паужетские ..., 1965; Белоусов и др., 1976; Сугробов, 1979; Структура ..., 1993]. Здесь на площади 2.5×3 км пробурено около 50 скважин глубиной до 400-1200 м, выполнены крупномасштабные геофизические съемки, бурение сопровождалось комплексным каротажем скважин, более 20 лет на начальном этапе разведки и эксплуатации велись режимные гидрогеохимические наблюдения. Несмотря на большой объем исследований, через 30 лет после начала эксплуатации месторождения был закрыт первый (Северный) участок вследствие падения температуры и давления пароводяной смеси в скважинах; в настоящее время наблюдается снижение параметров теплоносителя, поступающего из более глубоких горизонтов нового (Южного) участка. Эти тенденции были отмечены еще в работе [Структура ..., 1993] и на наш взгляд объясняются не достаточно высоким уровнем знаний о структуре и физической природе зон питания и разгрузки гидротерм. Ранее нами получены оригинальные данные о строении крупной термоаномалии, расположенной на восточном фланге Паужетского геотермального месторождения [Феофилактов и др., 2017]. Построена комплексная геолого-геофизическая модель, описывающая механизмы формирования термоаномалии и условия поступления щелочного металлоносного флюида.

В настоящей статье на основе обобщения результатов детальных геофизических исследований сделана попытка объяснить физическую (геологическую) природу структурных неоднородностей в области разгрузки парогидротерм в центральной части Паужетского геотермального месторождения.

СОВРЕМЕННОЕ СОСТОЯНИЕ ИССЛЕДОВАНИЙ ГЕОТЕРМАЛЬНЫХ РАЙОНОВ, СИСТЕМ И МЕСТОРОЖДЕНИЙ ГЕОФИЗИЧЕСКИМИ МЕТОДАМИ

В нашей стране и за рубежом геофизическим методам исследований в геотермии уделяется большое внимание для решения, в первую очередь, структурных задач. На примере крупнейших геотермальных районов мира (Гейзерс – США, Лардерелло-Травале – Италия, Курило-Камчатская провинция – Россия, и др.) с помощью сейсморазведочных работ (КМПВ – корреляционный метод преломленных волн и МОВЗ – метод обменных волн землетрясений), магнитотеллурического зондирования и гравиметрии изучено строение кристаллического фундамента геотермальных артезианских бассейнов, выделена система региональных тектонических блоков и глубинных разломов, контролирующих конвективные потоки тепла; определено положение магматических и флюидных питающих систем [Апрелков и др., 1979; Долгоживущий ..., 1980; Gianelli et al., 1997; Stimac et al., 2001]. Использование традиционных и разработка новых подходов и методов геофизических исследований позволило существенно продвинуться в изучении строения современных гидротермальных систем и геотермальных месторождений многих регионов мира: Северной и Центральной Америки, Северной Африки, Западной Европы, Юго-Восточной Азии, Российского Дальнего Востока [Комплексные ..., 1985; Мороз и др.. 2013; Benz et al., 1992; Bernabini et al., 1995]. Развитие геофизических исследований в значительной степени обусловлено интересом мирового сообщества к геотермальным ресурсам, как возобновляемым источникам тепловой и электрической энергии [Lund, Boyd, 2015]. В связи с этим, основной объем информации в последние годы получен при изучении современных гидротермальных систем и геотермальных месторождений.

С целью более полного понимания проблем фундаментальной и практической геотермии, задач и возможностей изучения современных гидротермальных систем геофизическими методами обратимся к мировому опыту новейших исследований в этой области.

Магнитотеллурическое зондирование (МТЗ) и его модификации остаются наиболее часто используемыми геофизическими методами при исследованиях в геотермии, поскольку основаны на изучении естественного переменного электромагнитного поля Земли в широких интервалах глубин: от десятков метров - первых километров (АМТЗ), до десятков (МТЗ) и сотен километров (ГМТЗ) [Бердичевский, Дмитриев, 2009; Spichak, Manzella, 2009]. С помощью МТЗ выделяются аномальные области в структуре земной коры геотермальных районов, чаще всего интерпретируемые как гидротермально измененные высокопористые флюидонасыщенные породы. Отрицательные аномалии (пониженных электрических сопротивлений горных пород) образуют локализованные области в гидротермальных системах, приуроченных к вулканическим кальдерам и рифтовым структурам [Мороз и др., 2013; Lichoro, 2015; Omiti, 2015]. В основном, зоны пониженных сопротивлений коррелируют с интенсивно гидротермально измененными (аргиллизированными) породами и современными проницаемыми для инфильтрационных минерализованных растворов тектоническими нарушениями, и косвенно отражают изменения температуры геологической среды [Los Bafios et al., 2010; Bertrand et al., 2013; Karlsdottir et al., 2015]. Магнитотеллурические данные позволяют выделять структурные элементы палеогидротермальных систем: в Центральной разломной зоне Филиппин относительно высоких электрических сопротивлений приурочены аномалии Κ неизмененным интрузивным телам, низких сопротивлений – к осадочным породам и

интенсивно иллитизированным и смектитизированным диоритовым массивам с золотомедной минерализацией [Africa et al., 2015]. Вместе с тем, методы магнитотеллурического зондирования не позволяют получать однозначные результаты при изучении районов, характеризующихся расчлененным рельефом и высокой неоднородностью геологической среды, что в большей степени характерно для областей современного вулканизма [Arnason et al., 2010]. Кроме того, магнитотеллурические исследования, в основном, направлены на решение задач регионального характера.

Современные методы и аппаратура сейсмологических исследований позволяют, прежде всего, определять местоположение и физические параметры (размеры, границы) геотермальных резервуаров в пародоминирующих системах. Зоны перехода жидкость-пар [Жатнуев и др., 1996] характеризуются высокой микросейсмичностью вследствие кипения перегретого флюида [Dangel et al., 2003], что дает возможность исследовать объемную структуру этих областей с помощью сейсмической томографии [Delliansyah et al., 2015; Husen al., 2004]. В последние годы разработаны et методики выделения пародоминирующих геотермальных резервуаров и глубинных резервуаров перегретых вод, учитывающие эффект поглощения волн низкой частоты во флюидонасыщенных зонах [Горбатиков и др., 2008; Baness et al., 2010; Casini et al., 2010]. Так, авторами настоящей показано строение области кипения гидротерм Нижне-Кошелевского статьи геотермального месторождения (Южная Камчатка): зона сухого пара локализуется не в единой объемной структуре, как было отмечено в работе [Писарева, 1987], а в субвертикальных каналах мощностью до 150-200 м, погружающихся в апикальную часть многофазной интрузии диоритов - диоритовых порфиритов [Рычагов и др., 2018]. Более традиционными являются исследования микросейсмичности, посвященные определению геометрии разрывных нарушений, контролирующих тектонических потоки инфильтрационных вод в геотермальных месторождениях [Mujihardi et al., 2015; Wolfe, 2007]. Геотермальные резервуары являются высоко динамичными системами: Р-Т параметры среды могут меняться как под влиянием флуктуаций глубинного флюида, так и сезонного изменения водного баланса. Эту особенность современных масс гидротермальных систем различного гидродинамического типа (парои вододоминирующих) активно используют для сейсмического мониторинга физических параметров геотермальной среды [Bannister et al., 2010; Clarke et al., 2009; Moya, Taylor, 2010]. Таким образом, сейсмологические исследования вносят существенный вклад в изучение строения геотермальных систем и месторождений.

Большой научный и практический интерес представляют прецизионные гравиметрические исследования на геотермальных месторождениях. Помимо решения

традиционных задач – выделения интрузивных тел и тектонических блоков пород с повышенной плотностью [Kusumah et al., 2010; Martakusumah et al., 2015], гравиметрические исследования считаются перспективными для мониторинга изменения физических параметров среды в процессе эксплуатации геотермальных месторождений [Allis, Hunt, 1986; Cabezas, 2010; Nordquist et al., 2004]. Так, Дж. Нишиджима с коллегами установили изменение поля силы тяжести в продуктивных зонах геотермального месторождения Такигами (Япония) за период с 1990 по 2004 гг., в среднем, на 50-75 мкГал [Nishidjima et al., 2010]. На геотермальном поле Вайракей (Новая Зеландия) за 30 лет эксплуатации Δg продуктивных зон уменьшилась на 1000 мкГал [Allis, Hunt, 1986]. Кроме того, в результате гравиметрического мониторинга установлены сезонные колебания поля силы тяжести, что отражает изменение масс баланса в гидротермальной системе вследствие дополнительного притока метеорных вод [Nishidjima et al., 2015; Sofyan et al., 2010]. Таким образом, изменения поля силы тяжести в структуре гидротермальных систем связаны с динамикой потоков гидротерм и метеорных вод. В подтверждение этого тезиса обратим внимание на эксперимент, проведенный на геотермальном поле Серро-Прието (Мексика) с помощью электромагнитных наблюдений: электрическая проводимость среды меняется после землетрясений при сохранении общей структуры флюидонасыщенных зон. Поскольку геотермальное поле находится в области влияния глубинного активного разлома, авторы исследований объясняют этот феномен поступлением значительных масс минерализованных растворов в зону разлома, как отклик на изменение деформационного поля Земли [Cortes-Arroyo et al., 2015].

Наземные магнитометрические и аэромагнитные исследования традиционно проводятся, в основном, в слабо изученных геотермальных районах с целью выделения зон разломов и полей гидротермально измененных пород [Aboud et al., 2011; Ebbing et al., 2009; Soengkono, 2015]. Но в сочетании с другими данными несут дополнительную информацию о структуре и физических свойствах геотермальной среды.

В целом, необходимо отметить следующую устойчивую тенденцию в новейших геофизических исследованиях в геотермии: проведение комплексных геофизических работ и интерпретация данных на основе обобщения материалов детальных геологогидрогеологических и минералого-геохимических исследований [Idral, 2010; Idral et al., 2015; Mwakirani, 2015]. Такая методология обеспечивает максимальную достоверность результатов и используется в настоящей статье.

ИСТОРИЯ ВЫДЕЛЕНИЯ ПАУЖЕТСКОГО МЕСТОРОЖДЕНИЯ

Первые сведения о геотермальных источниках Паужетского района относятся к 18 веку. Знаменитый русский исследователь С.П. Крашенинников довольно подробно описал «горячие ключи, фонтаны, озера», расположенные в долине реки «Пауджа» [Крашенинников, 1755]. Эти необычные и яркие проявления современных геологических процессов привлекали внимание многих ученых и естествоиспытателей 19-20 веков [Стеллер, 1999; Дитмар, 2009; Комаров, 1912; Новограбленов, 1932; Семенов, 1988; и др.]. В советское время были проведены систематические геологические, геофизические и гидрогеологические исследования в Паужетском районе и непосредственно на площади разгрузки термальных источников с целью характеристики условий их формирования, картирования термоконтролирующих гидрогеологических структур, изучения бальнеологических свойств растворов, и др. [Пийп, 1937; Иванов, 1956, 1961; Аверьев, 1961]. На основании постановления Президиума АН СССР от 15.03.1954 г. и проведения в 1955-1957 гг. гидрогеотермических изысканий А.С. Нехорошевым и В.В. Ивановым было сделано заключение о наличии в недрах Паужетской гидротермальной системы перегретых термальных вод. Проведено бурение первых скважин, оценены прогнозные геотермальные ресурсы и оконтурено геотермальное месторождение [Паужетские..., 1965]. Построена первая в СССР Паужетская ГеоЭС электрической мощностью 11 МВт, устойчиво работающая с 1967 г. до настоящего времени. Более подробно история выделения Паужетского геотермального месторождения описана в работе [Рычагов, 2017]. Продолжение бурения скважин (вплоть до 1980-х годов), режимные гидрогеохимические наблюдения и тематические исследования позволили уточнить строение геотермального месторождения. Обобщение данных о геологическом строении месторождения приведем ниже.

ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА РАЙОНА, ГИДРОТЕРМАЛЬНОЙ СИСТЕМЫ И ГЕОТЕРМАЛЬНОГО МЕСТОРОЖДЕНИЯ

Паужетско-Камбально-Кошелевский геотермальный (рудный) район (уточненное название Паужетского района [Рычагов, 2003, 2009]) входит в состав Южно-Камчатской геотермальной провинции [Аверьев, 1966; Сугробов, 1979] и расположен в пределах внутренней зоны Курило-Камчатской островной дуги на сочленении трех основных вулканических поясов Камчатки [Апрелков, 1971]. Район занимает центральное положение в субкольцевой тектоно-магматической структуре, представляющей собой пологий аккумулятивно-тектонический свод размером 35×50 км, осложненный вулкано-тектонической структуре. [Долгоживущий..., 1980].

Таким образом, Паужетско-Камбально-Кошелевский геотермальный (рудный) район отождествляется с южнокамчатским длительноживущим вулканогенно-рудным центром [Прогнозная..., 1977]. В развитии района выделяется три структурных яруса: нижний представлен вулканогенно-осадочными породами олигоцен-среднемиоценового возраста, вмещающими многофазные интрузивные тела от габбро до плагиогранитов; средний образован вулканогенно-осадочными толщами среднего миоцена — плиоцена; верхний ярус отвечает за четвертичный этап развития островной дуги и сложен лавами, туфами и интрузивными породами плейстоцен-голоценового возраста среднего и кислого состава Геолого-геофизический..., Район 1987]. включает три основные геологогидрогеологические структуры, определяющие его строение и контролирующие положение геотермальных месторождений: Паужетскую гидротермальную систему, Камбальный вулканический хребет и Кошелевский вулканический массив [Структура..., 1993]. Структуры образованы на четвертичном этапе развития Курило-Камчатской островной дуги, в их основании залегают породы среднего яруса, включающие рудопроявления золото-сульфидного типа.

Паужетская гидротермальная система приурочена к центральной части одноименной вулкано-тектонической депрессии [Долгоживущий..., 1980] (кальдере по другим литературным источникам) и отражает современный (голоценовый) этап развития длительноживущей Паужетской гидротермально-магматической системы, подробная информация о которой изложена в книге [Структура..., 1993]. Поэтому кратко остановимся на характеристике строения современной гидротермальной системы (рис. 1). Согласно гидродинамической классификации, Паужетская гидротермальная система относится к вододоминирующему типу. В ее структуре выделяется два водоносных горизонта: верхний ассоциирует с псефитовыми и крупнообломочными туфами средне- и нижнепаужетской подсвит, нижний приурочен к агломератовым туфам алнейской свиты (рис. 2). Водоносные горизонты разделены двумя водоупорными толщами: верхний водоупор представлен туффитами верхнепаужетской подсвиты, нижний – голыгинскими игнимбритами. Роль водоупора, по-видимому, выполняют и анавгайские песчаники, залегающие в основании разреза [Паужетские..., 1965; Белоусов, 1978; Структура..., 1993]. Считается, что водоносные горизонты связаны между собой отдельными субвертикальными разломами, по которым происходит смешение термальных вод на глубине и подъем к дневной поверхности [Белоусов и др., 1976]. Глубинные термальные воды нейтральные до слабощелочных гидрокарбонатные и хлоридно-гидрокарбонатные. В катионном составе преобладает кальций, присутствует аммоний, бор; отмечаются повышенные концентрации золота, редких щелочных и др. элементов [Королева и др.,

1993]. Температура растворов нижнего водоносного горизонта достигает 220 °С [Паужетские..., 1965]. На основании детальных петрофизических, петрографических и исследований минералого-геохимических установлено, что структурами, контролирующими интенсивное смешение термальных и метеорных вод, а также разгрузку восходящих парогидротерм в районе термальных полей, являются приподнятые тектонические и (или) тектоно-магматические блоки [Пампура, Сандимирова, 1991; Структура..., 1993]. Один из таких блоков, к которому приурочено Верхне-Паужетское термальное поле (т/п), расположен в центральной части Паужетского геотермального месторождения (см. рис. 1, 2). В его структуре выделена мощная длительноживущая зона перехода жидкость-пар (кипения гидротерм) [Жатнуев и др., 1991]. В приповерхностных горизонтах блока образованы брекчии тектонического ИЛИ гидротермального (гидротермально-метасоматического ?) происхождения, цемент которых представлен кварц-адуляровыми метасоматитами. К этим новообразованным породам приурочен комплексный рудный геохимический барьер (Au-Ag-As-B-K-Li-Rb) [Жатнуев и др., 1991, 1996]. Вероятно, эти метасоматиты образованы на более раннем этапе развития гидротермальной системы, они были установлены также в других блоках структуры Структура..., 1993]. Кварц-адуляровые метасоматиты, несмотря на высокую кавернозность, характеризуются большей плотностью и меньшей проницаемостью для гидротермальных растворов по сравнению с окружающими пирокластическими породами паужетской свиты.

Верхне-Паужетское т/п расположено на абсолютных отметках 150-180 м на возвышенности близкой к изометричной форме. Поле имеет размеры в плане 150×200 м (граница т/п обозначена по 20-ти градусной изотерме на глубине 0.6-0.8 м) и вытянуто в СЗ направлении по пологопадающей поверхности. Термопроявления представлены грязеводными котлами, парогазовыми струями и парящими грунтами (под грунтами здесь и далее понимаются обломочные отложения, чаще всего делювиального происхождения, образующие чехол аргиллизированных дисперсных пород на поверхности термальных полей [Вакин и др., 1976; Трофимов и др., 2005]). В центре поля выделяется крупный, диаметром 8-10 м, грязеводный пульсирующий котел. К центральной части также приурочены отдельные мелкие возвышенности (термальные бугры), характеризующиеся наиболее прогретыми грунтами (98-105 °C). Температуры водной фазы не превышают 98 °C, парогазовой – достигают 103.5-108.5 °C. Разгружающиеся на дневной поверхности термальные воды слабокислые (pH=3.5-5.5) сульфатные и гидрокарбонатно-сульфатные сложного катионного состава (Ca-Na-Mg-K-NH₄-Fe-Al-…), общая минерализация не более 0.8-1.0 г/л. В свободном и растворенном сухом газе преобладает углекислый газ. Вблизи дневной поверхности образуются гидротермальные глины в виде непрерывной толщи [Рычагов и др., 2009], границы которой не определены (выходят за пределы 20-ти градусной изотермы).

Геофизические исследования на Паужетском геотермальном месторождении проводились в 1960-е годы. Под руководством И.М. Зайцева выполнены площадные термометрические, магниторазведочные, электроразведочные и гравиразведочные работы в масштабе 1:10 000 ¹. Подробно результаты этих исследований обсуждались нами в статье [Феофилактов и др., 2017]. Район Верхне-Паужетского термального поля выделяется повышенными температурами грунтов и локализованной отрицательной аномалией магнитного поля ΔZ_a . Область низких значений ΔZ_a и высоких температур прослежена по долине руч. Быстрый от Восточно- к Верхне-Паужетскому т/п. Выделяется горизонт низкого электрического сопротивления пород (3-10 Ом·м), что соответствует обводненным псефитовым туфам.

На начальном этапе эксплуатации месторождения были выполнены геотермические режимные наблюдения под руководством В.М. Сугробова ². Во время опытнопромышленных выпусков пароводяной смеси из скважин, расположенных вокруг или непосредственно на Верхне-Паужетском т/п, уровень термальных вод резко падал, а затем в течение нескольких дней после выпусков – полностью восстанавливался. Такая гидродинамика свидетельствует о существовании на границе или под термальным полем системы вертикальных и субгоризонтальных зон с высокой трещинно-поровой проницаемостью для флюида. Но местоположение этих зон и их генезис не были определены.

Геофизические исследования на Паужетском геотермальном месторождении возобновлены в последние годы работами авторов настоящей статьи [Букатов и др., 2011; Нуждаев, Феофилактов, 2014; Феофилактов и др., 2017].

¹ Зайцев И.М. Отчет о комплексных геофизических исследованиях в районе Паужетского геотермального месторождения в 1969 г. Территориальный фонд геологической информации по Дальневосточному федеральному округу. Петропавловск-Камчатский, 1970. 116 с.

²Сугробов В.М., Вакин Е.А., Хаткевич Ю.М. Режимные наблюдения на Паужетском месторождении парогидротерм в 1968-1970 гг. Фонды ИВиС ДВО РАН, Петропавловск-Камчатский, 1971. 28 с.

АППАРАТУРА И МЕТОДИКА ИССЛЕДОВАНИЙ

В районе Верхне-Паужетского т/п проведены комплексные геофизические исследования: температурная съемка грунтов, электроразведка методами ВЭЗ и ЕП, магнито- и гравиразведка.

Температурная съемка грунтов выполнена по нерегулярной сети наблюдений (рис. За). Измерения температуры грунтов проведены на глубине 60-80 см, что соответствует общепринятой методике [Вакин и др., 1976], позволяющей исключить влияние суточных колебаний температур, а также метеоусловий на режим термального поля. Использовались портативный мультиметр и комплект заводских термопар, которые калибровались регулярно. Точность измерений составила 0.5 °C. Для привязки пикетов на местности использовался GPS-навигатор Garmin 62s, точность определения координат составила 3-5 м.

Вертикальные электрические зондирования (ВЭЗ) выполнены симметричной четырехэлектродной расстановкой (AMNB). Максимальный полуразнос питающей линии (AB/2) изменялся в пределах 250-500 м. Зондирования выполнены в 12 точках с нерегулярным шагом по профилю с северо-запада на юго-восток (рис. 36). На каждом пункте проведено от 15 до 17 измерений, что позволило получить детальные кривые зондирования. Выполнен один пункт ВЭЗ с максимальным разносом AB/2 = 1500 м. Питающие линии располагались вдоль профиля. Полученные кривые относятся к типу «Н» на периферии поля, в центральной части их тип меняется на «КН». Работы проведены многофункциональным электроразведочным измерителем МЭРИ-24 (ООО "Северо-Запад", Россия) с использованием электроразведочного генератора ВП-1000 (ООО "Элгео", Россия) и инверторного генератора Yamaha EF2000iS. Камеральная обработка данных проведена в специализированном программном пакете IPI2win (ООО "Геотех", Россия). Точность измерений \leq 3 % по одному пункту зондирования. Значение невязки между теоретической и практической кривыми ВЭЗ \leq 5 %.

Измерения методом естественного электрического поля (ЕП) выполнены по способу потенциала по регулярной сети наблюдений с шагом 20 м (см. рис. 36). Разность потенциалов измерялась между двумя неполяризующимися электродами: один находился стационарно, второй перемещался по точкам наблюдения. Время одного измерения определялось стабильностью значений разности потенциалов на цифровом мультиметре и составляло ≥ 2 мин. Электроды перед началом работ закорачивались для уравнивания потенциалов. Результаты измерений отмечались в полевом журнале. Контрольные наблюдения выполнены в количестве 25%. Среднеквадратичная погрешность измерений

составила \leq 3 мВ. Полученный массив данных использовался для графических построений.

Площадные магниторазведочные исследования выполнены нами неоднократно и в различных масштабах. Измерения проводились двумя магнитометрами GSM-19W на эффекте Оверхаузера (GEM Systems, Канада). Один прибор использовался в качестве магнитовариационной станции, второй – для рядовых измерений, что позволило увеличить не только скорость, но и качество съемки. Погрешность показаний между приборами ≤ 0.1 нТл [Нуждаев и др., 2014].

Гравиметрическая съемка проведена автоматическим микропроцессорным гравиметром CG-5 Autograv (Scintrex, Kaнaдa). Диапазон измерений прибора > 7000 мГал, разрешающая способность при снятии показаний 0.001 мГал. Выполнены площадные измерения поля силы тяжести по общей сети 50×50 м и сгущением в центральной части до 10×20 м (рис. 3в) [Букатов и др. 2011]. Проведены повторные наблюдения по профилю, пересекающему т/п с северо-запада на юго-восток. Контрольные измерения выполнены в количестве 15%, среднеквадратичная погрешность измерений составила 0.03 мГал. Для учета сползания нуль-пункта использовалась одна контрольная точка на бетонном основании возле скважины K-14. Местоположение этой точки не менялось для съемок разных годов, а площади наблюдений перекрывали друг друга, что позволило увязать все результаты в один массив данных.

Геодезическое обеспечение осуществлялось GPS станциями Trimble или Leica GR 10 с антеннами Topcon или AR 10. В разные годы использовался различные комплекты аппаратуры. Одна станция служила базовой, другая перемещалась по профилям. Время записи на точках ≥ 15 мин. Для учета погрешности аппаратуры проводились измерения координат и высот в опорных точках, одна из которых находилась на постаменте возле скважины K-14. Это позволило увязать карты высот разных лет съемки. Для всех профилей получены каталоги координат и высот. Точность определения высот ≤ 7 см.

ФАКТИЧЕСКИЙ МАТЕРИАЛ И ЕГО ИНТЕРПРЕТАЦИЯ

На основании **температурной съемки** выделена обширная прогретая область сложной конфигурации (рис. 4). Центральная аномалия образует овал, вытянутый в северо-восточном направлении, и соответствует контуру Верхне-Паужетского т/п, показанному ранее (см. рис. 1). Наиболее прогретый (до 50-107 °C) участок ориентирован субширотно и, вероятно, трассирует зону восходящего теплового потока, вытянутую в радиальном направлении в кольцевой структуре приподнятого тектонического блока. Участок представляет собой область разгрузки термальных вод и пара на дневной

поверхности и охарактеризован выше. Общая термоаномалия, границы которой проведены по изотерме 20 °C, также вытянута в субширотном направлении и включает отдельные локальные участки прогрева грунтов. Западная концентрическая аномалия фактически смыкается с Южно-Паужетским т/п, которое выходит за границы температурной съемки в связи с заболоченностью участка и сложным рельефом местности. Овальной формы восточный участок вытянут в сторону Нижне-Паужетского т/п по направлению к выделенной ранее горячей зоне, трассирующей разлом ручья Быстрый. Таким образом, на схеме распределения температур грунтов прослеживается определенный структурный мотив, который, с одной стороны, в целом, коррелирует с радиально-кольцевой тектонической структурой приподнятого блока, с другой стороны – может быть обусловлен также сложным характером сочленения двух кольцевых блоков, показанных на рис. 1.

Электроразведочные работы выполнены с целью изучения структуры потоков термальных вод и зон паро-газонасыщения пород в районе Верхне-Паужетского т/п.

На основании ВЭЗ построены псевдо- и геоэлектрический разрезы распределения удельного электрического сопротивления среды (у.э.с.). На псевдоэлектрическом разрезе (рис. 5) отмечается горизонтальная дифференциация значений в верхней части разреза AB/2 – до 100 м. Область низких значений у.э.с. локализована в центральной части термального поля и приурочена непосредственно к зоне разгрузки парогидротерм. С севера и юга область оконтурена породами с высоким значением у.э.с. Северная граница контакта имеет пологое залегание, южная – субвертикальное.

Геоэлектрический разрез (см. рис. 5) характеризуется следующими параметрами (сверху – вниз):

а – приповерхностный горизонт, у.э.с. = 200-2000 Ом·м. Его мощность составляет 1.5-3 м в северной части разреза и увеличивается до 10 м в южной, в центральной части горизонт выклинивается к дневной поверхности. Породы представлены, в основном, мелко-тонкообломочными делювиальными отложениями, включают почвеннорастительные слои и гидротермальные глины каолинит-монтмориллонитового состава. Отложения, в целом, слабо проницаемые для поверхностных метеорных вод и циркулирующих в основании толщи конденсатных гидротерм;

б – горизонт, характеризующийся минимальными значениями у.э.с. (2-7 Ом·м) и распространяющийся на основную часть разреза. Состоит из двух слоев. Представлен крупнопсефитовыми туфами паужетской свиты (верхний слой – более тонкообломочными туфами и туффитами), гидротермально измененными и проницаемыми для геотермального теплоносителя. Мощность представленного горизонта колеблется от 80 до 220 м. Согласно

работе [Структура..., 1993], этот участок соответствует верхней водоносной толще в структуре месторождения. Наличие двух слоев, помимо литологических особенностей разреза, объясняется разным составом водной фазы: основная часть пород насыщена поступающими из глубины гидрокарбонатными растворами, верхняя «линза» – конденсатными сульфатными водами;

в – промежуточный горизонт с значением у.э.с. 10-25 Ом⋅м выделяется внутри проводящего слоя (б). Его мощность колеблется от 5-10 м в краевых частях разреза до 40 м в центральной части. На основании изучения керна скважины К-14 породы этого горизонта представлены относительно плотными, но трещиноватыми туфами; поры выполнены цеолитами, пиритом, минералами кремнезема; значительная часть трещин открыта. Вероятно, этот горизонт можно считать промежуточным водоупором в верхнепаужетской водоносной толще;

г – подстилающий горизонт, у.э.с. = 100-400 Ом м. Верхняя граница варьирует по глубине от 65 м в северо-западной части профиля, до 250 м в юго-восточной. Нижняя граница не определена. Согласно характеристике керна скважины К-14, породы этого горизонта представлены туфобрекчиями андезитового состава, трещиноватыми, но плотными. Геоэлектрические параметры и состав пород позволяют отнести этот горизонт к водоупорной толще;

д – участок с у.э.с. = 40-60 Ом·м. В разрезе этот прослой является продолжением горизонта «б», но отличается повышенным электрическим сопротивлением среды. Исходя из полученных в последнее время геологических данных, относительно высокие значения у.э.с. в этой части горизонта могут быть объяснены латеральной литологической неоднородностью разреза: на границе термального поля картировочной скважиной ВхПП-5/11 вскрыта кровля потока лав дацитов, полностью преобразованных в опалиты.

Исходя из высокой контрастности электрических свойств среды и перепадов уровней геоэлектрических горизонтов на южной границе Верхне-Паужетского т/п предполагается наличие зоны проницаемого тектонического нарушения, по которому происходит фильтрация термальных вод к дневной поверхности. Выделение этого тектонического нарушения, проницаемого для гидротерм, подтверждает полученные ранее представления о тектонической структуре геотермального месторождения (см. рис. 1).

Геоэлектрические исследования в районе Верхне-Паужетского т/п выполнены также методом ЕП (рис. 6). Диапазон изменения разности потенциалов ΔU составляет от -80 до +75 мВ. Значительная часть площади съемки представлена областью с отрицательным значением геоэлектрического поля, в котором находятся локализованные участки с положительными значениями. Термальное поле расположено в области пониженных значений ЕП (Δ U достигает -25 мВ). Перераспределение потенциалов обусловлено неоднородным характером гидротермального изменения залегающих вблизи дневной поверхности пород, контрастным изменением кислотно-щелочных свойств неравномерно аргиллизированных (кислая среда), цеолитизированных (щелочная) или относительно слабо измененных (близнейтральная обстановка) пород. Так, в магнитном поле (Δ T_a) максимумам значений ЕП соответствуют подобные по конфигурации аномальные участки с интенсивностью до +200 нТл, что указывает на локализацию здесь слабо измененных пород.

По профилю I-II построен график распределения ΔU, где наиболее интенсивная разгрузка парогидротерм на дневной поверхности происходит на участке профиля 125-250 м (см. рис. 6б). В этом промежутке выделяется два экстремума: максимум на 127 м и минимум – 221 м. Согласно геологическому разрезу, вскрытому скважиной K-14, минимум значений ΔU приурочен к зоне интенсивных гидротермально-метасоматических изменений туфовой толщи; изменения сопровождаются интенсивным отложением пирита и др. сульфидов. По предварительным оценкам методом касательных [Хмелевской, 1970] глубина залегания верхней кромки аномалообразующего тела равна 40 м. Такие оценки хорошо коррелируют с данными ВЭЗ: на этом интервале глубины выделяется горизонт пород с значениями у.э.с. = 40-60 Ом·м.

На результирующей карте распределения аномального магнитного поля для Паужетского геотермального месторождения район Верхне-Паужетского т/п выделяется изометричной концентрически-зональной структурой с отрицательной аномалией в центре, положительными вокруг нее и вновь отрицательными по периферии (рис. 7) [Нуждаев и др., 2014]. Термальное поле приурочено к отрицательной аномалии ΔT_a , что подтверждает физическую природу неоднородности, образованной вследствие выщелачивания ферромагнитных минералов в зоне аргиллизации пород. Некоторое смещение отрицательной магнитной аномалии от контура т/п к западу коррелирует с данными ВЭЗ (см. рис. 5) и может быть объяснено активным воздействием на вмещающие породы латерального потока кислых термальных вод, распространяющихся от основной зоны разгрузки. Локализация положительных аномалий в крупной изометричной области, перекрывающей площадь выделенной ранее кольцевой тектонической структуры [Структура ..., 1993], представляет большой интерес: аномалии ΔT_a со значениями \geq 100-200 нТл, несомненно, отражают положение пород с повышенной остаточной (слабо намагниченностью измененных, в т.ч., возможно, интрузивных). Высокоградиентные отрицательные аномалии по периферии этой области приурочены к другим зонам разгрузки термальных вод – Южно-Паужетскому т/п, парящему участку в северо-западной части площади, горячей зоне, трассирующей руч. Быстрый.

Восточная часть Верхне-Паужетского т/п находится в поле положительных значений ΔT_a. На основании предварительной оценки методом касательных [Магниторазведка, 1980] можно полагать, что глубина залегания верхней кромки аномалообразующего тела соответствует 30 м (см. рис. 7б). Предположительно этим телом служит субинтрузия среднего состава или корни экструзий дацитов: силы, дайки, интрузии от диоритов до липаритов широко распространенные в структуре Паужетской гидротермальной системы [Структура..., 1993; Феофилактов и др., 2017].

На основании гравиметрической съемки построена карта распределения аномального гравитационного поля в редукции Буге (Δg) для плотности промежуточного слоя 2.1 г/см³ (рис. 8). Значения поля растут с запада на восток: от -1.1 мГал в долине руч. Быстрый, до +0.45 мГал в долине р. Паужетка. Верхне-Паужетское т/п приурочено к зоне локальной положительной аномалии (до +0.3 мГал). На графике распределения Δg в редукции Буге для плотности промежуточного слоя 2.1 г/см³ значения поля меняются в диапазоне от -0.45 до +0.33 мГал. В центральной части выделяется положительная аномалия Δg. Ee экстремум пространственно коррелирует С наиболее высокотемпературным участком термального поля. По предварительным оценкам с помощью метода характерных точек для материального бесконечного стержня определено, что глубина залегания оси цилиндра равна 60-70 м, а его радиус равен 104 м [Гравиразведка, 1981].

Петрофизические свойства пород участка работ изучены ранее. По данным И.М. Зайцева (ссылка на отчет дана выше) остаточная намагниченность (J_n) пород в районе термального поля изменяется от 0 до 6 А/м, магнитная восприимчивость (æ) – от 0.00002 до 0.0126 СИ. Максимальным уровнем остаточной намагниченности и магнитной восприимчивости обладают базальты ($J_n = 1-5$ А/м, æ = 0.0037-0.044 СИ) и андезиты ($J_n = 1-5$ А/м, æ = 0.0125 СИ). Алевролитовые туфы характеризуются близкими к нулю значениями J_n , а также малыми значениями æ – от 0.000025 до 0.0037 СИ. На основании исследований Ю.В. Фроловой с соавторами определены физические и физикомеханические свойства туфов (от слабо измененных до цеолитизированных и аргиллизированных) и гидротермальных глин в районе Верхне-Паужетского т/п [Фролова и др, 2016]. Средняя плотность воздушно-сухих образцов слабо измененных туфов колеблется в широких пределах: 1.17-1.97 г/см³, что зависит от исходного гранулометрического состава пород (тонкообломочные – плотнее). Аналогичная плотность измененных туфов составляет более узкий интервал значений: 1.84-2.05 г/см³. Таким

образом, в процессе изменения туфов в районе Верхне-Паужетского т/п несколько возрастает общая плотность пород, но при этом снижается плотность твердых частиц (от 2.85 до 2.52 г/см³) в связи с интенсивным замещением лито- и кристаллокластов пористыми цеолитами и смектитами. При аргиллизации и цеолитизации происходят два разнонаправленных процесса: с одной стороны, плотное вулканическое стекло замещается пористыми смектитами, с другой — существующие в туфах пустоты заполняются смектитами и цеолитами. Исходные и измененные породы отличаются величиной общей пористости: 25-63 % и 20-29 %, соответственно. Таким образом, интенсивные гидротермально-метасоматические процессы приводят к общему снижению объема открытых крупных пор, но резко увеличивают микро- и нанопористость, а следовательно – влагонасыщенность пород. Это обстоятельство имеет особое значение для интерпретации электроразведочных данных.

Наиболее интенсивно преобразования пород сказываются на величине магнитной восприимчивости, которая снижается на порядок. Так, æ неизмененных туфов колеблется в пределах 6-21·10⁻³ СИ, в то время как измененным туфам соответствуют значения æ = 2.3-3.1·10⁻³ СИ. Данная тенденция отражает изменения, происходящие с рудными минералами, в частности, связана с разложением титаномагнетита. Глинистые горизонты формируются посредством преобразования туфов под влиянием парогидротерм, их плотность составляет 1.4-1.6 г/см³, æ = 0.95-9·10⁻³ СИ. Таким образом, слабо измененные туфы и их гидротермально-метасоматические разности отличаются, в основном, плотностью и магнитной восприимчивостью, а также характером пористости.

ГРАВИМАГНИТНАЯ МОДЕЛЬ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ РАЙОНА ВЕРХНЕ-ПАУЖЕТСКОГО ТЕРМАЛЬНОГО ПОЛЯ

Сопоставление гравиметрических и магнитометрических данных позволило выделить серию блоков пород по профилю I-II (рис. 9). Верхний единый слой на модели ассоциирует с залегающими вблизи и на дневной поверхности делювиальными отложениями и интенсивно аргиллизированными (до гидротермальных глин) породами. Нижележащая толща разбита на серию блоков, обладающих контрастными общей плотностью и магнитной восприимчивостью пород. Центральный блок с повышенной плотностью расположен непосредственно под горячим участком Верхне-Паужетского т/п. Краевые зоны блока разуплотнены. Выделение разуплотненного блока пород в северозападной части профиля увязывается с геоэлектрическими и гидродинамическими данными, поскольку в этой части термального поля происходит растекание смешанных кислых термальных вод. Известно, что воздействие именно кислых гидротерм на горные породы приводит к значительному снижению их общей и минеральной плотностей и выщелачиванию магнитных минералов [Ладыгин и др., 2014].

Представляется обоснованным выделение центрального блока с контрастными физическими свойствами по отношению к вмещающим породам, исходя из минералогогеохимических данных. Так, Н.С. Жатнуев с коллегами диагностировали кварцадуляровые метасоматиты, образующиеся в зонах разломов в результате кипения перегретых термальных вод [Жатнуев и др., 1991, 1996]. Метасоматиты образуют кавернозные, но плотные тела в зонах разрывных тектонических нарушений (они установлены в разрезах скважин К-13 и К-14) вследствие вскипания растворов и залечивания трещин и открытых пор силикатным гелем, который в дальнейшем кристаллизуется в минералы кремнезема и калиевый полевой шпат. Верхняя кромка этих тел варьирует от 40-50 до 80 м. На этом же интервале отмечается изменение гидродинамического режима и наличие зон поглощения гидротерм и бурового раствора в скважине К-14. Экзоконтактовые зоны тел кварц-адуляровых метасоматитов отличаются повышенной открытой проницаемостью. Вероятно, современные восходящие гидротермы омывают такие тела и выделенный «плотностной» блок и разгружаются в виде парогазовых струй и конденсата пара на горячем участке Верхне-Паужетского т/п. Таким образом, выделение на представленной модели центрального блока с контрастными относительно вмещающих пород характеристиками согласуется с представлениями об эволюции зон кипения гидротерм и преобразования пород в недрах термального поля.

ЗАКЛЮЧЕНИЕ

Ha крупномасштабных геолого-геофизических основании комплексных исследований получены новые данные о строении и физической природе зоны разгрузки парогидротерм в районе Верхне-Паужетского т/п Паужетского геотермального месторождения. В температурном, геоэлектрическом, магнитном и гравиметрическом полях выделена изометричная концентрически-зональная которая структура, пространственно коррелирует с приподнятым тектоническим блоком (по [Структура..., 1993]). Центральная область этой структуры характеризуется разгрузкой на дневной поверхности парогидротерм и высокоградиентными геофизическими аномалиями. Согласно данным ВЭЗ и литологическим построениям, юго-восточная граница области представлена субвертикальным разрывным тектоническим нарушением — зоной повышенной трещинно-поровой проницаемости для восходящих гидротерм в туфах и туффитах паужетской свиты. На северо-западной границе центральной области происходит интенсивное смешение восходящих нейтральных (до слабощелочных)

гидротерм с метеорными водами и выщелачивание ферромагнитных минералов из вмещающих пород кислыми термальными растворами. На глубине 40-60 м от дневной поверхности установлена кровля блока уплотненных пород, которыми, вероятнее всего, служат кварц-адуляровые метасоматиты, образованные до голоценового этапа развития гидротермальной системы [Жатнуев и др., 1991, 1996]. Согласно изучению разрезов скважин К-13, К-14, К-20 и К-21, кварц-адуляровая минерализация распространена в различных частях структуры приподнятого тектонического блока [Структура ..., 1993], а область интенсивного смешения термальных и метеорных вод простирается до подошвы верхнего водоносного горизонта [Пампура, Сандимирова, 1991], мощность которого по нашим данным составляет 150-250 м. Таким образом, в структуре верхнего водоносного горизонта установлен блок уплотненных пород, предположительно сложенный кварцтермальных, метасоматитами, регулирующий потоки восходящих адуляровыми смешанных и метеорных вод под Верхне-Паужетским т/п.

Центральная область изометричной концентрически-зональной структуры оконтурена зоной, состоящей из локальных аномалий положительных значений ΔT_a. Широкое развитие в недрах Паужетской гидротермальной системы субинтрузивных тел (силлов, даек, корней экструзий) от среднего до риолитового состава позволяет предполагать магматическую природу выделенных аномалий.

Периферическая область, также наиболее отчетливо проявленная в магнитном поле (см. рис. 7), представлена отрицательными аномалиями ΔT_a , которые согласно гидрогеологическим, термометрическим и гравиметрическим данным коррелируют с зонами разгрузки парогидротерм в долине р. Паужетка, по руч. Быстрый, на прилегающей к ГеоЭС территории.

Таким образом, структура зон циркуляции различных типов вод в районе Верхне-Паужетского термального поля определяется концентрически-зональным строением приподнятого тектонического блока и распределением физических неоднородностей, как первичных (магматического или вулканогенно-осадочного происхождения), так и образованных вследствие гидротермально-метасоматического изменения исходных пород. Предложенная модель отражает основные особенности структуры центральной части Паужетского геотермального месторождения (рис. 10). Образование приподнятого тектонического блока, вероятно, обусловлено внедрением в ослабленные зоны интрузий диоритов и габбро-диоритов на этапе формирования многоступенчатого резургентного поднятия Камбального вулканического хребта [Долгоживущий 1980]. Субвулканические фации этих интрузий среднего и кислого состава в форме даек и межпластовых тел вскрываются скважинами на различных участках и горизонтах геологического разреза Паужетского геотермального месторождения [Структура ..., 1993], а также предполагаются нами на основании геофизических данных и, видимо, играют роль структурных деформографов: в апикальных частях субинтрузий образуются зоны повышенной трещинно-поровой проницаемости. Исходя из общих представлений об эволюции современных гидротермальных систем и термальных полей [Геотермальные ..., 2005], мы полагаем, что формирование структуры зон разгрузки парогидротерм Паужетского месторождения происходило в течение голоцена. В приповерхностных горизонтах месторождения разгружаются термальные воды от слабокислого до щелочного состава. Взаимодействие термальных вод с вмещающими породами (туфами и андезитами) приводит к увеличению мощности толщи аргиллизитов, повышению трещинно-поровой проницаемости в подошве верхнего водоупора (а также на других литологических границах) и отложению рудной минерализации в зонах смешения целочных и кислых вод [Rychagov et al., 2019]. Таким образом, формирование структуры зон разгрузки восходящих термальных вод на Паужетском геотермальном месторождении продолжается в настоящее время.

БЛАГОДАРНОСТИ

Авторы выражают глубокую признательность всем сотрудникам Южнокамчатско-Курильской экспедиции ИВиС ДВО РАН за всестороннюю поддержку при проведении полевых исследований.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты №№ 18-35-00138 и 19-05-00102).

СПИСОК ЛИТЕРАТУРЫ

Аверьев В.В. Гидротермальный процесс в вулканических областях и его связь с магматической деятельностью // Современный вулканизм. М.: Наука, 1966, с. 118-128.

Аверьев В.В. Условия разгрузки Паужетских гидротерм на юге Камчатки // Труды Лаб. вулканологии «Гидротермальные процессы и минералообразование в областях активного вулканизма». М.: Изд-во АН СССР, 1961, с. 80-98.

Апрелков С.Е. Тектоника и история вулканизма Южной Камчатки // Тектоника, 1971, № 2, с. 105-111.

Апрелков С.Е., Ежов Б.В., Оточкин В.В., Соколков В.А. Вулкано-тектоника Южной Камчатки // Бюллетень Вулканологических станций, 1979, № 57, с. 72-78.

Белоусов В.И. Геология геотермальных полей. М.: Наука, 1978, 176 с.

Белоусов В.И., Сугробов В.М., Сугробова Н.Г. Геологическое строение и гидрогеологические особенности Паужетской гидротермальной системы //

Гидротермальные системы и термальные поля Камчатки. Владивосток: Изд-во ДВНЦ АН СССР, 1976, с. 23-57.

Букатов Ю.Ю., Абкадыров И.Ф., Нуждаев И.А., Рылов Е.С., Феофилактов С.О. Результаты высокоточных гравиметрических исследований на Верхне-Паужетском термальном поле // Материалы X региональной молодежной научной конференции «Природная среда Камчатки», Петропавловск-Камчатский: Институт вулканологии и сейсмологии ДВО РАН, 2011, с. 51–60.

Вакин Е.А., Декусар З.Б., Сережников А.И., Спиченкова М.В. Гидротермы Кошелевского вулканического массива // Гидротермальные системы и термальные поля Камчатки. Владивосток: Изд-во ДВНЦ АН СССР, 1976, с. 58-84.

Геолого-геофизический атлас Курило-Камчатской островной системы / Под ред. Сергеева К.Ф., Красного М.Л. Л.: ВСЕГЕИ, 1987, 36 л.

Геотермальные и минеральные ресурсы областей современного вулканизма / Гл. ред. Рычагов С.Н. Петропавловск-Камчатский: ОТТИСК, 2005, 460 с.

Гидротермальные системы и термальные поля Камчатки / Отв. ред. Сугробов В.М. Владивосток: Изд-во ДВНЦ АН СССР, 1976, 284 с.

Горбатиков А.В., Степанова М.Ю., Кораблев Г.Е. Закономерности формирования микросейсмического поля под влиянием локальных геологических неоднородностей и зондирование среды с помощью микросейсм // Физика Земли, 2008, № 7, с. 66–84.

Гравиразведка. Справочник геофизика / Под ред. Мудрецовой Е.А., Веселова К.Е. М.: Недра, 1990, 587 с.

Дитмар К. Поездки и пребывание в Камчатке в 1851-1855 гг. Петропавловск-Камчатский: Холдинговая компания «Новая книга», 2009, 570 с.

Долгоживущий центр эндогенной активности Южной Камчатки. М.: Наука, 1980, 172 с.

Жатнуев Н.С., Миронов А.Г., Рычагов С.Н., Гунин В.И. Гидротермальные системы с паровыми резервуарами. Новосибирск: Изд-во СО РАН, 1996, 184 с.

Жатнуев Н.С., Рычагов С.Н., Миронов А.Г. и др. Пародоминирующая система и геохимический барьер жидкость-пар Верхнего термального поля Паужетского месторождения // Вулканология и сейсмология, 1991, № 1, с. 62-78.

Иванов В.В. Гидротермы очагов современного вулканизма Камчатки и Курильских островов // Труды Лаб. вулканологии «О вулканизме, геологии и гидротермах Камчатки». М.: Изд-во АН СССР, 1956, с. 197-217.

Иванов В.В. Основные геологические условия и геохимические процессы формирования термальных вод областей современного вулканизма // Труды Лаб. вулканологии «Гидротермальные процессы и минералообразование в областях активного вулканизма». М.: Изд-во АН СССР, 1961, с. 53-68.

Комаров В.Л. Путешествие по Камчатке в 1908-1909 г. (Камчатская экспедиция Федора Павловича Рябушинского, снаряженная при содействии Императорского Русского географического общества). М.: 1912, 458 с.

Комплексные геофизические исследования геологического строения месторождений термальных вод Камчатки / Отв. ред. Сугробов В.М. М.: Наука, 1985, 112 с.

Кононов В.И. Геохимия термальных вод областей современного вулканизма (рифтовых зон и островных дуг) // Труды ГИН РАН, Вып. 379. М.: Наука, 1983, 216 с.

Королева Г.П., Ломоносов И.С., Стефанов Ю.М. Золото и другие рудные элементы в гидротермальной системе // Структура гидротермальной системы. М.: Наука, 1993, с. 238-280.

Красный Л.И. Глобальная система геоблоков. М.: Недра, 1984. 224 с.

Крашенинников С.П. Описание земли Камчатки. – Репринт, воспроизведение издания 1755 г. Петропавловск-Камчатский: Камшат, 1994, Т. 1, 439 с.

Ладыгин В.М., Фролова Ю.В., Рычагов С.Н. Преобразование эффузивных пород под воздействием кислотного выщелачивания поверхностными термальными водами (геотермальная система Баранского, о-в Итуруп) // Вулканология и сейсмология, 2014, № 1, с. 20-37.

Лоншаков Е.А. Ряды вулканических структур и структурно-вещественные парагенезисы Южно-Камчатского района // Бюлл. вулканол. станций, 1979, № 57, с. 79-91.

Магниторазведка. Справочник геофизика / Под ред. Никитинский В.Е. М.: Недра, 1980, 367 с.

Мороз Ю.Ф., Карпов Г.А., Мороз Т.А., и др. Строение кальдеры Узон на Камчатке по геофизическим данным // Материалы конференции, посвященной Дню вулканолога "Вулканизм и связанные с ним процессы". Петропавловск-Камчатский: ИВиС ДВО РАН, 2013, с. 233-240.

Новограбленов П.Т. Каталог вулканов Камчатки // Изв. Гос. геогр. общества. М.: Главнаука, 1932, Т. 64, Вып. 1, с. 88-89.

Нуждаев И.А., Феофилактов С.О. Зимние магнитометрические исследования на Паужетском геотермальном месторождении: методика, краткие результаты // XII Региональная молодежная научная конференция "Исследования в области наук о Земле". Петропавловск-Камчатский: ИВиС ДВО РАН, 2014, с. 75-84.

Пампура В.Д. Геохимия гидротермальных систем областей современного вулканизма. Новосибирск: Наука, 1985, 151 с.

Пампура В.Д., Сандимирова Г.П. Геохимия и изотопный состав стронция в гидротермальных системах. Новосибирск: Наука, 1991, 120 с.

Паужетские горячие воды на Камчатке. М.: Наука, 1965, 208 с.

Пийп Б.И. Термальные ключи Камчатки // СОПС АН СССР. Сер. Камчатская, 1937, Вып. 2, 278 с.

Писарева М.В. Зона природного пара Нижнекошелевского геотермального месторождения // Вулканология и сейсмология, 1987, № 2, с. 52-63.

Прогнозная оценка рудоносности вулканогенных формаций. М.: Недра, 1977, 296 с.

Рычагов С.Н. Гидротермальная система вулкана Баранского, о-в Итуруп: модель геологической структуры // Вулканология и сейсмология, 1993, № 2, с. 59-74.

Рычагов С.Н. Начало освоения геотермальной энергии на Камчатке и перспективы ее использования // История науки и техники, 2017, № 7, с. 45-51.

Рычагов С.Н. Эволюция гидротермально-магматических систем островных дуг // Автореф. дисс. ... докт. геол.-мин. наук. М.: ИГЕМ РАН, 2003, 50 с.

Рычагов С.Н., Абкадыров И.Ф., Букатов Ю.Ю., Нуждаев И.А., Феофилактов С.О. Геолого-геофизическая модель крупнейшего на Камчатке Нижне-Кошелевского пародоминирующего геотермального месторождения // Доклады Академии Наук, 2018, Т. 482, № 2, с. 183-187.

Рычагов С.Н., Давлетбаев Р.Г., Ковина О.В. Гидротермальные глины и пирит геотермальных полей: значение в геохимии современных эндогенных процессов (Южная Камчатка) // Вулканология и сейсмология, 2009, № 2, с. 39-56.

Садовский М.А., Голубева Т.В., Писаренко В.Ф., Шнирман М.Г. Характерные размеры горной породы и иерархические свойства сейсмичности // Изв. АН СССР. Физика Земли, 1984, № 2, с. 3-15.

Семенов В.И. В краю горячих источников. Петропавловск-Камчатский: Дальневост. кн. изд-во, Камч. отделение, 1988, 144 с.

Стеллер Г.В. Описание земли Камчатки. Петропавловск-Камчатский: Камч. печ. двор, кн. изд-во, 1999, 288 с.

Структура гидротермальной системы. М.: Наука, 1993, 298 с.

Сугробов В.М. Геотермальные ресурсы Камчатки, классификация и прогнозная оценка // Изучение и использование геотермальных ресурсов в вулканических областях. М.: Наука, 1979, с. 26-35.

Трофимов В.Т., Королев В.А., Вознесенский Е.А. и др. Грунтоведение. М.: Изд-во МГУ, 2005, 1024 с.

Туезов И.К. Литосфера Азиатско-Тихоокеанской зоны перехода. Новосибирск: Наука, 1975, 232 с.

Феофилактов С.О., Рычагов С.Н., Букатов Ю.Ю., Нуждаев И.А., Нуждаев А.А. Новые данные о строении зоны разгрузки гидротерм в районе Восточно-Паужетского термального поля (Южная Камчатка) // Вулканология и сейсмология, 2017, № 5, с. 36-50.

Фролова Ю.В., Чернов М.С., Рычагов С.Н. К вопросу о преобразовании туфов в разрезе Верхне-Паужетского термального поля (Южная Камчатка) // Материалы ежегодной конференции, посвящённой Дню вулканолога «Вулканизм и связанные с ним процессы». Петропавловск-Камчатский: ИВиС ДВО РАН, 2016, с. 449-460.

Хмелевской В.К. Основной курс электроразведки // Издательство Московского университета, 1970, Часть 1, 241 с.

Aboud E., Salem A., Mekkawi M. Curie depth map for Sinai Peninsula, Egypt deduced from the analysis of magnetic data // Tectonophysics, 2011, V. 506, p. 46–54.

Africa J.R., Monasterial J.L.C., Layugan D.B. et al. Magnetotellurics (MT) Resistivity Signature of a Geothermal Prospect with Au-Cu Mineralization in Surigao del Norte, Philippines // Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015, 6 p.

Allis R. G., Hunt T. M. Analysis of exploitation induced gravity changes at Wairakei geothermal field // Geophysics, 1986, V. 51, p. 1647-1660.

Arnason K., Eysteinsson H., Hersir G.P. Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area SW Iceland // Geothermics, 2010, V. 39, p. 13-34.

Bannister S., Sherburn S., Bourguignon S. et al. Preprocessing for Reservoir Seismicity Location: Rotokawa Geothermal Field, New Zealand // Proceedings World Geothermal Congress 2010. Bali, Indonesia, 25-29 April 2010, 5 p.

Bellani S., Brogi A., Lazzarotto A., Liotta D., Ranalli G. Heat flow, deep temperatures and extensional structures in the Larderello Geothermal Field (Italy): constrains on geothermal fluid flow // Journal of Volcanology and Geothermal Research, 2004, V. 132, p. 15-29.

Benz H.M., Zandt G., Oppenheimer D.H. Lithospheric structure of northern California determined from teleseismic images of the upper mantle // Journal of Geophysical Research. 1992, V. 97, p. 4791-4807.

Bernabini M., Bertini G., Cameli G.M., Dini I., Orlando L. Gravity interpretation of Mt. Amiata geothermal area (Central Italy) // Proc. World Geothermal Congress, Florence, 18-31 May 1995. Florence, 1995, V. 2, p. 859-862.

Bertrand E.A., Caldwell T.G., Hill G.J. et al. Magnetotelluric imaging of the Ohaaki geothermal system, New Zealand: implications for locating basement permeability // J. Volcanol. and Geoth. Res. 2013, V. 268, p. 36-45.

Bogie I., Kusumah Y.I., Wisnandary M.C. Overview of the Wayang Windu geothermal field, West Java, Indonesia // Geothermics, 2008, V. 37, p. 347-365.

Buness H., Hartmann H., Rumpel H.M. et al. Seismic Exploration of Deep Hydrogeothermal Reservoirs in Germany // Proceedings World Geothermal Congress 2010. Bali, Indonesia, 25-29 April 2010, 5 p.

Cabezas D.H. Precision Gravity Data of the Miravalles Geothermal Field an Ongoing Assessment // Proceedings World Geothermal Congress 2010. Bali, Indonesia, 25-29 April 2010, 4 p.

Casini M., Ciuffi S., Fiordelisi A., Mazzotti A. 3D Seismic Surveys and Deep Target Detection in the Larderello-Travale Geothermal Field (Italy) // Proceedings World Geothermal Congress 2010. Bali, Indonesia, 25-29 April 2010, 7 p.

Clarke D., Townend J., Savage M.K., Bannister S. Seismicity in the Rotorua and Kawerau geothermal systems, Taupo Volcanic Zone, New Zealand, based on improved velocity models and cross-correlation measurements // J. Volcanol. Geoth. Res., 2009, V. 180, p. 50-66.

Cortes-Arroyo O.J., Romo-Jones J.M., Gomez-Trevifio E. et al. Continuous Electromagnetic Monitoring Network in the Mexicali Rift, Mexico // Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015, 4 p.

Dangel S., Shaepman M.E., Stoll E.P., Carniel R. et al. Phenomenology of tremor-like signals observed over hydrocarbon reservoirs // J. Volcanol. Geoth. Res., 2003, V. 128, p. 135-158.

Delliansyah R., Sule R., Nugraha A.D. Steam and Brine Zones Prediction Inside an Operated Geothermal Reservoir Based on Seismic Velocities Produced by Double Difference Tomography // Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015, 4 p.

Ebbing J., Gernigon L., Pascal C. et al. A discussion of structural and thermal control of magnetic anomalies on the mid-Norwegian margin // Geophysical Prospecting, 2009, V. 57, p. 665-681.

Gianelli G., Manzella A., Puxeddu M. Crustel models of the geothermal areas of southern Tuscany (Italy) // Tectonophysics, 1997, V. 281, p. 221-239.

Husen S., Smith R.B., Waite G.P. Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging // J. Volcanol. Geoth. Res., 2004, V. 131, p. 397–410.

Idral A. Structural traps of non-volcanic hosted geothermal field based on geophysical data of Waesalit area Buru Island – Indonesia // Proceedings World Geothermal Congress 2010. Bali, Indonesia, 25-29 April 2010, 8 p.

Idral A., Mansoer W.R. Integrated Geophysical Studies of Palu-Koro Depression Zone, Indonesia: Implications for Geothermal resources in Bora Central Sulawesi // Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015, 5 p.

Karlsdottir R., Vilhjalmsson A.M., Teklesenbet A. Namafjall High Temperature Field in N Iceland. A 3D Resistivity Model Derived from MT Data // Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015, 7 p.

Kusumah Y.I., Suryantini, Wilbowo H.H. Horizontal Derivative from Gravity Data as a Tool for Drilling Target Guide in Wayang Windu Geothermal Field, Indonesia // Proceedings World Geothermal Congress 2010. Bali, Indonesia, 25-29 April 2010, 6 p.

Lichoro C.M. Comparison of 1-D, 2-D and 3-d Inversion Approaches of Interpreting Electromagnetic Data of Silali Geothermal Area // Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015, 10 p.

Los Bafios C.F., Rigor D.M., Layugan D.B., Bayrante L.F. The resistivity Model of the Mindanao Geothermal Project, South Central Mindanao, Philippines // Proceedings World Geothermal Congress 2010. Bali, Indonesia, 25-29 April 2010, 6 p.

Lund J.W., Boyd T.L. Direct Utilization of Geothermal Energy 2015 Worldwide Review // Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015, 31 p.

Martakusumah R., Srigutomo W., Suryantini et al. Gravity Analysis for Hidden Geothermal System in Cipanas, Tasikmalaya Regency, West Java // Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015, 9 p.

Moya P., Taylor W. Micro-seismicity at the Miravalles Geothermal Field, Costa Rica (1994-2009): A tool to Confirm the Real Extent of the Reservoir // Proceedings World Geothermal Congress 2010. Bali, Indonesia, 25-29 April 2010, 9 p.

Mujihardi B., Nugraha A.D., Widiyantoro S. et al. Identification of Fracture Zones in Geothermal Field Based on Microseismic Events // Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015, 5 p.

Mwakirani R. Integrated Geophysical Model for Suswa Geothermal Prospect using Resistivity, Seismics and Gravity Survey Data in Kenya // Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015, 6 p.

Nishijima J., Oka D., Higuchi S. et al. Repeat Microgravity Measurements Using Absolute and Relative Gravimeters for Geothermal Reservoir Monitoring in Ogiri Geothermal Power Plant, South Kyushu, Japan // Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015, 5 p.

Nishijima J., Saibi H., Sofyan Y. et al. Reservoir Monitoring Using Hybrid Micro-Gravity Measurements in the Takigami Geothermal Field, Central Kyushu, Japan // Proceedings World Geothermal Congress 2010. Bali, Indonesia, 25-29 April 2010, 6 p.

Nordquist G., Protacio J. A. P., Acuna A. Precision gravity monitoring of the Bulalo geothermal field, Philippines: Independent checks and constraints on numerical simulation // Geothermics, 2004, V. 33, p. 37–56.

Omiti A.. Resistivity Structure of the Eburru Geothermal Field, Kenya. Depicted Through 1D Joint Inversion of MT and TEM Data // Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015, 13 p.

Rychagov S.N., Sandimirova E.I., Chernov M.S., Kravchenko O.V. Influence of Alkaline Fluid on Mineral Ore Formation in Argillization Zone of Present-Day Pauzhetka Hydrothermal System (South Kamchatka) // Magmatism of the Earth and related strategic metal deposits. Proceedings of XXXVI International Conference. 23-26 May 2019, Saint Petersburg. M.: GEOKHI RAS, 2019, p. 261-264.

Soengkono S. The Relationship between Geological Structures and High Temperature Geothermal Systems in the Eastern Taupo Volcanic Zone (New Zealand) as Seen from High Resolution Airborne Magnetic Data // Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015, 11 p.

Sofyan Y., Daud Y., Kamah Y., Ehara S. Sustainable Geothermal Utilization Deduced from Mass Balance Estimation – a Case Study of Kamojang Geothermal Field, Indonesia // Proceedings World Geothermal Congress 2010. Bali, Indonesia, 25-29 April 2010, 6 p.

Spichak V., Manzella A. Electromagnetic sounding of geothermal zones // J. Appl. Geophys. 2009, V. 68, p. 459-478.

Stimac J.A., Goff F., Wohletz K. Thermal modeling of the Clear Lake magmatichydrothermal system, California, USA // Geothermics, 2001, V. 30, p. 349-390.

Tosha T., Sugihara M., Nishi Y. Revised hypocenter solutions for microearthquakes in the Kakkonda geothermal field, Japan // Geothermics, 1998, V. 27, p. 553-571.

Uchida T., Akaku K., Sasaki M., Kamenosono H., Doi N., Miyazaki S. Recent progress of NEDOs "Deep-seated geothermal resources survey" project // Geothermal Resources Council Transactions, 1996, V. 20, p. 643-648.

Wolfe J. E. Microseismic Measurement of Fracture Geometry using Synchronized Three Component Geophone Extended Arrays // CSPG/CSPE Geoconvention 2007, Calgary, Alberta, Canada, May 14-17, 2007.

Подписи к рисункам

к статье С.О. Феофилактова, С.Н. Рычагова, Ю.Ю. Букатова и др. «Строение зоны разгрузки парогидротерм в районе Верхне-Паужетского термального поля (Южная Камчатка)»

Рис. 1. Схематическая геологическая карта Паужетской гидротермальной системы (по [Структура ..., 1993]).

1 – туффиты и туфы верхнепаужетской подсвиты верхний неоген -нижнечетвертичного возраста; 2 – лаво-экструзивный комплекс пород кислого состава среднечетвертичного возраста; 3 – андезиты и андезибазальты среднечетвертичного возраста; 4 – аллювиальные валунно-галечные отложения; 5 – кольцевые тектонические нарушения, оконтуривающие приподнятые блоки пород и контролирующие положение термальных полей; 6 – система линейных тектонических нарушений; 7 – Паужетский грабен верхнечетвертичного возраста; 8 – термальные поля: 1 – Южно-Паужетское, 2 – Верхне-Паужетское, 3 – Нижне-Паужетское, 4 – Восточно-Паужетское; 9 – скважины.

Рис. 2. Геологический разрез Паужетского геотермального месторождения (по [Структура..., 1993]).

1 – вулканомиктовые песчаники основания разреза, анавгайская серия; 2 – агломератовые туфы (туфобрекчии) андезибазальтового состава, алнейская серия; 3 риолитовые кристаллолитовитрокластические псефитовые туфы, голыгинская свита; 4 – грубообломочные литовитрокластические туфы андезитового состава, нижнепаужетская подсвита; 5 – псефитовые туфы андезидацитового состава, среднепаужетская подсвита; 6 – туфогенноосадочные отложения дацитового андезидацитового И состава, верхнепаужетская подсвита; 7 – андезиты и андезибазальты предположительно плиоценнижнечетвертичного возраста: а – крупные потоки лав и тела субинтрузивных микродиоритов, б – дайки; 8 – средне-верхнечетвертичные экструзии (а) и лавы (б) дацитов; 9 – лавобрекчии оснований потоков лав и краевых частей экструзивных тел; 10 – литологические и интрузивные границы; 11 – тектонические нарушения: а – разломы, б – зоны повышенной трещиноватости пород; 12 – поисковые и разведочные скважины.

Рис. 3. Схема фактического материала геофизических наблюдений в районе Верхне-Паужетского т/п: а – температурной съемки, б – электроразведки, в – гравиразведки. Топооснова составлена авторами на основании магнитной съемки.

усредненный контур термального поля, проведенный по 20-ти градусной изотерме;
2 - дороги;
3 - пункты геофизических наблюдений на площади исследований;
4 - пункты измерений по профилям методами ВЭЗ (а) и гравиметрии (б);
5 – геотермальные скважины.

Рис. 4. Распределение температуры грунтов на площади (а) и в разрезе (б). Остальные условные обозначения здесь и ниже соответствуют таковым рис. 3.

Рис. 5. Псевдо- и геоэлектрический разрезы района Верхне-Паужетского т/п: а-д – слои, контрастные по удельному электрическому сопротивлению среды (см. текст).

1 - область разгрузки парогидротерм на дневной поверхности; 2 - пункты ВЭЗ; 3 – зона нарушения сплошности среды.

Рис. 6. Схема распределения значений естественного электрического поля района Верхне-Паужетского т/п: а – на площади, б – по профилю.

Рис. 7. Фрагмент карты аномального магнитного поля Паужетского геотермального месторождения (из [Нуждаев и др., 2014]): распределение значений ΔT_a на площади (а) и по профилю (б).

Рис. 8. Схема распределения значений аномального гравитационного поля в редукции Буге (Δg) на площади (а) и по профилю (б).

Рис. 9. Модель строения района Верхне-Паужетского т/п по гравимагнитным данным.

Рис. 10. Концептуальная модель структуры района Верхне-Паужетского т/п Паужетской гидротермальной системы. Использовано фото М.С. Чернова.

1 – фундамент структуры: вулканомиктовые песчаники; 2 – водовмещающие толщи пород: нижняя – агломератовые туфы, верхняя – псефитовые туфы; 3 – водоупорные горизонты: нижний – игнимбриты, верхний – туффиты; 4 – аргиллизированные породы; 5 – субвулканические интрузии; 6 – кварц-адуляровые метасоматиты; 7 – зоны подъема и разгрузки газоводных флюидов и парогидротерм; 8 – литологические (а) и метасоматические (б) границы; 9 – зоны разрывных тектонических нарушений; 10 – границы термального поля; 11- осевая линия зоны тектонических нарушений, оконтуривающей центральный приподнятый блок; 12 — условные границы тектономагматического поднятия.

