УДК 537.523

ЧИСЛЕННАЯ РЕАЛИЗАЦИЯ ЭЛЕКТРИЧЕСКОЙ ДУГИ ТРУБЧАТОЙ ФОРМЫ

Р.М. УРУСОВ, Т.Э. УРУСОВА

Институт физики НАН Кыргызстана, Бишкек

На основе математического моделирования численно реализована трубчатая форма электрической дуги. Выполнен анализ некоторых особенностей течения и нагрева газа в стационарном трубчатом разряде. Рассматривается возможность использования трубчатой дуги для напыления порошковых материалов.

введение

В электродуговых технологиях напыления порошковых материалов одной из актуальных проблем является разработка дуговых аппаратов, обеспечивающих эффективный ввод материала в высокотемпературную область дуги. Так, в ряде технологий применяются двухструйные плазмотроны [1, 2]. В других случаях используются плазмотроны линейной схемы с кольцевым анодом, в которых подача порошка в плазменную струю осуществляется под срез анодного узла через боковой канал, либо через осесимметричную кольцевую щель [3-5]. Иной подход предложен авторами [6], реализовавшими новый вид дугового разряда – трубчатый. Дуга горит в канале между катодом, имеющим сквозное осесимметричное отверстие, и кольцевым анодом. Разряд осуществляется во внешнем поперечном вращающемся магнитном поле с осевой подачей холодного газа через отверстие в катоде. Исследовалась дуга в диапазоне токов 200-700 А в разрядной камере радиусом 25 мм. Экспериментально установлено, что при определенных скоростях вращения дуги происходит замыкание ее высокотемпературного следа вокруг оси вращения и формируется трубчатая структура дугового разряда. Отмечается, что осевая подача холодного газа через отверстие в катоде является необходимым условием для формирования устойчивой трубчатой структуры дуги.

В данной работе предпринята попытка численной реализации осесимметричного трубчатого разряда без применения внешнего магнитного поля, а только лишь с помощью выбора определенной геометрии электродных узлов и условий привязки дуги на электродах.

постановка задачи

В цилиндрической системе координат (z, r, θ) рассчитывается электрическая дуга силой тока *I*, межэлектродным расстоянием *L*, горящая в аргоне атмосферного давления $P_{aтм}$. Численные расчеты проводятся в рамках двухмерной математической модели при отклонении дуговой плазмы от термического и ионизационного

© Урусов Р.М., Урусова Т.Э., 2005

Рис. 1. Схема трубчатой электрической дуги. Масштаб произвольный.

равновесия. Полагалось, что процессы являются стационарными, течение ламинарным, осесимметричным, излучение объемным; однократно ионизованная плазма представляет собой сплошную квазинейтральную среду. Приэлектродные процессы не рассматриваются. Наличие электродов в расчетной схеме учитывается методом фиктивных областей (МФО); математическая модель и методика постановки граничных условий в рамках МФО изложены в [7].

Катодом "–" является полый вольфрамовый цилиндр с внутренним радиусом R = 5 мм и стенками толщиной dR = 1 мм (рис. 1). Принято, что катодная привязка дуги является осесимметричной, равномерно рассредоточенной по тор-

цевой поверхности стенок цилиндра. Через сквозное отверстие в катоде (далее в тексте – катодный канал) подается холодный газ с температурой $T^0 = 300$ К и расходом G^0 . Охлаждаемый медный анод "+" имеет сквозное осесимметричное отверстие (далее в тексте — анодный канал) радиусом R. Привязка дуги на аноде полагается такой же, как на катоде, т. е. равномерно рассредоточенной по кольцу с внутренним радиусом R = 5 мм и шириной dR = 1 мм. Можно ожидать, что пространственная форма разряда будет напоминать трубу, чем и обусловлено, следуя [6], его название — трубчатая дуга.

Отметим, что для рассматриваемой геометрии катода при значениях R = 5 мм и dR = 1 мм площадь катодной привязки дуги $S \approx 28$ мм² является достаточно реальной. Действительно, оценка плотности электрического тока на активной поверхности катода в диапазоне токов 300–500 А дает приближенное значение $j \sim 10^7$ А/м², что вполне соответствует параметрам электрической дуги [8]. Однако в связи с тем, что, во-первых, величина S задается в определенной степени произвольно, и, во-вторых, в математической модели не учитывается наличие какоголибо порошка в потоке вдуваемого газа, следует помнить, что представленные далее результаты расчета имеют характер лишь качественных оценок.

Необходимо также отметить следующее. Справедливость предположения о привязке дуги, равномерно рассредоточенной по кольцевой поверхности на торцах электродов, вообще говоря, не очевидна. Не исключено, что в реальных условиях привязка дуги может осуществляться на локальных участках торцевой поверхности электродов, причем процесс может быть нестационарным, особенно при малых значениях силы тока. По этой причине результаты расчетов нуждаются в экспериментальной проверке.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ РАСЧЕТА

В отсутствие принудительной подачи газа ($G^0 = 0$) через катодный канал, окружающий газ вследствие воздействия электромагнитных сил вовлекается с периферии в столб дуги в радиальном направлении. Формируются потоки плазмы, которые движутся навстречу друг другу и соударяются в приосевой области разряда. В последней создается зона повышенного давления $P > P_{\text{атм}}$, из которой газ устремляется во внешнюю среду через катодный и анодный каналы. Подобный характер течения плазмы, по-видимому, не представляет практического интереса для технологий напыления, и по этой причине распределения характеристик дуги не приводятся.

Процессы тепломассопереноса меняются в случае принудительной подачи газа через катодный канал. На рис. 2 представлены распределения соответствующих характеристик дуги при следующих параметрах разряда: L = 5 мм, I = 500 A, $G^0 = 0,03$ г/с (на рис. 2–4 за начало отсчета по оси *z* принята торцевая поверхность катода). Из результатов расчета видно, что окружающий газ вовлекается в радиальном направлении с периферии в столб дуги (рис. 2, *a*). Формируются потоки плазмы, которые движутся навстречу друг другу и соударяются между собой, а также с вдуваемым аксиальным потоком газа. В результате в приосевой области формируется зона повышенного давления (рис. 2, *b*).

Далее газ устремляется в анодный канал и вытекает в окружающее пространство. В отличие от предыдущего варианта (отсутствие принудительного вдува) дуговая плазма не проникает в катодный канал — этому препятствует вдуваемый поток холодного газа. Вследствие конвекции тепло выносится из дуги вниз по потоку в анодный канал, формируя весьма протяженный (~ 20 мм) высокотемпе-

ратурный (T > 8 кК) тепловой след дуги (рис. 2, *c*). Скорость потока $V = \sqrt{u^2 + v^2}$ (*u*, *v* — аксиальная и радиальная компоненты вектора скорости соответственно) в анодном канале достигает значений около 100 м/с (рис. 2, *d*).

Струя плазмы бестоковая (рис. 2, *d*, штриховые линии), с достаточно высокой концентрацией электронов N_e (рис. 2, *e*) и термически равновесная: $T_e \approx T$. По этой причине на рис. 2, *c* не представлены изотермы T_e электронного газа: от изотерм *T* газа тяжелых частиц они практически неотличимы.

Регулируя расход подаваемого холодного газа G^0 через катодный канал (при прочих неизменных параметрах разряда), можно регулировать, в частности, пространственную протяженность и температуру теплового следа дуги, а также скорость

Рис. 2. Расчетные поля: течения газа G(a), давления P(b), температуры T(c), скорости V, течения тока I (штриховые) (d), концентрации электронов $N_e(e)$.

L = 5 MM, I = 500 A, $G^0 = 0.03$ г/с.

 $G^0 = 0,3 (a), 0,67 \text{ г/c} (b), L = 5 \text{ MM } I = 500 \text{ A}.$

потока газа в анодном канале. Численный анализ показывает, что с увеличением G^0 уменьшаются температура и скорость газа в приосевой области разряда. Так, например, при увеличении G^0 от 0,03 до 0,3 г/с температура газа в приосевой зоне анодного канала понижается до весьма низких значений — менее 2 кК (рис. 3, *a*), а при $G^0 = 0,67$ г/с от дуги в анодном канале практически не остается следа (рис. 3, *b*).

Причина подобного влияния вполне очевидна: подаваемый через катодный канал холодный поток

газа выступает в роли непроницаемой стенки, препятствуя проникновению дуги в анодный канал. Такие режимы работы, по-видимому, не представляют практического интереса.

Не только изменением G^0 , но и путем изменения силы тока *I* можно регулировать пространственную протяженность и температуру теплового следа дуги, а также скорость потока газа в анодном канале (рис. 4).

Видно, что с уменьшением силы тока *I* от 500 до 300 А происходит понижение температуры и скорости дуговой плазмы в приосевой области разряда. Причина подобного влияния также очевидна: уменьшение *I* обусловливает сокращение джоулева тепловыделения в дуге и уменьшение воздействия электромагнитных сил, ускоряющих плазму.

По результатам расчета (см. рис. 2) можно приближенно оценить время t пребывания предполагаемых частиц в высокотемпературном (T > 8 кK) тепловом сле-

Рис. 4. Осевые распределения: температуры $T_0(a)$, аксиальной скорости u_0 газа при различных значениях тока I(b).

L = 5 MM, $G^0 = 0.03$ г/с.

де трубчатой дуги. Полагая, что скорость частиц соизмерима со скоростью потока газа ~ 100 м/с, а протяженность теплового следа в аксиальном направлении составляет ~ 20 мм, можно определить, что $t \sim 2 \cdot 10^{-4}$ с.

В работе [9] на основе теоретического анализа были получены соотношения, определяющие, в частности, время нагрева и плавления частиц тугоплавких металлов, находящихся в аргоновой плазме с температурой 10 кК при атмосферном давлении. Проведенные в [9] оценки показали, что, например, для сферической вольфрамовой частицы диаметром 50 мкм время нагрева до температуры плавления ($T \approx 3.6$ кК) составляет $\approx 2 \cdot 10^{-4}$ с, а еще через $\sim 4 \cdot 10^{-4}$ с частица полностью расплавится.

Сопоставление данных временных масштабов дает основание полагать, что, по крайней мере, для легкоплавких металлов время пребывания частиц в тепловом следе трубчатой дуги будет достаточным для необходимого нагрева.

Для рассмотренной цилиндрической геометрии электродов расчеты были проведены при сравнительно небольших значениях внешних параметров разряда I, L, G^0 , R (см. выше). Попытка рассчитать трубчатую дугу при бо́льших значениях указанных параметров: I = 900 A, L = 10 мм, $G^0 = 0.1$ г/с, R = 10 мм, окончилась неудачей. Анализ результатов расчета показал, что с увеличением силы тока возрастает давление в приосевой области разряда, обусловленное сжатием столба дуги электромагнитными силами (пинч-эффект). Для вдуваемого потока холодного газа катодный канал оказывается "заперт" дуговой плазмой. Увеличение расхода холодного газа G^0 не исправило ситуацию — численный расчет был неустойчивым, и решения получить не удавалось.

Качественное сравнение с результатами экспериментальных исследований двухструйного плазмотрона [1] дает основание полагать, что в данном случае вычислительная неустойчивость обусловлена следующим. По-видимому, при указанных выше расчетных параметрах и геометрии разряда имеют место физические процессы, выходящие за границы применения математической модели, а именно, реализуются турбулентные режимы течения дуговой плазмы. В работе [1] экспериментально установлена прямая связь между углами слияния электродных струй, расходом газа и режимом течения плазмы — ламинарным либо турбулентным. Чем больше угол слияния между электродными струями, тем при меньших расходах газа наблюдается переход от ламинарного режима течения к турбулентному. Выявлено, что увеличение расхода газа выше некоторого значения приводит к по-

явлению пульсаций и неустойчивому режиму работы плазмотрона, вплоть до разрыва электродных струй и погасанию дуги. Очевидно, что используемая математическая модель по определению не может описать турбулентные режимы течения, чем, по-видимому, и объясняется неустойчивость численного счета.

Исправить положение удалось заменой цилиндрических электродов на конусные и использованием в "вычислительной конструкции" определенной гео-

Рис. 5. Схема трубчатой дуги с конусным катодом "-", анодом "+" и обтекателями (более темные элементы). Масштаб произвольный.

метрии охлаждаемых обтекателей (рис. 5). Угол заточки α конусного катода и анодного обтекателя принят равным 30°, т. к. при $\alpha = 45^{\circ}$, как и в случае с цилиндрическими электродами ($\alpha = 90^{\circ}$), устойчивость численного расчета все равно отсутствовала.

Конусная форма анодного обтекателя (а также катода) способствует тому, что потоки плазмы движутся и соударяются в приосевой области под углом друг к другу. При такой организации течения, по аналогии с работой двухструйного плазмотрона, уменьшается давление в приосевой области и ослабляется эффект "запирания" катодного канала дуговой плазмой.

Несколько сложнее обстоит дело с катодным обтекателем. Как показали результаты предварительных расчетов, подача холодного газа по всему сечению катодного канала радиусом R приводит к чрезмерному охлаждению дуги вблизи катода. В силу этого был использован отдельный входной канал с внутренним радиусом $r_c < R$ и такой глубиной погружения, чтобы холодный газ не "захватывал" участок дуги вблизи катода. Однако в этом случае между стенкой входного канала и катодом формируется обратный поток плазмы, частично увлекающий за собой подаваемый газ (рис. 6). Такой побочный эффект, по-видимому, является нежелательным в технологическом процессе. По указанной причине входное сечение между стенкой входного канала и катодом было перекрыто.

Заточка внешней поверхности входного канала под конус и сглаженные углы в образовавшейся каверне (см. рис. 5) служат для лучшего обтекания указанных поверхностей. Величина *dR* принята равной 0,6 мм, что при радиусе R = 10 мм и угле заточки $\alpha = 30^{\circ}$ соответствует площади катодной привязки дуги $S \approx 80$ мм². Данное значение *S* является достаточно реальным для разряда при токе 900 А.

На рис. 7, 8 представлены некоторые результаты расчета (за начало отсчета по оси *z* принята вершина конусного катода). Видно, что характер протекающих физических процессов качественно совпадает с рассмотренным выше разрядом с цилиндрическими электродами (см. рис. 2).

Следует пояснить графическое изображение полей температуры (рис. 7, c) и течения электрического тока (рис. 7, d, штриховые линии). Видно, что изотермы и линии тока вблизи опорных пятен дуги "ложатся" на поверхность электродов, создавая видимость, будто величина dR больше значения 0,6 мм, принятого в расче-

тах. На самом деле это не так, и обусловлено лишь сравнительно малым масштабом изображения. Подтверждением сказанному служит рис. 7, *e*, на котором представлен фрагмент поля температуры в увеличенном масштабе.

Количество газа
$$G(z) = 2\pi \int_{0}^{T} \rho \, urdr \, (\Gamma -$$

внешняя боковая граница), протекающего через дуговой разряд, составляет около 0,71 г/с (рис. 8). Учитывая, что через входной канал подается $G^0 = 0,1$ г/с, можно заключить, что электромагнитные силы

Рис. 6. Схема течения газа в отсутствие катодного обтекателя.

основной, 2 — обратный потоки. Масштаб произвольный.

вовлекают и прокачивают через дугу примерное количество газа — 0,6 г/с. Заметим, что для интегрального значения расхода газа должно выполняться условие $G(z) \equiv \text{const}$, не соответствующее результатам, приведенным на рис. 8, однако по-грешность не более 5 % в данном случае является вполне допустимой.

Ламинарный характер течения газа в анодном канале и расположение линий тока газа с численными значениями $G < G^0$ (см. рис. 7, *a*), позволяют предположить, что трубчатый разряд удовлетворяет ряду требований, предъявляемых к дуговым аппаратам для напыления порошковых материалов (см., например, [10]).

Во-первых, основная часть вводимого порошка будет транспортироваться через приосевую область (r < 4 мм, $G < G^0$), обладая весьма малым углом расходимости, что обеспечит высокий коэффициент использования материала при напылении.

Во-вторых, продукты эрозии материала электродов, незначительно проникая в приосевую область, будут увлекаться с поверхности электродов потоком газа и выноситься через периферийную зону (r > 4 мм). Отметим также, что характер течения газа вблизи катода и катодного обтекателя (рис. 9) дает основание заключить, что продукты эрозии материала катода будут частично осаждаться на поверхности катодного обтекателя. Таким образом, приосевая область анодного канала с напыляемым порошком останется сравнительно чистой.

Рис. 8. Осевые распределения скорости u_0 и температуры T_0 плазмы, распределение G(z) вдоль разряда. L = 10 мм, I = 900 А, $G^0 = 0,1$ г/с.

В-третьих, на выходе из анодного канала технически нетрудно осуществить разделение сравнительно чистого приосевого потока и периферийного, содержащего продукты эрозии материала электродов и плохо прогретый напыляемый материал, защищая обрабатываемое изделие от нежелательного воздействия загрязненной струи газа.

Отметим, наконец, что трубчатая дуга обеспечивает осесимметричное напыление. Оценка, по-видимому, достаточного для этого времени пребывания предполагаемых частиц в тепловом следе трубчатой дуги была сделана выше.

Следует сказать, что процессы нагрева и течения плазмы в "вычислительной конструкции" рис. 5 имеют в отличие от схемы на рис. 1 ряд особенностей, но их обсуждение кажется преждевременным. Как уже отмечалось, представленные результаты расчета нуждаются в экспериментальной проверке.

Рис. 9. Фрагмент векторного поля **V**(*u*, *v*) течения газа вблизи катода "-". Масштаб произвольный.

L = 10 MM, I = 900 A, $G^0 = 0.1$ г/с.

ЗАКЛЮЧЕНИЕ

Анализ результатов расчета позволяет предположить возможность реализации трубчатой формы электрической дуги путем выбора определенной геометрии электродных узлов и условий привязки дуги на электродах.

СПИСОК ЛИТЕРАТУРЫ

- 1. Жеенбаев Ж., Энгельшт В.С. Двухструйный плазмотрон. Фрунзе: Илим, 1983. 199 с.
- **2.** Вурзель Ф.Б., Хмельник В.А., Назаров В.Ф. Плазменное нанесение керамических покрытий на кварцевые трубы // Плазменные процессы и аппараты: Сб. научных трудов Ин-та тепломассообмена им. А.В. Лыкова. Минск, 1984. С. 158–173.
- 3. Meyer P., Muchlberger S. Historical review and update to the state of the art of automation for plasma coating processes // Thin Solid Films. 1984. № 4. P. 445–456.
- 4. Solonenko O.P., Sorokin A.L. Maximum productivity of plasma-jet spraying of powder materials estimate // Proc. of the Intern. Workshop Plasma Jets in the Development of New Materials Technology. — Frunze, 1990. — P. 243–255.
- 5. Аньшаков А.С., Казанов А.М., Урбах Э.К. Характеристики плазмотрона и плазменной струи для напыления // Физика плазмы и плазменные технологии: Материалы конф. Т. 4. Минск, 1997. С. 638–641.
- **6. Исаков А.И., Новиков О.Я., Путько В.Ф.** Реализация и исследование трубчатого электродугового разряда // Генераторы низкотемпературной плазмы: Х Всесоюз. конф. Ч. 1. Минск: Изд. Ин-та тепломассообмена им. А.В. Лыкова, 1986. С. 42–43.
- 7. Урусов Р.М., Урусова Т.Э. Применение метода фиктивных областей для расчета характеристик электрической дуги // ТВТ. 2004. Т. 42, № 3. С. 374–382.
- **8. Финкельнбург В., Меккер Г.** Электрические дуги и термическая плазма. М.: Иностр. лит., 1961. 370 с.
- 9. Гнедовец А.Г., Лохов Ю.Н., Углов А.А. Теплофизические задачи обработки частиц тугоплавких металлов в горячем газе // Физика и химия обработки материалов. 1979. №6. С. 36–43.
- 10. Кудинов В.В., Пекшев П.Ю. Тенденции развития и совершенствования аппаратуры для газотермического напыления // Изв. СО АН СССР. Сер. техн. наук. — 1985. — Т. 4, Вып. 1. — С. 113–121.

Статья поступила в редакцию 28 марта 2005 г.