2015. Том 56, № 4

Июль

C. 836 – 841

КРАТКИЕ СООБЩЕНИЯ

УДК 546.59:547.89:548.737

КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРА [Au(C14H22N4)]ReO4

В.А. Афанасьева¹, Л.А. Глинская¹, Д.А. Пирязев^{1,2}, С.А. Громилов^{1,2}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия E-mail: l311@niic.nsc.ru

²Новосибирский национальный исследовательский государственный университет, Россия

Статья поступила 30 мая 2014 г.

Синтезирован перренат тетраазамакроциклического комплекса золота(III) [Au(C₁₄H₂₂N₄)]ReO₄. Методом РСА монокристалла определена кристаллическая струк-Кристаллографические данные: a = 7,733(2), b = 11,368(2),тура соединения. c = 11,685(2) Å, $\alpha = 116,23$, $\beta = 104,26$, $\gamma = 94,96^{\circ}$; V = 870,3(3) Å³, пр. гр. P(-1), Z = 2, $d_{\rm выч} = 2,647 \, {\rm г/cm}^3, R = 0,0245.$ Упаковка комплекса составлена из сдвоенных стопок катионов и цепочек анионов, связанных в двумерные слои за счет слабых межмолекулярных взаимодействий (неклассические водородные связи С—Н...О, С—Н...Аu, С—Н... и контакты Au...Au). Изучено термическое разложение полученного соединения в атмосфере водорода. По данным рентгенофазового анализа продуктом восстановления синтезированной соли является смесь нанокристаллических фаз Re и Au с размерами областей когерентного рассеяния 17 и 13 нм соответственно.

DOI: 10.15372/JSC201504028

Ключевые слова: золото, рений, тетраазамакроцикл, комплексная соль, рентгеноструктурный анализ, рентгенофазовый анализ, кристаллохимия, термолиз.

Поиск новых перспективных материалов для получения металлических фаз в нанокристаллическом состоянии является актуальной задачей современной химии и материаловедения. В последнее время возрастает значение гетерометаллических катализаторов, содержащих благородный и неблагородный металлы в различных пропорциях. Относительно простым способом синтеза катализаторов является разложение комплексных соединений в инертной или восстановительной атмосферах. В качестве предшественников при получении металлических фаз в нанокристаллических фаз в нанокристаллическом состоянии могут быть использованы биметаллические комплексные соли. Перспективным является использование соединений, содержащих катионы с органическими лигандами и оксоанионы металлов, в частности, перренат-анион. Подобные соединения с различным соотношением ионов и соответственно М:Re получены как для металлов платиновой группы [1—5], так и для золота [6, 7]. Синтезированная в настоящей работе новая комплексная соль [Au(C₁₄H₂₂N₄)]ReO₄ является предшественником для получения нанокристаллической фазы с соотношением Au:Re = 1:1.

В работе использовали NaReO₄ марки XЧ, диэтиловый спирт — ректифицированный, диметилформамид Ч; 5,7,12,14-тетраметил-1,4,8,11-тетраазациклотетрадека-4,6,11,13-тетраенатозолото(III) бромид [Au(C₁₄H₂₂N₄)]Вг получали согласно [8].

Синтез [Au(C₁₄H₂₂N₄)]ReO₄. Перренат тетраазамакроциклического комплекса золота(III), 5,7,12,14-тетраметил-1,4,8,11-тетраазациклотетрадека-4,6,11,13-тетраенатозолото(Ш) перренат [Au(C₁₄H₂₂N₄)]ReO₄, синтезировали следующим образом. К раствору 0,039 г комплекса

[©] Афанасьева В.А., Глинская Л.А., Пирязев Д.А., Громилов С.А., 2015

[Au(C₁₄H₂₂N₄)]Вг в 3,6 мл спирта добавляли по каплям при перемешивании магнитной мешалкой 1,8 мл насыщенного спиртового раствора NaReO₄. Выпавший желтый осадок отфильтровывали от маточника, промывали спиртом (3 раза по 1,0—1,5 мл), высушивали. Выход 0,041 г (82 %). Найдено, %: C 24,3, H 3,5, N 8,0. Для C₁₄H₂₂N₄O₄AuRe вычислено, %: C 24,25, H 3,20, N 8,08. Элементный анализ проводили в аналитической лаборатории ИНХ СО РАН. Полученный комплекс устойчив на воздухе, растворим в ДМФА, слабо растворим в воде и этиловом спирте.

Прозрачные монокристаллы соединения изометричной формы желтого цвета, пригодные для PCA, выращивали из раствора комплекса в ДМФА.

РСА. Экспериментальный массив рентгеновских отражений получали на автодифрактометре Bruker X8 APEX CCD при температуре 150 К по стандартной методике (Мо K_{α} -излучение, $\lambda = 0,71073$ Å, графитовый монохроматор). Структура расшифрована прямым методом и уточнена полноматричным МНК в анизотропном для неводородных атомов приближении по комплексу программ SHELXL-97 [9]. Положения атомов Н локализованы геометрически и уточнены в модели наездника. Их параметры рассчитывали в каждом цикле уточнения по координатам соответствующих атомов углерода. Основные кристаллографические характеристики комплекса приведены в табл. 1. Значения основных межатомных расстояний и валентных углов приведены в табл. 2. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджской базе структурных данных (ССDC № 1005644), а также могут быть получены у авторов.

Рентгенографическое исследование поликристаллов проведено на дифрактометре Shimadzu XRD-7000 (Cu K_{α} -излучение, схема Брэгга—Брентано, комнатная температура, внешние эталоны Si и LaB₆). Дифрактограмма полностью проиндицирована по данным исследования монокристалла, что подтверждает однофазность синтезированного продукта. Полнопрофильное уточнение проведено по программе Powder Cell [10].

Термическое разложение поликристаллов проведено в атмосфере водорода при 800 °С (выдерживание в течение 1 ч, продувка гелием, быстрое охлаждение до комнатной температуры).

Таблица 1

Эмпирическая формула	$C_{14}H_{22}AuN_4O_4Re$		
M	693,52		
Сингония	Триклинная		
Пространственная группа	P(-1)		
<i>a</i> , <i>b</i> , <i>c</i> , Å	7,733(2), 11,368(2), 11,685(2)		
α, β, γ, град.	116,23(3), 104,26(3), 94,96(3)		
V, Å ³	870,3(3)		
<i>Ζ</i> ; ρ(выч.), г/см ³	2; 2,647		
μ, мм ⁻¹	15,394		
Размеры кристалла, мм	0,2×0,2×0,15		
Область сканирования, θ, град.	2,05—30,67		
Число измер. / независ. отражений (<i>R</i> _{int})	11567 / 4770 (0,0270)		
Число отражений с $I > 2\sigma(I)$	4235		
Число уточняемых параметров	221		
GOOF по F^2	1,144		
R -фактор $I > 2\sigma(I)$	$R_1 = 0,0245, \ wR_2 = 0,0503$		
<i>R</i> -фактор (по всем <i>I</i> _{hkl})	$R_1 = 0,0296, \ wR_2 = 0,0515$		
Остаточная электронная плотность (max / min), e/Å ³	1,148 / -1,276		

Кристаллографические характеристики, детали эксперимента и уточнения структуры [Au(C₁₄H₂₂N₄)]ReO₄

Таблица 2

					-
Связь	d	Связь	d	Угол	ω
Au(1) - N(1)	1,992(4)	Re—O(1)	1,727(4)	N(1)—Au(1)—N(2)	178,0(2)
Au(1)—N(2)	1,992(4)	Re—O(2)	1,729(4)	N(1)— $Au(1)$ — $N(4)$	95,8(2)
Au(1)—N(3)	1,986(4)	Re—O(3)	1,718(4)	N(2) - Au(1) - N(4)	84,3(2)
Au(1)—N(4)	1,988(4)	Re—O(4)	1,720(4)	N(1)—Au(1)—N(3)	83.9(2)
N(1)—C(10)	1,331(6)	C(1)—C(2)	1,514(7)	N(2)—Au(1)—N(3)	96,1(2)
N(1)—C(3)	1,476(6)	C(3)—C(4)	1,527(6)	N(4)—Au(1)—N(3)	178,4(2)
N(2)—C(5)	1,332(6)	C(5)—C(6)	1,403(7)	O(3)— $Re(1)$ — $O(4)$	109,3(2)
N(2)—C(1)	1,477(6)	C(5)—C(11)	1,514(6)	O(3)—Re(1)— $O(1)$	109,0(2)
N(3)—C(7)	1,330(6)	C(6)—C(7)	1,417(6)	O(4)—Re(1)— $O(1)$	111,0(2)
N(3)—C(4)	1,475(5)	C(7)—C(12)	1,511(6)	O(3)—Re(1)— $O(2)$	109,7(2)
N(4)—C(8)	1,334(6)	C(8)—C(9)	1,409(7)	O(4)—Re(1)— $O(2)$	109,0(2)
N(4)—C(2)	1,470(6)	C(8)—C(13)	1,505(7)	O(1)—Re(1)— $O(2)$	108,8(2)
C(9)—C(10)	1,407(7)	C(10)—C(14)	1,524(6)		

Основные межатомные расстояния d (Å) и валентные углы ω (град.) в структуре [Au(C₁₄H₂₂N₄)]ReO₄

Результаты и их обсуждение. Кристаллическая структура соединения составлена из комплексных катионов $[Au(C_{14}H_{22}N_4)]^+$ и перренат-анионов ReO_4^- (рис. 1). В координационную сферу атома Au входит четыре атома азота с расстояниями Au—N 1,986(4)—1,992(4) Å. К четырем атомам углерода C(5), C(7), C(8) и C(10) 6-членных колец присоединены метильные группы. Комплексный катион практически плоский, среднеквадратичное отклонение всех неводородных атомов 0,105(5) Å. 6-Членные кольца AuNCCCN плоские, среднее отклонение неводородных атомов от их среднестатистических плоскостей не превышает 0,030(3) Å. Оба 5-членных этилендиаминовых кольца имеют конформацию *конверта*: атом C(1) отклоняется от среднеквадратичной плоскости из четырех атомов на -0,439(7) Å, а атом C(3) — на 0,494(7) Å. В целом длины связей N—C и C—C и величины валентных углов катиона [Au(C₁₄H₂₂N₄)]⁺ (см. табл. 2) аналогичны значениям в структурах [Au(C₁₄H₂₂N₄)]Br [11] и [Au(C₁₄H₂₂N₄)]AuBr₂ [12]. В тетраэдре перренат-аниона расстояния Re—O изменяются от 1,718(4) до 1,729(4) Å, средние значения углов при атомах Re (109,5°) близки к стандартным.

На рис. 2 представлена проекция структуры на плоскость (100). Катионы $[Au(C_{14}H_{22}N_4)]^+$, размноженные центрами симметрии, образуют сдвоенные стопки в направлении короткой оси *х*.

Рис. 1. Строение комплексного катиона $[Au(C_{14}H_{22}N_4)]^+$ и аниона ReO_4^- с обозначениями неводородных атомов

Рис. 2. Проекция кристаллической структуры на плоскость (100)

В пустотах между стопками размещены бесконечные цепочки анионов ReO_4^- (также в направлении оси *x*).

Катионы сдвоенных стопок связаны попарно слабыми контактами Au...Au (4,240(2) Å). Два атома водорода метиленовых групп C(1)H₂ и C(2)H₂ одного из 5-членных колец связаны с центральными атомами Au выше- и нижележащего катионов (H...Au 3,127(1) и 3,310(1) Å), образуя цепочки вдоль короткой оси x (рис. 3). Контакты С—H...Au сопровождаются взаимодействиями с π -системами гетероциклических 6-членных колец AuNCCCN (С—H... π) с расстояниями H...центроид 2,53 и 2,90 Å.

Стопки катионов и цепочки анионов объединены в 2D слои за счет Н-связей С—Н...О метильных и метиленовых групп с атомами кислорода перренат-анионов (Н...О 2,532(5)— 2,587(6) Å). Слои параллельны плоскости *ас* и характеризуются наличием катион-анионных цепочек, а также катион-катионных и катион-анионных колец различной размерности. На рис. 3 представлен один из слоев.

В работах [1, 13, 14] при описании мотива построения кристаллических структур комплексных солей $[M(En)_2](ReO_4)_2$, (M = Cu, Pd, Pt), имеющих плоские комплексные катионы и анионы ReO_4^- , был использован несколько модифицированный метод трансляционных подрешеток [15]. Суть модификации изложена в [16] и заключается в построении теоретической дифрактограммы только по атомам, принадлежащим интересующему фрагменту (например, комплексному катиону или аниону). Это позволяет выявить кристаллографические плоскости, наиболее заселенные конкретными атомами, и изучить мотив их взаимного расположения.

Рис. 3. Вид слоя катионов и анионов в направлении короткой оси а

В нашем случае расчет теоретической дифрактограммы был выполнен только по атомам Au. Далее, используя программу [17], были найдены возможные варианты. В результате анализа было установлено, что наиболее симметричная подрешетка образована пересечением семейств плоскостей {0 1 0}, {0 -1 1}, {-2 0 1}. Она построена на векторах: $a_{\rm T} = a/2 + b + c$, $b_{\rm T} = a/2 + c$, $c_{\rm T} = -a/2$. Метрики выделенной подрешетки — $a_{\rm T} = 11,55$, $b_{\rm T} = 11,37$, $c_{\rm T} = 3,87$ Å, $\alpha_{\rm T} = 94,99$, $\beta_{\rm T} = 90,03$, $\gamma_{\rm T} = 59,46^{\circ}$ — позволяют рассматривать мотив расположения катионов как псевдо-гексагональный в направлении вектора $c_{\rm T}$. Действительно, это хорошо видно на рис. 2.

Рентгенофазовый анализ продукта разложения комплекса в атмосфере водорода при 800 °C показал наличие двух нанокристаллических фаз — Re и Au — с размерами областей когерентного рассеяния 17 и 13 нм соответственно.

Авторы благодарят к.х.н. А.В. Задесенца за проведение термического разложения изученной соли и к.х.н. О.С. Кощееву за данные элементного анализа.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Храненко С.П., Быкова Е.А., Алексеев А.В. и др. //* Журн. структур. химии. 2012. **53**, № 3. С. 520 526.
- 2. Васильченко Д.Б., Байдина И.А., Филатов Е.Ю., Коренев С.В. // Журн. структур. химии. 2009. **50**, № 2. С. 349 356.
- 3. Храненко С.П., Быкова Е.А., Алексеев А.В., Громилов С.А. // Журн. структур. химии. 2012. 53, № 3. С. 527 533.
- 4. Корольков И.В., Задесенец А.В., Громилов С.А. и др. // Журн. структур. химии. 2006. 47, № 3. С. 503 511.
- 5. Шубин Ю.В., Филатов Е.Ю., Байдина И.А. и др. // Журн. структур. химии. 2006. 47, № 6. С. 1115 1122.
- 6. Макотченко Е.В., Байдина И.А. // Журн. структур. химии. 2011. 52, № 3. С. 572 576.
- 7. Байдина И.А., Макотченко Е.В., Шушарина Е.А. и др. // Журн. структур. химии. 2010. **51**, № 3. С. 544 551.
- 8. Афанасьева В.А., Миронов И.В., Глинская Л.А. и др. // Журн. структур. химии. 2003. 44, № 1. - С. 83 – 89.
- 9. Sheldrick G.M. // Acta Crystallogr. A. 2008. 64, N 1. P. 112.

- 10. Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. 29. P. 301 303.
- 11. Глинская Л.А., Афанасьева В.А., Клевцова Р.Ф. // Журн. структур. химии. 2004. **45**, № 1. С. 129 134.
- 12. Афанасьева В.А., Глинская Л.А., Клевцова Р.Ф., Миронов И.В. // Координац. химия. 2011. **37**, № 5. С. 323 330.
- 13. Шушарина Е.А., Храненко С.П., Громилов С.А. // Журн. структур. химии. 2011. **52**, № 1. С. 206 208.
- 14. Храненко С.П., Куратьева Н.В., Громилов С.А. // Журн. структур. химии. 2014. 55. в печати.
- 15. Борисов С.В. // Журн. структур. химии. 1986. 27, № 3. С. 164 167.
- 16. Громилов С.А. Определение структурных мотивов координационных соединений на основе точных рентгендифрактометрических данных поликристаллов. Автореф. дис. д.ф.-м.н. Новосибирск: ИНХ СО РАН, 2005.
- 17. Громилов С.А., Быкова Е.А., Борисов С.В. // Кристаллография. 2011. 56, № 6. С. 1013 1018.