УДК 533.6.011.3

Течение газа через кубическую упаковку шаров в ограниченном объеме^{*}

А.М. Липанов, А.Н. Семакин

Институт прикладной механики УрО РАН, Ижевск

E-mail: arte-semaki@yandex.ru

Рассмотрено течение вязкого газа через ограниченный объем, заполненный шарами. Кратко описаны постановка задачи и метод решения. Приведены интегральные характеристики и указан характер течения.

Ключевые слова: вязкий газ, система уравнений гидромеханики, кубическая упаковка шаров.

введение

К рассмотрению движения газа или жидкости через пористые среды сводится изучение многих явлений (очистка газа от примесей при прохождении через фильтр, разработка месторождений углеводородного сырья и т. д.). Одной из наиболее распространенных моделей пористых сред на данный момент является ограниченный объем, заполненный шарами. Течение в подобной модели пористой среды рассмотрено в работах [1, 2] в приближении Стокса на основе метода граничных элементов. В работе [3] представлены полученные экспериментально профили продольной компоненты скорости и классификация течений в зависимости от числа Рейнольдса в диапазоне 0÷2000.

В настоящей работе рассматривается течение вязкого газа в ограниченной области, заполненной шарами, с помощью численного метода расчета полей гидромеханических переменных для многосвязных областей на основе полной системы уравнений гидромеханики, предложенного в [4].

1. ПОСТАНОВКА ЗАДАЧИ

Рассматриваемая расчетная область представляет собой прямоугольный параллелепипед с одним входом и четырьмя выходами цилиндрической формы, в котором расположено несколько шаров. Вход размещается в центре передней грани, выходы — в центрах квадрантов задней грани, образованных ее горизонтальной и вертикальной осями симметрии. Шары образуют рыхлую кубическую

Работа выполнена при финансовой поддержке РФФИ (грант № 09-01-00118).

[©] Липанов А.М., Семакин А.Н., 2010

Рис. 1. Рассматриваемая область (вид сбоку).

упаковку, когда в первом слое каждый шар касается только четырех соседних шаров, и все последующие слои повторяют первый (рис. 1).

Начало декартовой системы координат, в которой приведены все измерения, располагается в левом нижнем углу передней грани рассматриваемой области. Ориентация осей указана на рис. 1.

Размеры области следующие: длина — $0,64 + 2M_x r$, высота — $2M_y r$, ширина — $2M_z r$, длина входа и выходов — $1/6 \cdot r$, радиус входа — $1/2 \cdot M_y r$, радиус выходов — $1/3 \cdot M_y r$, r = 0,5 — радиус шаров, M_x , M_y , M_z — число шаров вдоль осей x, y и z соответственно. Расстояние от передней и задней боковых стенок до упаковки шаров равно 0,32. Все величины безразмерные, масштабы указаны ниже.

На вход подается вязкий теплопроводный газ. Требуется определить параметры его течения.

2. СИСТЕМА УРАВНЕНИЙ ГИДРОМЕХАНИКИ

Течение газа описывается системой уравнений гидромеханики, записанной в симметричной безразмерной форме [5, 6]:

$$\frac{\partial \rho}{\partial t} + \frac{1}{2} \left(u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} + \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} + \frac{\partial \rho w}{\partial z} \right) + \frac{1}{2} \rho \cdot \operatorname{div}(\mathbf{V}) = 0,$$

$$\frac{\partial u}{\partial t} + \frac{1}{2} \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} + \frac{\partial u^2}{\partial x} + \frac{\partial u v}{\partial y} + \frac{\partial u w}{\partial z} \right) - \frac{1}{\rho \operatorname{Re}} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) =$$

$$= -\frac{1}{\rho k M^2} \frac{\partial p}{\partial x} + \frac{1}{2} u \cdot \operatorname{div}(\mathbf{V}) + \frac{1}{3\rho \operatorname{Re}} \frac{\partial}{\partial x} \operatorname{div}(\mathbf{V}),$$

$$\frac{\partial v}{\partial t} + \frac{1}{2} \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + \frac{\partial u v}{\partial x} + \frac{\partial v^2}{\partial y} + \frac{\partial v w}{\partial z} \right) - \frac{1}{\rho \operatorname{Re}} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) =$$

$$= -\frac{1}{\rho k M^2} \frac{\partial p}{\partial y} + \frac{1}{2} v \cdot \operatorname{div}(\mathbf{V}) + \frac{1}{3\rho \operatorname{Re}} \frac{\partial}{\partial y} \operatorname{div}(\mathbf{V}),$$

$$\frac{\partial w}{\partial t} + \frac{1}{2} \left(u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} + \frac{\partial u w}{\partial x} + \frac{\partial v w}{\partial y} + \frac{\partial w^2}{\partial z} \right) - \frac{1}{\rho \operatorname{Re}} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) =$$

$$= -\frac{1}{\rho k M^2} \frac{\partial p}{\partial z} + \frac{1}{2} v \cdot \operatorname{div}(\mathbf{V}) + \frac{1}{3\rho \operatorname{Re}} \frac{\partial}{\partial y} \operatorname{div}(\mathbf{V}),$$

364

$$\frac{\partial T}{\partial t} + \frac{1}{2} \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} + \frac{\partial u T}{\partial x} + \frac{\partial v T}{\partial y} + \frac{\partial w T}{\partial z} \right) - \frac{k}{\rho \operatorname{Re} \operatorname{Pr}} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) = \\ = -\frac{(k-1)}{\rho} \operatorname{pdiv}(\mathbf{V}) + \frac{1}{2} T \cdot \operatorname{div}(\mathbf{V}) + \frac{k(k-1)M^2}{\rho \operatorname{Re}} \left(2 \left(\frac{\partial u}{\partial x} \right)^2 + 2 \left(\frac{\partial v}{\partial y} \right)^2 + 2 \left(\frac{\partial w}{\partial z} \right)^2 + \\ + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)^2 - \frac{2}{3} \left(\operatorname{div}(\mathbf{V}) \right)^2 \right).$$

Здесь $\mathbf{V} = (u, v, w)$ — вектор скорости, p, ρ, T — давление, плотность и температура, Re — число Рейнольдса, Pr = 1— число Прандтля, M = 0,15 — число Маха, k = 1,4 — отношение изобарной C_p и изохорной C_v теплоемкостей и div $(\mathbf{V}) = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$ — дивергенция скорости. Безразмерное уравнение состояния — $p = \rho T$.

За масштабные величины при вычислении безразмерных комплексов и размеров областей берутся: h — диаметр шаров, U_0 — максимальная величина продольной компоненты скорости в поперечном сечении входа, p_0 — давление на выходе, ρ_0 — характерная плотность. Граничные условия на входе и выходах ставятся согласно [7].

3. МЕТОД РЕШЕНИЯ

Рассматриваемая задача решается методом конечных объемов. Он сводится к следующему.

Сложная исходная область делится на некоторое количество более простых подобластей (конечных объемов, КО). В каждом КО вводятся собственные локальные декартовые x, y, z и криволинейные ξ, η, ς системы координат, в которых формулируется система уравнений гидромеханики, приведенная в п. 3. Далее она решается численно во всех КО с помощью явной разностной схемы второго порядка точности по времени и четвертого порядка по пространственным переменным.

Более подробно метод решения изложен в работах [4, 8, 9]. Проверка соответствия результатов работы этого метода экспериментальным данным приведена в [10].

4. РЕЗУЛЬТАТЫ РАСЧЕТОВ

В работе рассматривались упаковки с различным количеством шаров вдоль координатных осей при Re = 25, 100, 200.

Во всех случаях течение газа получается стационарным. На рис. 2 приведен в качестве примера график зависимости среднего давления от времени $p_{sr} = p_{sr}(t)$ в поперечном сечении X = 0,25 для упаковок шаров (1,3,3) и (3,3,3) при Re = 25.

Рис. 2. График зависимости $p_{sr} = p_{sr}(t)$, шаров: I - (1,3,3), 2 - (3,3,3).

Интегральные характеристики течения приведены в табл. 1–2. Здесь $M = (M_x, M_y, M_z)$ — упаковка шаров, M_x — число шаров в направлении оси x, M_y — число шаров в направлении оси y, M_z — число шаров в направлении оси z, N — суммарное по конечным объемам количество точек разностной сетки. Далее идут средние по поперечному сечению значения давления \overline{p} , давления торможения \overline{p}_0 , модуля вектора скорости |V|, продольной компоненты скорости \overline{u} . В табл. 2: m — массовый расход, J_x^p — продольная компонента вектора переноса импульса, K^p — перенос кинетической энергии, E^p — перенос полной энергии. Индексы 1 и 2 относятся к поперечным сечениям, расположенным перед и после упаковки шаров на расстоянии 0,03 соответственно. Средние значения этих характеристик определяются по формуле

$$\overline{f} = \frac{1}{D} \iint_{(D)} f dy dz.$$

Перенос удельных физических величин вычисляется следующим образом:

$$F^p = \iint_{(D)} \rho F u dy dz.$$

Безразмерная полная удельная энергия задается выражением

$$E = \frac{u^2 + v^2 + w^2}{2} + \frac{1}{k(k-1)M^2}T.$$

Таблица 1

М	Ν	\overline{p}_1	\overline{p}_1	\overline{p}_{01}	\overline{p}_{02}	$\left \overline{\mathbf{V}} \right _1$	$\left \overline{\mathbf{v}} \right _2$	\overline{u}_1	\overline{u}_2		
Re = 25, $M = 0,15$											
(1,2,2)	66004	1,283	1,054	1,385	1,184	0,288	0,320	0,187	0,225		
	203820	1,295	1,053	1,399	1,190	0,293	0,321	0,188	0,227		
(1,3,3)	147534	1,179	1,010	1,321	1,125	0,340	0,281	0,185	0,218		
(1,4,4)	261620	1,162	1,011	1,375	1,136	0,430	0,376	0,184	0,219		
(1,5,5)	408262	1,131	0,992	1,413	1,129	0,500	0,369	0,183	0,217		
(1,6,6)	587460	1,107	0,975	1,477	1,147	0,576	0,448	0,185	0,220		
(2,2,2)	95484	1,559	1,068	1,672	1,310	0,285	0,360	0,188	0,272		
	271276	1,592	1,069	1,709	1,339	0,290	0,365	0,188	0,277		
(3,3,3)	283070	1,571	1,017	1,746	1,260	0,341	0,370	0,184	0,290		
(4,4,4)	627236	1,678	1,019	1,951	1,275	0,425	0,466	0,183	0,305		
Re = 100, $M = 0.15$											
(1,2,2)	66004	1,108	1,038	1,212	1,172	0,321	0,281	0,185	0,199		
	203820	1,107	1,034	1,212	1,173	0,327	0,282	0,185	0,202		
(1,3,3)	147534	1,050	0,997	1,184	1,130	0,359	0,247	0,183	0,197		
(3,3,3)	283070	1,146	1,001	1,293	1,181	0,364	0,287	0,182	0,214		
Re = 500, $M = 0.15$											
(1,2,2)	125570	1,065	1,028	1,207	1,256	0,428	0,455	0,183	0,191		
	212676	1,059	1,024	1,196	1,252	0,413	0,450	0,184	0,200		
(1,3,3)	278640	1,013	0,991	1,160	1,166	0,392	0,353	0,178	0,186		
(3,3,3)	511184	1,049	0,994	1,207	1,186	0,408	0,350	0,181	0,195		

Средние характеристики потока

Таблица 2

М	Ν	m_1	<i>m</i> ₂	J_{x1}^{p}	J_{x2}^{p}	K_1^p	K_2^p	E_1^p	E_2^p		
Re = 25, $M = 0.15$											
(1,2,2)	66004	0,896	0,892	0,528	0,575	0,239	0,401	76,9	75,9		
(1,3,3)	147534	1,873	1,905	1,183	1,364	0,711	0,830	157,3	159,2		
(1,4,4)	261620	3,298	3,392	1,832	2,174	1,475	1,204	276,5	283,0		
(1,5,5)	408262	5,054	5,198	2,547	3,317	2,394	2,010	422,0	429,8		
(1,6,6)	587460	7,250	7,434	4,092	4,934	3,934	3,353	604,4	614,9		
(2,2,2)	95484	1,033	1,029	0,581	0,941	0,259	0,855	93,6	93,7		
(3,3,3)	283070	2,291	2,358	1,432	2,411	0,875	2,027	208,4	213,0		
(4,4,4)	627236	4,243	4,382	2,416	4,347	1,942	3,504	393,8	399,3		
Re = 100, $M = 0.15$											
(1,2,2)	66004	0,797	0,805	0,494	0,707	0,209	0,444	65,5	66,1		
(1,3,3)	147534	1,706	1,742	1,194	1,551	0,628	1,040	138,3	141,2		
(3,3,3)	283070	1,812	1,873	1,229	1,975	0,674	1,467	150,5	154,5		
Re = 500, $M = 0.15$											
(1,2,2)	125570	0,768	0,779	0,566	1,1586	0,230	0,477	62,4	63,2		
(1,3,3)	278640	1,626	1,657	1,265	1,946	0,604	1,260	130,3	133,0		
(3,3,3)	511184	1,688	1,727	1,266	2,104	0,634	1,469	136,7	139,6		

Значения переноса физических величин

Сходимость по количеству точек разностной сетки исследовалась для $\overline{p}, \overline{p}_0,$

 $|\bar{\mathbf{V}}|, \bar{u}$ при всех Re на упаковках (1,2,2) и (2,2,2). Разница между этими величина-

ми на наименьшей и наибольшей разностных сетках не превосходит 2,2 % для Re = 20, 100 и 4,7 % для Re = 500 (см. табл. 1). Физическая адекватность расчетов проверялась с помощью закона сохранения массы, согласно которому для стационарного течения в отсутствии источников и стоков должно выполняться условие $m_1 = m_2$. Из табл. 2 видно, что разница между m_1 и m_2 не превосходит 3,4 %, причем ошибка растет с увеличением числа шаров. Данная погрешность расчетов погрешности численного интегрирования при вычислении массового расхода, погрешности интерполяции (значения гидромеханических переменных передаются из одного конечного объема в другой с помощью полиномиальной интерполяции, которая реализовывалась без учета законов сохранения) и погрешности разностной схемы (разностная схема построена на основе системы уравнений гидромеханики в симметричной форме и, следовательно, не является консервативной, т.е. реализует интегральные законы сохранения с некоторой ошибкой).

Далее изложим полученные результаты. Из табл. 1 видно, что при переходе через упаковку шаров средняя скорость газа в продольном направлении \bar{u} возрастает, причем она зависит только от числа поперечных слоев упаковки M_x . С ростом M_x также увеличивается перепад давления $\bar{p}_1 - \bar{p}_2$, т. к. газу необходимо преодолевать все большее расстояние между рассматриваемыми поперечными сечениями. Но при возрастании M_y и M_z перепад давления уменьшается, что сопровождается ростом $|\bar{\mathbf{V}}|$ и $\bar{p}_{01} - \bar{p}_{02}$. С увеличением Re значения $\bar{p}_1 - \bar{p}_2$ и $\bar{p}_{01} - \bar{p}_{02}$ падают, т. к. при этом уменьшается динамический коэффициент вязкости μ . Это означает ослабление сил трения, и, следовательно, требуется меньше усилий для того, чтобы протолкнуть газ через упаковку шаров. Также падает величина $\bar{u}_2 - \bar{u}_1$, т. е. скорость газа в продольном направлении увеличивается все в меньшей степени.

367

Рис. 3. Поле скоростей в продольном сечении Z = 1,11 для упаковки шаров (3,3,3) при Re = 25.

В табл. 2 приведен перенос только продольной компоненты импульса, т. к. $J_y^p = J_z^p = 0$ для обоих сечений 1 и 2. Перенос полной энергии E^p включает в себя перенос кинетической и внутренней энергий, причем доля K^p в E^p не превосходит 1 %, поскольку рассматривается медленно движущийся газ (M = 0,15 < 1). Различие в переносе физических величин через рассматриваемые сечения, исключая массовый расход *m*, согласно законам сохранения импульса и энергии связано с действием внешних поверхностных сил давления и трения со стороны обтекаемой поверхности (стенки расчетной области и шары) на поток газа. Рост переноса с увеличением M_y и M_z в значительной степени связан с увеличением площади

поперечных сечений и ростом переносимой массы газа.

Что касается характера течения, то газ входит в объем в виде четко очерченной струи. Наталкиваясь на упаковку шаров, поток разбивается на несколько меньших струй, которые движутся по направлению к выходам через криволинейные каналы, образованные шарами. При этом даже при Re = 25 в пространстве между шарами наблюдаются небольшие вихри (см. рис. 3). На рис. 4 приведены профили продольной компоненты скорости для упаковки (3,3,3) в поперечном

Рис. 4. Профиль продольной компоненты скорости в поперечном сечении X = 2,32 вдоль оси у для упаковки шаров (3,3,3). Re = 25 (1), 100 (2), 500 (3).

сечении X = 2,32 между вторым и третьим слоями вдоль оси у. Там же приведен данный разрез, на котором пунктиром указана линия измерения с координатой Z = 1. Из рис. 4 видно, что скорость движения центральных струй больше пристеночных. Но с ростом Re максимальная скорость в центре падает, а около стенок растет. При этом пики графика смещаются к стенкам. Полученные результаты согласуются с экспериментальными данными, приведенными в [3], за исключением того, что в [3] наблюдались пульсации скорости, а в настоящей работе течение получается стационарно.

ЗАКЛЮЧЕНИЕ

В статье рассмотрено течение вязкого газа через рыхлую кубическую упаковку при различных числах Рейнольдса, для которого приведены основные интегральные характеристики, а также указан характер течения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Liu G. High resolution modeling of transport in porous media // PhD thesis, Louisiana State University and Agriculture and Mechanical College. 2002.
- **2. Guo G.** The effects of local hydrodynamics on mass transfer in disordered porous media // PhD thesis, Louisiana State University and Agriculture and Mechanical College. 2002.
- **3. Волков В.И., Мухин В.А., Накоряков В.Е.** Исследование структуры течения в пористой среде // Журнал прикладной химии. 1981. Т. 54. № 4. С. 838–842.
- 4. Липанов А.М. Метод численного решения уравнений гидромеханики в многосвязных областях // Математическое моделирование. 2006. Т. 18. № 12. С. 3–18.
- **5.** Седов Л.И. Механика сплошной среды. Т. 1-2. СПб.: Издательство «Лань», 2004. Т. 1 528 с. Т. 2 560 с.
- **6.** Самарский А.А., Вабищевич П.Н. Численные методы решения задач конвекции-диффузии. М.: Едиториал УРСС, 2004. 248 с.
- 7. Липанов А.М., Кисаров Ю.Ф., Ключников И.Г. Численный эксперимент в классической гидромеханике турбулентных потоков. Екатеринбург: УрО РАН, 2001. 161 с.
- 8. Липанов А.М., Семакин А.Н. Обтекание трех сфер потоком вязкого газа при Re = 100 // Вестник ИжГТУ. 2008. № 4. С. 203–205.
- 9. Липанов А.М., Семакин А.Н. Обтекание вязким газом системы двух сфер в объеме с перфорированными стенками // Математическое моделирование. 2009. Т. 21. № 7. С. 67–74.
- 10. Липанов А.М., Семакин А.Н. Применение метода конечных объемов к задаче обтекания сферы // Тр. 4 Межд. научн.-практич. конф. «Динамика исследования–2008». Т. 27. Математика. Съвременни технологии на информации. Здание и архитектура. София: «Бял ГРАД-БГ» ООД, 2008. С. 31–35.

Статья поступила в редакцию 3 ноября 2009 г.