УДК 534.222.2

ДЕТОНАЦИОННЫЕ ХАРАКТЕРИСТИКИ НИТРАТА АММОНИЯ И АКТИВИРОВАННЫХ СМЕСЕЙ НА ОСНОВЕ УДОБРЕНИЙ

Л. Тан¹, Л.-Х. Ся¹, Ц.-Цз. Ву^{1,2}, С. Сюй^{1,2}, Д.-Б. Лю¹

¹Нанкинский научно-технологический университет, 210094 Нанкин, Цзянсу, Китай, xusen_345@sohu.com ²Национальный центр по надзору и инспекции качества промышленных взрывчатых материалов, 210094 Нанкин, Цзянсу, Китай

Методами преград международного стандарта и сканирующей электронной микроскопии исследовались детонационные характеристики нитрата аммония (HA) и его смесей с активированными добавками — хлоридом калия и моноаммонийфосфатом, получаемых различными методами перемешивания. В механически перемешанных смесях скорость детонации уменьшалась с увеличением доли добавки в HA, а в смесях, приготовленных методом смешивания в растворе, увеличивалась. Показано, что ударная чувствительность возрастает при уменьшении размера частиц HA. Добавки, метод перемешивания и распределение частиц по размерам представляют собой важные параметры, влияющие на детонационные характеристики HA.

Ключевые слова: нитрат аммония, хлорид калия, моноаммонийфосфат, скорость детонации.

DOI 10.15372/FGV20160313

ВВЕДЕНИЕ

Нитрат аммония (НА) широко применяется как азотное удобрение, а также в качестве главного компонента энергетических материалов и взрывчатых веществ (ВВ) гражданского назначения [1–3]. У него много преимуществ по сравнению с другими ВВ, например, почти 100%-е выделение газообразных продуктов, положительный кислородный баланс [4], низкая стоимость. Ожидается, что его можно будет использовать в качестве окислителя в не содержащем галогена ракетном топливе или применять для генерирования газа в подушках безопасности следующего поколения [5–8]. Вместе с тем НА имеет ряд недостатков, к наиболее важным относится возможность фазовых переходов при температуре ниже 100 °C, в частности переход IV \leftrightarrow III наблюдается при близкой к комнатной температуре. Переход фазы IV в фазу III может вызвать изменение плотности и объема на 3.8 %, в результате чего возникают пористая структура и потрескавшиеся кристаллы с плохой механической прочностью,

что приводит к нежелательным эксплуатационным качествам BB [9–11].

ВВ на основе НА классифицируются как слабые, группы II. Для таких ВВ характерно увеличение критического диаметра детонации с ростом начальной плотности [12–14]. При их применении достаточно часто происходят крупные аварии. Кроме того, из-за доступности рецептуры и ингредиентов для приготовления ВВ из НА их используют в террористических целях [15, 16]. Всё это вызывает большое внимание к проблеме подавления детонации НА.

Предпринимались различные попытки решить данную проблему. К ним относится смешивание НА с подходящим стабилизатором для изменения фазового перехода или со сложным удобрением для увеличения термической стабильности смеси [17–19]. В [17] для задержки цепной реакции в НА использовались составные удобрения, что позволило улучшить термическую стабильность НА. В [19] указаны два подхода к уменьшению взрывоопасности НА: разбавление его химически инертным материалом или введение небольших количеств материала, которые увеличивают зону химической реакции.

Хлорид калия является одним из агентов для подавления взрывоопасности ВВ в шахтах и применяется в качестве минерального удобрения, моноаммонийфосфат (МАФ) служит сы-

[©] Tan Liu¹, Xia Liang-hong¹, Wu Qiu-jie^{1,2}, Xu Sen^{1,2}, Liu Da-bin¹, 2016.

¹School of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, Jiangsu, China. ²National Quality Supervision and Inspection Center for Industrial Explosive Materials, 210094 Nanjing, Jiangsu, China.

рьем для изготовления сложных удобрений, часто вместе с НА. Цель данной работы — изучить детонационные характеристики НА в смеси с различными добавками.

1. ЭКСПЕРИМЕНТ

Использовались НА, КСl и МАФ промышленного сорта компаний «Кайлонг Кемикл» (Китай) и «Хуаруи Кемикл» (Китай) в состоянии поставки без дальнейшей очистки. Смешивание проводили механическим способом и в растворе. В первом случае материалы и каменный шар мельницы предварительно нагревали при 80 $^{\circ}\mathrm{C}$ в течение 0.5 ч. Затем НА смешивали в определенной пропорции с KCl или МАФ в шаровой мельнице при скорости вращения $120 \text{ об/мин в течение } 0.5 \text{ ч, а затем хра$ нили в эксикаторе. При смешивании в растворе необходимое рассчитанное количество НА и KCl постепенно добавляли в воду при 80 °C на водяной бане. После нагревания и полного растворения раствор медленно охлаждали до комнатной температуры при осторожном перемешивании. Полученные кристаллы собирали фильтрованием, а затем хранили в эксикаторе.

Морфологию частиц НА изучали методом сканирующей электронной микроскопии (СЭМ) с использованием микроскопа JSM 6360A [20, 21]. Порошкообразный образец помещали на углеродную ленту и затем методом распыления покрывали платиной.

Детонационную способность модифицированного НА проверяли методом преград международного стандарта. Схема теста показана на рис. 1. В опыте использовалась стальная труба внутреннего диаметра 40 мм, наружный диаметр 48 ± 2 мм, толщина стенок трубы 4.0 ± 0.1 мм, общая длина трубы 400 мм. Бустерный заряд диаметром 50 ± 1 мм изготавливался из тэна и ТНТ 50/50 плотностью 1.60 г/см³, заряд инициировался электрическим детонатором № 8. Длина ребра пластинысвидетеля составляла 150 ± 10 мм, толщина — 3.2 ± 0.2 мм. Толщина прокладки из стали 1.6 ± 0.2 мм. Ионизационные датчики устанавливали перпендикулярно оси трубы с интервалом 50 мм. Скорость детонации вычисляли на основе расстояния между датчиками и разности времен прихода ударной волны. Эксперименты с одинаковыми условиями повторяли по два раза [22, 23].

Рис. 1. Схема метода преград международного стандарта:

1 — прокладки, 2 — пластина-свидетель, 3 — стальная труба, 4 — модифицированный НА, 5 — бустерный заряд из тэна и ТНТ, 6 — держатель детонатора, 7 — детонатор, 8 — преграда из ПММА, 9 — ионизационные датчики

2. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ И ИХ ОБСУЖДЕНИЕ

2.1. Влияние добавок на скорость детонации НА

Опыты проводили методом преград. В табл. 1 приведены результаты по скорости детонации НА и его смесей с КСl и МАФ. При добавлении 10 % КСl скорость детонации составляла 1.42 км/с, при добавлении 15 % МАФ — 1.25 км/с. При увеличении содержания КСl до 15 % скорость падала до 1.29 км/с. Можно считать, что условия опытов близки к пределу устойчивой детонации, так как при увеличении содержания КСl до 20 % смесь НА—КСl не детонирует. Аналогично, скорость детонации смеси с 20 % МАФ снизилась до 1.19 км/с, а при увеличении содержания МАФ до 25 % смесь НА—МАР не детонирует.

Добавки KCl и MAФ ведут себя как инертное вещество. Несмотря на то, что инертное вещество не реагирует в зоне химической реакции, оно может поглощать тепло. С уменьшением концентрации взрывоопасных ингредиентов (HA) в такой смеси теплота взрыва также уменьшается [24–26]. Результаты экспериментов свидетельствуют о том, что при достаточно высоком содержании инертного вещества смесь HA — добавка не детонирует. Тем не ме-

т	а	б	π	и	тт	а	-

Скорость детонации смесей НА с добавкой, полученных путем механического перемешивания

Образец	Содержание добавки, %	Плотность, Γ/cm^3	Скорость детонации, км/с	Среднее значение, км/с
НА		$\begin{array}{c} 0.90 \\ 0.90 \end{array}$	1.81 1.75	1.77
HA—KCl	5	$0.89 \\ 0.90$	$1.55 \\ 1.52$	1.54
HA—KCl	10	$\begin{array}{c} 0.90\\ 0.88 \end{array}$	$1.48 \\ 1.37$	1.42
HA—KCl	15	$0.90 \\ 0.90$	$ \begin{array}{r} 1.30 \\ 1.28 \end{array} $	1.29
HA—KCl	20	0.90	Затухает	Затухает
НА—МАФ	15	0.90 0.90	$1.28 \\ 1.24$	1.25
НА—МАФ	20	0.90 0.90	$1.17 \\ 1.21$	1.19
НА—МАФ	25	0.90	Затухает	Затухает

Рис. 2. Распределение частиц по размерам в смеси HA — 10 % KCl

нее следует отметить, что различные добавки по-разному воздействуют на детонацию НА.

ВВ на основе НА демонстрируют неидеальные режимы детонации. Трение и столкновения между добавкой и НА под действием ударных волн способствуют формированию горячих точек [25, 27, 28]. Температура в них достигает 400 \div 600 °C. Поскольку температура плавления и температура разложения добавки должна быть выше, чем температура в горячих точках, формированию последних в большей степени способствует добавка KCl, поскольку температура плавления KCl (773 °C) выше, чем у МАФ (190 °C).

Рис. 3. Распределение частиц по размерам в смеси НА — 10 % МАФ

С другой стороны, различие физических свойств добавок влияет на распределение частиц НА по размерам. Из рис. 2, 3 видно, что размер частиц НА в смеси с КСІ находится в диапазоне $d = 10 \div 100$ мкм, а в смеси с МАФ в диапазоне $d = 100 \div 1000$ мкм. Различное распределение частиц по размерам в основном зависит от твердости добавок. В процессе механического перемешивания под действием внешнего напряжения и трения между НА и добавкой кристалл получает определенную степень повреждения. Твердость КСІ гораздо больше, чем твердость МАФ, поэтому смеси НА с этими добавками имеют различное распределение частиц по размерам. Общая площадь поверх-

Т	a	б	Π	и	п	а	2
- L	c.	o	11	¥1	ш	c.	

Скорость детонации смесей НА с добавкой, полученных методом смешивания в растворе

Образец	Содержание добавки, %	Плотность, Γ/cM^3	Скорость детонации, км/с	Среднее значение, км/с
HA—KCl	5	$0.90 \\ 0.89$	$1.92 \\ 1.81$	1.86
HA—KCl	10	$\begin{array}{c} 0.90\\ 0.90\end{array}$	$1.61 \\ 1.62$	1.61
HA—KCl	15	0.90	Затухает	Затухает
НА—МАФ	5	$0.89 \\ 0.89$	$1.85 \\ 1.93$	1.89
НА—МАФ	10	$0.90 \\ 0.89$	$1.99 \\ 2.02$	2.00
НА—МАФ	15	$\begin{array}{c} 0.90 \\ 0.90 \end{array}$	$2.05 \\ 1.98$	2.01
НА—МАФ	20	0.90 0.88	1.70 1.62	1.66
HA—MAΦ	25	0.90	Затухает	Затухает

ности увеличивается при уменьшении размера частиц, поэтому передача тепла и трение между частицами НА становятся более существенными. Взрывчатое превращение ВВ на основе НА осуществляется в режиме неидеальной детонации; размер кристаллов, зерен, гранул, образцов и т. д. оказывает большое влияние на свойства этих ВВ. Различные физические свойства добавок приводят к различным детонационным характеристикам рассматриваемых ВВ.

2.2. Влияние метода смешивания на скорость детонации НА

Взаимодействие между НА и добавками при различных методах смешивания, термический цикл этого процесса оказывают сильное влияние на детонационные характеристики смесевого ВВ. Параметры механически перемешанных смесей приведены в табл. 1, смесей, полученных методом смешивания в растворе, — в табл. 2. Скорость детонации смешанных в растворе смесей оказалась больше, чем механически перемешанных. Более того, для смесей с добавкой 10 и 15 % МАФ она была даже выше, чем в чистом НА. Однако при увеличении содержания МА Φ до 20 % скорость детонации снизилась до 1.66 км/с. Такое поведение скорости детонации смесей НА-МАФ иллюстрирует рис. 4.

При смешивании в водном растворе MAФ образует суспензию, частицы которой играют

Рис. 4. Скорость детонации смесей НА—МАФ: ■ — перемешивание в растворе, ◆ — механическое

роль затравочных кристаллов в процессе перекристаллизации. После перекристаллизации частицы НА покрывают поверхность МАФ, небольшое термическое разложение МАФ при 80 °C создает микропузырьки в кристалле. Ударная волна деформирует и сжимает материал в области с микропузырьками, их адиабатическое сжатие приводит к резкому росту температуры. Микропузырьки способствуют формированию горячих точек и играют важную роль в процессе зажигания, поэтому добавление небольшого количества МАФ облегчает развитие детонации [3, 25, 29]. Несмотря на то, что МАФ может образовывать двойные

Рис. 5. Скорость детонации смесей HA—KCl: ■ — перемешивание в растворе, ◆ — механическое

соли с НА, это не способствует окислительновосстановительной реакции НА. Кроме того, МАФ является инертным веществом и перемешивается с НА более равномерно после рекристаллизации. При увеличении содержания МАФ до с 10 до 15 % скорость детонации не увеличивается. Это означает, что инертный эффект начинает играть важную роль в процессе детонации, ее скорость стабильна до 15 % МАФ, а при 20 % начинает уменьшаться.

Как видно на рис. 5, при добавлении KCl скорость детонации падает с увеличением добавки, в отличие от МАФ. При росте доли KCl от 5 до 25 % скорость детонации смесей уменьшается от 1.86 до 1.61 км/с. Скорость детонации смесей НА—KCl, полученных методом смешивания в растворе, была выше, чем механически перемешанных смесей. Мы считаем, что это связано в основном с размером частиц, так как KCl относительно стабилен в процессе перекристаллизации. Как видно из табл. 3, насыпная плотность смесей, приготовленных пе-

	Таблица
Насыпная плотность образ	цов,
солержащих 5 % лобавк	и

3

Образец	Метод смешивания	Насыпная плотность, Γ/cM^3	
HA		0.68	
HA—KCl	Раствор	0.64	
HA—KCl	Механический	0.76	
$\mathrm{HA}\mathrm{-\!MA}\Phi$	Раствор	0.55	
$\mathrm{HA}\mathrm{-\!MA}\Phi$	Механический	0.70	

ремешиванием в растворе, меньше, чем смесей, полученных путем механического смешивания. Это означает, что частицы стали меньше, а пористость увеличилась. Такие структуры могут внести свой вклад в формирование детонации.

2.3. Влияние размера частиц на скорость детонации НА

Были приготовлены четыре образца НА с помощью различных молекулярных сит. Размеры частиц этих образцов приведены в табл. 4. Результаты измерения скорости детонации представлены в табл. 5. Скорость детонации образца 1 была самой низкой, пробития пластины-свидетеля не наблюдалось, глубина вмятины 5.45 см. С уменьшением размера частиц детонационная способность НА, смешиваемого с добавкой в растворе, усиливается, его разрушительное действие возрастает (см. образцы 2, 3). Для образца 4, несмотря на то что его плотность меньше, чем плотность образцов 1-3, в опыте достигнута скорость детонации 1.54 км/с, а диаметр отверстия в пластине равнялся 7.1 см.

Известно, что физическая структура оказывает существенное влияние на свойства взрывчатых материалов, особенно с низкими взрывными характеристиками, такими как у НА и его смесей с инертными добавками. На рис. 6 приведены изображения частиц четырех образцов, полученные с использованием сканирующего электронного микроскопа. Видно, что поверхности НА имеют различную форму. Поверхность и кромки образца 1 (рис. 6,*a*) структурированы, сглажены и занимают меньше пространства. С уменьшением размера частиц нерегулярность и пористость поверхности возрастают.

При детонации НА горячие точки играют важную роль. В них происходит воспламенение ВВ [3, 12, 18]. Образование горячих точек в основном зависит от размера зерна, пористости,

Распределение частиц по размерам в образцах

Образец	Размер зерна, мкм
1	$420 \div 841$
2	$250 \div 420$
3	$177 \div 250$
4	$149 \div 177$

таолица о

	-		-		
Образец	Масса, г	Плотность, г/см 3	Разрушительный эффект, см	Скорость детонации, км/с	Среднее значение, км/с
1	$389 \\ 384$	$0.78 \\ 0.77$	Вмятина 5.5 —//— 5.4	$\begin{array}{c} 1.17\\ 1.17\end{array}$	1.17
2	390 393	$0.78 \\ 0.78$	Отверстие 3.0 —//— 3.1	$1.32 \\ 1.35$	1.34
3	$391 \\ 389$	$0.78 \\ 0.78$	Отверстие 8.1 ————————————————————————————————————	$\begin{array}{c} 1.63 \\ 1.58 \end{array}$	1.61
4	$353 \\ 351$	$0.71 \\ 0.70$	Отверстие 7.0 ——//— 7.2	$1.52 \\ 1.57$	1.54

Скорость детонации образцов НА, различающихся размером частиц

Рис. 6. Фотографии образцов 1–4 (см. табл. 4) с различными размерами частиц (*a–г* соответственно), полученные с использованием сканирующего электронного микроскопа

морфологии поверхности и т. д. Структура образцов 3 и 4 в большей степени способствует формированию горячих точек, что согласуется с результатами измерения скорости детонации НА.

ЗАКЛЮЧЕНИЕ

1. Скорость детонации смесей НА с добавками, полученных механическим перемешиванием, уменьшается с увеличением добавки. Для смеси HA — 10 % KCl она понижается с 1.78 до 1.43 км/с, для смеси HA — 15 % MAФ снижается до 1.26 км/с. Физические свойства добавок оказывают большое влияние на свойства BB.

2. Скорость детонации НА, смешиваемого с добавкой в растворе, выше; так, для смеси НА — 5 % KCl она равна 1.86 км/с, для смеси НА — 10 % МАФ равна 2.00 км/с. Кро-

ме того, скорость детонации смесей НА—МАФ при увеличении добавки имеет тенденцию вначале возрастать, а затем уменьшаться. Смеси НА с добавками, получаемые различными методами, имеют различные размеры частиц, насыпную плотность и морфологию поверхности. Методы смешивания влияют на детонационные характеристики смесевых BB.

3. С уменьшением размера частиц НА структура образцов становится нерегулярной и пористой, что в большей степени способствует формированию детонации. Для образца 4, несмотря на то что его плотность равна только 0.7 г/см³, достигнута скорость детонации 1.54 км/с, а диаметр отверстия в пластинесвидетеле составил 7.1 см. При уменьшении размера частиц увеличиваются чувствительность к удару и скорость детонации. Размер частиц оказывает большое влияние на неидеальную детонацию.

Исследование поддержано Национальным фондом естественных наук Китая (грант № 51174120).

ЛИТЕРАТУРА

- 1. Kirk-Othmer Encyclopedia of Chemical Technology. New York: Wiley, 1992. P. 698.
- Ullmann's Encyclopedia of Industrial Chemistry. — Germany: Wiley-VCH, 1989.
- Lu Chunxu, Liu Zuliang, Ni Ouqi. Theory of Industrial Explosives. — Beijing: Arms Industry Press, 1994.
- 4. Turcotte R., Lightfoot P. D., Fouchard R., et al. Thermal hazard assessment of AN and ANbased explosives // J. Hazard. Mater. — 2003. — V. 101, N 2. — P. 1–27.
 5. Oommen C., Jain S. R. Ammonium nitrate: a
- Oommen C., Jain S. R. Ammonium nitrate: a promising rocket propellant oxidizer // J. Hazard. Mater. — 1999. — V. 63, N 3. — P. 253–281.
- Sutton G. P. Rocket Propulsion Elements. 5th ed. — New York: Wiley, 1986. — P. 296.
- Wu H. B., Chan C. K. Effects of potassium nitrate on the solid phase transitions of ammonium nitrate particles // Sci. Direct. 2008. V. 42, N 2. P. 313–322.
- 8. **Тве Е З., Денисюк А. П.** Закономерности горения баллиститных порохов различного состава с нитратом аммония // Физика горения и взрыва. 2013. Т. 49, № 3. С. 39–49.
- Chellappa R. S., Dattelbaum D. M. The phase diagram of ammonium nitrate // J. Chem. Phys. — 2012. — V. 137, N 6. — P. 505–520.
- Oommen C., Jain S. R. Phase modification of ammonium nitrate by potassium salts // J. Therm. Anal. Calorim. — 1998. — V. 55, N 3. — P. 903–918.

- Herrmann M. J., Engel W. Phase transitions and lattice dynamics of ammonium nitrate // Propell., Explos., Pyrotech. — 1997. — V. 22, N 3. — P. 143–147.
- Klimova I., Kaljuvee T., Turn L., Bender V., Trikkel A. Interactions of ammonium nitrate with different additives // J. Therm. Anal. Calorim. — 2011. — V. 105, N 1. — P. 13–26.
- Kazuomi Kajiyama, Yu-ichiro Izato, Atsumi Miyake. Thermal characteristics of ammonium nitrate, carbon, and copper(II) oxide mixtures // J. Therm. Anal. Calorim. 2013. V. 113, N 3. P. 1475–1480.
- Shah K. D. Ammonium nitrate production, storage and distribution: accidents and investigations // Proc. of the Intern. Fertilizer Soc. — UK, 2008.
- Biasutti G. S. History of Accidents in the Explosives Industry. 1980.
- Foulger B., Hubbard P. J. A review of techniques examined by UK authorities to prevent or inhibit the illegal use fertilizer in terrorist devices // Proc. of the Intern. Explos. Symp. — Fairfax, Virginia, 1995. — P. 129.
- Tang S. L., Liu Zuliang, Zhu Guangjun, Lu Chunxu. Effect of additives on detonation safety and heat stability of ammonium nitrate // Chem. Fertilizer Ind. — 2003. — V. 30. — P. 28–29, 32.
- Козак Г. Д., Старшинов А. В., Литовка О. Б., Казакова С. В. Свойства пористых литых зарядов на основе смесей аммиачной селитры и карбамида // Физика горения и взрыва. — 2010. — Т. 46, № 1. — С. 80–84.
- Jimmie C., Oxley J. L., Smith, Evan R., Ming Y. Ammonium nitrate: Thermal stability and explosivity modifiers // Thermochim. Acta. — 2002. — V. 384, N 25. — P. 23–45.
- 20. Argast A., Clarence F. A Web resource for the study of alkali feldspars and perthitic textures using light microscopy, scanning electron microscopyand energy dispersive X-ray spectroscopy // J. Geosci. Education. — 2004. — V. 52, N 3. — P. 213–217.
- Beane R. J. Using the scanning electron microscope for discovery based learning in undergraduate courses // J. Geosci. Education. 2004. V. 52, N 3. P. 250–253.
- 22. United Nations. Recommendations on the Transport of Dangerous Goods. Model regulations. 16th ed. New York; Geneva: United Nations Publications, 2009.
- 23. United Nations. Recommendations on the Transport of Dangerous Good. Manual of Tests and Criteria. 5th ed. New York; Geneva: United Nations Publications, 2009.
- 24. Buczkowski D., Zygmunt B. Detonation properties of mixtures of ammonium nitrate based fertilizers and fuels // Centr. Eur. J. Energ. Mater. 2011. V. 8, N 2. P. 99–106.

- Zygmunt B., Buczkowski D. Influence of ammonium nitrate prills properties on detonation velocity of ANFO // Propell., Explos., Pyrotech. 2007. V. 32, N 5. P. 411–414.
- 26. Miyake A., Takahara K., Ogawa T. Influence of physical properties of ammonium nitrate on the detonation behaviour of ANFO // J. Loss Prevent. in the Process Ind. — 2001. — V. 14, N 6. — P. 533–538.
- 27. Афанасенков А. Н. Замечания по поводу статьи А. А. Дерибаса, В. А. Симонова «Детонационные свойства аммиачной селитры» // Физика горения и взрыва. — 2000. — Т. 36, № 5. — С. 134–136.
- Wharton R. K., Royle H. J. Factors that affect the impact sensitiveness of ammonium nitrate fuel oil (ANFO) explosives containing aluminium // J. Energ. Mater. — 2006. — V. 18, N 2. — P. 177–205.
- 29. Miyake A., Kobayashi H., Echigoya H. Detonation characteristics of ammonium nitrate and activated carbon mixtures // J. Loss Prevent. in the Process Ind. 2007. V. 20, N 4. P. 584–588.

Поступила в редакцию 18/II 2015 г.