2016. Том 57, № 4

Май – июнь

C. 749 – 755

УДК 539.26

СТРУКТУРНЫЕ ОСОБЕННОСТИ Fe_xTiSe₂ — МАТЕРИАЛОВ С РЕТРОГРАДНОЙ РАСТВОРИМОСТЬЮ В ТВЕРДОМ СОСТОЯНИИ

Е.Г. Шкварина^{1,2}, А.Н. Титов^{1,2}, С.Г. Титова³, О.М. Фёдорова³

¹Институт физики металлов им. М.Н. Михеева УрО РАН, Екатеринбург, Россия E-mail: physicsmet@yandex.ru ²Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия

²Институт металлургии УрО РАН, Екатеринбург, Россия

Статья поступила 7 июня 2015 г.

С доработки — 14 сентября 2015 г.

Рассмотрены изменения кристаллической структуры, сопровождающие внедрение и выделение железа в слоистом интеркалатном соединении TiSe₂, демонстрирующем ретроградную растворимость в полностью твердотельном состоянии. Рассмотрены различные концентрационные области, не превышающие, превышающие и соответствующие пределу протекания для перекрытия орбиталей атомов титана, координированных железом. Показано, что при низких температурах (ниже 400 °C) поведение железа в решетке TiSe₂ определяется ковалентной связью железа с решеткой, тогда как при высоких температурах (выше 1000 °C) железо становится ионной примесью. В промежуточной области температур атомы железа участвуют либо в ковалентной, либо в ионной связи с решеткой. При увеличении содержания железа в виде ионной примеси увеличение параметра ячейки в направлении, перпендикулярном слоям, сопровождается сжатием сэндвича Se—Ti—Se и увеличением ширины ван-дер-ваальсовой щели. При формировании ковалентной связи происходит уменьшение параметра ячейки в направлении, перпендикулярном слоям, что сопровождается увеличением ширины сэндвича Se—Ti—Se и уменьшением ширины ван-дер-ваальсовой щели.

DOI: 10.15372/JSC20160412

Ключевые слова: полнопрофильный рентгенофазовый анализ, ЯГРС, ретроградная растворимость в твердом состоянии, интеркалированный железом диселенид титана.

введение

Ретроградная растворимость (уменьшение растворимости при нагреве) наблюдается в ряде систем, например, Ag—Pb, Ag—Sn, Si—Sn, Si—Zn, Li—Si [1], при температурах выше температуры плавления одного из компонентов. Поскольку наклон границы растворимости на плоскости состав—температура определяется разностью энтропии чистых компонентов и их раствора, то уменьшение растворимости компонентов при нагреве объясняется повышением энтропии жидкого компонента.

В 2012 г. при изучении растворимости железа в TiSe₂ методом закалок нами впервые обнаружен класс материалов, в которых наблюдается ретроградная растворимость в твердом состоянии, при этом содержание железа в решетке TiSe₂ было определено с помощью ядерной гамма-резонансной спектроскопии (ЯГРС) [2]. Полученное поле устойчивости однородного состояния в системе Fe—TiSe₂ представлено на рис. 1. Можно видеть, что рост температуры приводит к выделению железа из Fe_xTiSe₂; при дальнейшем нагреве оно снова входит в решетку.

[©] Шкварина Е.Г., Титов А.Н., Титова С.Г., Фёдорова О.М., 2016

Рис. 2. Кристаллическая структура TiSe₂, интеркалированного железом (стрелками указаны ван-дер-ваальсова щель и сэндвич Se—Ti—Se)

Рис. 1. Диаграмма состояния системы Fe—TiSe₂, полученная с помощью метода закалок (темные кружки) и по данным ДТА (белые звездочки): І — область однородного интеркалатного соединения, II — область смеси фаз железа и интеркалатного соединения Fe—TiSe₂, III — снова область однородного Fe_xTiSe₂ по данным работ [2, 11]

Кристаллическая структура интеркалатных материалов на основе слоистых дихалькогенидов титана состоит из сэндвичей состава Se—Ti—Se. Каждый сэндвич представляет собой гексагональный слой атомов титана, сверху и снизу окруженный слоями атомов селена. Эти сэндвичи связаны между собой слабым ван-дер-ваальсовым взаимодействием, поэтому пространство между ними называется ван-дер-ваальсовой щелью. Интеркалированные атомы железа занимают октаэдрические позиции ван-дер-ваальсовой щели (рис. 2) [3].

Внедрение железа сопровождается сжатием решетки в направлении *c*-оси [4]. Для этого и ряда аналогичных интеркалатных соединений это объясняется наличием ковалентных связей вследствие гибридизации Ti3d/Fe3d-состояний [5] с перекрытием электронных d_{z^2} -оболочек атомов титана и железа вдоль оси *c*. Это приводит к деформации решетки (сжатию) и локализации носителей заряда на ковалентных центрах. В электронном спектре вблизи уровня Ферми при этом появляются бездисперсионные примесные зоны локализованных состояний [5].

Согласно нашей модели [6], ретроградная растворимость в интеркалатных материалах связана с термическим уширением зоны этих состояний. Изменение характеристического размера ковалентных центров связано с изменением энергии связи гибридных состояний [4]. Поэтому нагрев, приводя к росту амплитуд тепловых колебаний, и, соответственно, к размыванию размеров центров, обеспечивает уширение примесной зоны. Это делает возможным пересечение верхним краем зоны уровня Ферми. Поскольку эти состояния обеспечивали ковалентную связь интеркаланта с решеткой TiSe₂, то они заполнены и, оказавшись выше уровня Ферми, должны опустошаться с переносом электронов в зону проводимости. Очевидно, что этот процесс сопровождался бы увеличением энергии Ферми. Поскольку энергия Ферми есть не что иное, как парциальная свободная энергия электронной подсистемы ΔG_e , то такой процесс означал бы возрастание ΔG_e , т.е. соответствовал бы отрицательному вкладу энтропии электронов в общую энтропию материала. Очевидно, что это смещает равновесие Fe/Fe_xTiSe₂ в сторону понижения растворимости железа. Это и проявляется в наших экспериментах как распад однородного интеркалатного соединения с выделением металлического железа. Схема этого процесса показана на рис. 3.

В [2] было показано, что в областях I и III, показанных на рис. 1, железо растворено в решетке, а различие между областями I и III объяснялось тем, что в области I железо формирует ковалентные центры, тогда как в области III, при более высокой температуре, железо присутству*Рис. 3.* Общая схема термического уширения примесной зоны (увеличение номера кривой соответствует нагреву)

ет в соединении в качестве ионной примеси. Очевидно, этот переход должен сопровождаться структурными изменениями. Поиск соответствующих структурных особенностей является целью настоящей работы. Возможность изучения фазового и структурного состояния образцов методом закалок обусловлена тем, что наблюдаемые переходы представляют собой фазовые переходы I рода, и состояние образца при заданной температуре может быть зафиксировано закалкой.

ЭКСПЕРИМЕНТ

Образцы Fe_xTiSe₂ получены методом твердофазного синтеза с использованием предварительно синтезированного TiSe₂. Синтез TiSe₂ осуществлялся в вакуумированных до 10^{-5} Topp кварцевых ампулах при температуре 900—950 °C в течение недели из исходных элементов: титана, чистотой 99,99; селена марки ОСЧ 19-5 чистотой 99,999. Полученный продукт был перетерт в агатовой ступке и подвержен гомогенизационному отжигу в тех же условиях. Интеркалацию железом проводили термическим методом, для этого смешивали соответствующее количество поликристаллического TiSe₂ и гранулированного железа чистотой 99,99, прессовали для улучшения контакта и отжигали при тех же условиях. Затем перетирали и проводили гомогенизационный отжиг.

Полученные образцы составов Fe_{0,1}TiSe₂, Fe_{0,25}TiSe₂ и Fe_{0,33}TiSe₂ отжигали в тех же условиях при каждом значении температуры из диапазона [200, ... 800 °C] с шагом 100 °C в течение недели. Как показали данные ЯГРС, такой отжиг способствовал выделению железа [2]. Образцы были аттестованы рентгенографически в Институте металлургии УрО РАН, ЦКП "Урал-М" с использованием дифрактометра Shimadzu XRD 7000 °C Maxima (CuK_α-излучение, графитовый монохроматор). Полнопрофильный анализ выполнен с использованием пакета программ General Structure Analysis System (GSAS) [7]. Первоначально кристаллическую структуру уточняли в модели с пространственной группой P-3m1 и координатами атомов Ti (0 0 0), Se (1/3 2/3 z), $z \sim 0,254$, Fe (0 0 1/2). Фон аппроксимирован полиномом Чебышева с восемью коэффициентами, тепловые добавки уточняли в анизотропной форме, использовали профильную функцию псевдо-Войта с пятью коэффициентами. В расчете уточнялись параметры элементарной ячейки, z-координата атомов селена Z_{Se} и заполнение октаэдрической позиции ван-дерваальсовой щели, в которой располагаются атомы железа.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследованы три состава Fe_xTiSe₂ с x = 0,1, 0,25 и 0,33. Их выбор обусловлен тем, что состав x = 0,25 является порогом протекания для треугольной (гексагональной) решетки для учета перекрытия орбиталей атомов титана, координированных железом (перекрытие орбиталей центров Ti—Fe—Ti) [8]; соответственно составы с x 0,1 и 0,33 отвечают режимам малой и большой концентрации.

Для образцов серии исходного состава Fe_{0,1}TiSe₂ расчет характеризуется высокими факторами расходимости $R_{\rm B} \sim 6$ —11 %, $\omega R_{\rm p} \sim 5,3$ —6,5 %, $R_{\rm p} \sim 4,0$ —4,6 %, $\chi^2 \sim 2,6$ —3,3. Учет небольшого количества титана (до 16 моль.%) в пространстве ван-дер-ваальсовой щели позволяет значительно их уменьшить: $R_{\rm B} \sim 2,6$ —4,4 %, $\omega R_{\rm p} \sim 4,8$ —5,7 %, $R_{\rm p} \sim 3,6$ —4,3 %, $\chi^2 \sim 1,9$ —3,0. В качестве примера на рис. 4 приведена экспериментальная, расчетная и разностная рентгенограмма образца Fe_{0,33}TiSe₂ после недельного отжига при 700 °C. Данные расчетов приведены в таблице и на рис. 5.

Для образцов исходного состава с x = 0,25 при низкой температуре (область I) наблюдается некоторое увеличение концентрации железа; этому отвечает уменьшение параметра *c*. Оба факта указывают на дорастворение железа в TiSe₂, причем содержание железа достигает макси-

Рис. 4. Экспериментальная, расчетная и разностная рентгенограмма образца Fe_{0.33}TiSe₂ после недельного отжига при 700 °C.

На вставке приведен пик с максимальным различием экспериментального и теоретического спектров

мального значения при 400 °С (см. рис. 5, ж). Этот результат согласуется с данными ЯГРС [2]. Это может быть обусловлено тем, что скорость закалки недостаточно высока, чтобы зафиксировать закаляемое состояние, т.е. скорость охлаждения образца была ниже скорости охлаждения ампулы вследствие слабого контакта образца с ампулой (прессованная таблетка поликристаллического образца свободно лежала в ампуле). Аналогично мы объясняем некоторое уменьшение содержания железа в образцах исходного состава x = 0,33. Отметим, что уменьшению содержания железа отвечает увеличение параметра ячейки *с*.

На рис. 5, c, κ , n приведена рассчитанная как $2c \cdot Z_{Se}$ толщина TiSe₂-сэндвича. Можно видеть, что для всех трех составов увеличению толщины сэндвича отвечает уменьшение ширины ван-дер-ваальсовой щели. Увеличение содержания железа для исходного состава x = 0,25 в области I, как отмечено выше, приводит к сжатию решетки в направлении оси c (см. рис. 5, 3), это сжатие обусловлено сокращением ван-дер-ваальсовой щели (см. рис. 5, u), в которой и располагаются примесные атомы железа. Такое поведение обусловлено усилением ковалентных связей Ti—Fe—Ti. Для образцов исходного состава Fe_{0,1}TiSe₂ в области I слабое уменьшение параметра c также коррелирует с сокращением ван-дер-ваальсовой щели (см. рис. 5, s). В то же время для состава с большим содержанием железа x = 0,33 увеличение параметра c (см. рис. 5, h) не связано с изменением размера щели, которая, напротив, уменьшается, а обусловлено увеличением толщины сэндвича. Это различие с составами с меньшим содержанием железа объясняется эффектами экранировки при содержании примеси, превышающем предел протекания.

В области II существует смесь фаз железа и интеркалатного соединения Fe—TiSe₂. Согласно модели [6] (см. рис. 3), в этой области происходит частичный распад ковалентных центров, стягивающих решетку. Именно поэтому во всех трех исследованных сериях образцов наблюдается увеличение параметра *с*. Учитывая, что ковалентные центры являются центрами деформации, можно предположить, что их исчезновение приведет к расширению ван-дер-ваальсовой щели. Именно так и происходит в образцах исходного состава x = 0,25. В серии образцов Fe_{0,33}TiSe₂ этого не происходит из-за эффектов экранировки, как мы упоминали выше. Образцы исходного состава Fe_{0,1}TiSe₂ характеризуется концентрацией интеркаланта ниже порога протекания. Однако в области II при выделении железа увеличение параметра *с* сопровождается уши-

Серия образцов исходного состава Fe _{0,1} TiSe ₂									
T, ℃	<i>a</i> , Å	<i>c</i> , Å	Z _{Se}	Содер- жание Fe	Содержание сверхстехио- метричногоТі	$R_{\rm F}^2, \%$	<i>wR</i> _p , %	<i>R</i> _p , %	χ ²
200	3,5464(1)	5,9888(1)	0,2585(2)	0,116(3)	0,165(4)	4,38	5,52	4,14	2,874
300	3,5463(1)	5,9879(1)	0,2602(2)	0,118(3)	0,092(4)	2,78	5,27	3,86	2,793
400	3,5462(1)	5,9884(1)	0,2601(2)	0,109(3)	0,072(3)	2,67	5,44	3,96	3,048
500	3,5465(1)	5,9873(1)	0,2598(2)	0,112(4)	0,079(3)	3,21	5,04	3,71	2,675
600	3,5496(1)	5,9920(1)	0,2606(2)	0,116(3)	0,167(4)	3,44	5,26	3,99	2,117
700	3,5499(1)	5,9925(1)	0,2626(2)	0,115(3)	0,159(3)	4,45	4,77	3,64	1,904
800	3,5501(1)	5,9939(1)	0,2605(2)	0,116(4)	0,070(4)	4,43	5,72	4,26	2,237
900	3,5472(1)	5,9898(1)	0,2604(1)	0,100(3)	0,195(3)	5,44	14,70	11,21	3,117
Серия образцов исходного состава Fe _{0,25} TiSe ₂									
<i>T</i> , °C	<i>a</i> , Å	c, Å	Z _{Se}	Содержание Fe		$R_{\rm F}^2, \%$	$wR_{\rm p},\%$	<i>R</i> _p , %	χ^2
200	3,5666(1)	5,9691(2)	0,2604(4)	0,221(5)		4,85	4,44	3,46	1,930
300	3,5667(1)	5,9687(1)	0,2598(3)	0,252(4)		2,82	4,19	3,24	1,921
400	3,5751(1)	5,9620(1)	0,2616(4)	0,257(4)		5,02	4,34	3,27	2,091
500	3,5678(1)	5,9651(1)	0,2605(3)	0,249(4)		2,14	4,35	3,30	1,942
600	3,5717(1)	5,9672(1)	0,2608(3)	0,236(5)		3,43	4,89	3,75	1,936
700	3,5713(1)	5,9665(1)	0,2611(3)	0,173(4)		4,07	4,61	3,51	1,846
800	3,5697(1)	5,9623(1)	0,2606(2)	0,204(3)		4,93	14,06	10,02	4,283
900	3,5705(1)	5,9671(1)	0,2596(2)	0,219(4)		4,16	11,67	8,80	2,015
Серия образцов исходного состава Fe _{0,33} TiSe ₂									
200	3,5753(1)	5,9624(1)	0,2585(4)	0,335(5)		3,90	4,15	3,20	1,860
300	3,5748(1)	5,9624(1)	0,2599(4)	0,311(5)		3,20	4,30	3,27	2,082
400	3,5680(1)	5,9631(1)	0,2592(4)	0,292(4)		2,85	4,22	3,21	1,880
500	3,5754(1)	5,9629(1)	0,2620(4)	0,282(4)		3,11	4,12	3,16	2,022
600	3,5798(1)	5,9650(1)	0,2620(3)	0,249(4)		3,57	4,52	3,43	1,963
700	3,5801(1)	5,9641(1)	0,2598(5)	0,279(6)		3,31	5,51	4,24	1,640
800	3,5792(1)	5,9639(1)	0,2583(3)	0,290(4)		3,28	14,47	9,65	4,583
900	3,5761(1)	5,9629(1)	0,2567(4)	0,298(6)		6,01	14,16	10,40	2,885

Результаты расчета параметров кристаллической структуры образцов исходных составов Fe_{0,1}TiSe₂, Fe_{0,25}TiSe₂, Fe_{0,33}TiSe₂

рением не ван-дер-ваальсовой щели, а сэндвича Se—Ti—Se (см. рис. 5, *б*, *г*). Возникает вопрос — с чем это связано?

Одной из причин может быть взаимодействие выделившегося железа с селеном с образованием селенида железа, наличие которого зафиксировано методом просвечивающей электронной микроскопии [6]. Кроме того, селен испаряется с поверхности образца, о чем свидетельствуют данные, полученные измерением давления диссоциации статическим тензиметрическим методом [9], при этом давление паров селена над поверхностью образца $Fe_{0,1}$ TiSe₂ превышает эту величину над поверхностью TiSe₂. Из-за обеднения фазы селеном можно ожидать появление сверхстехиометрического титана в ван-дер-ваальсовой щели. Как следует из данных расчета (см. таблицу), его содержание действительно увеличивается при выделении железа — максимум содержания титана в ван-дер-ваальсовой щели соответствует области II (см. рис. 5, e). Как показано в [4], атомы титана в октаэдрических позициях образуют аналогичные ковалентные центры с решеткой Ti—Ti—Ti. Таким образом, если учесть суммарное заполнение октаэдрических позиций, то окажется порог протекания по орбиталям титана, имеющего в ближайшем

Рис. 5. Изменения в кристаллической структуре в зависимости от температуры закалки: заполнение позиций атомов железа, значение с-параметра, ширина ван-дер-ваальсовой щели, ширина сэндвича Se—Ti-Se, величина энергии деформации и содержание сверхстехиометричного титана в образцах серии исходного состава Fe_{0.1}TiSe₂ (a—e), исходного состава Fe_{0.25}TiSe₂ (x— π) и Fe_{0.33}TiSe₂ (x—p). Границы между областями I, II и III обозначены пунктиром в соответствии с данными рис. 1

окружении занятую октаэдрическую позицию ван-дер-ваальсовой щели, превышен. Как мы видим, превышение порога протекания означает, что исчезновение центров деформации уже не приводит к уширению ван-дер-ваальсовой щели, а рост параметра с сопровождается увеличением ширины сэндвича Se—Ti—Se (см. рис. 5, ϵ , κ , n).

Из рис. 5, ж, м видно, что обратное растворение железа начинается при температурах чуть ниже границы области III, проведенной по данным [2]. На рис. 5 эта область отмечена штриховкой. Возможно, фазовое состояние, существующее в однородном виде в области III появляется при более низкой температуре в области двухфазного состояния II. Это означает неприменимость квазибинарного подхода к системе Fe—TiSe₂. Таким образом, в области III, общим для всех изученных серий образцов является сжатие сэндвича Se—Ti—Se, которое в ряде случаев вызывает и изменение параметра с. В целом поведение кристаллической структуры в области III характерно для интеркалатных материалов с ионным типом связи [10]. При этом увеличение содержания интеркаланта сопровождается уширением ван-дер-ваальсовой щели, сжатием сэндвича Ті—Se—Ті и увеличением параметра с.

Поскольку выделение железа сопровождается экзотермическим эффектом [11], то, следовательно, внедрение железа с образованием ковалентных центров происходит с поглощением

теплоты, которая требуется для образования ковалентных связей, деформирующих решетку. Тогда энергия деформации решетки будет определяться энергией ковалентных связей. Согласно интерпретации ретроградной растворимости [6], выделение железа обусловлено термическим уширением примесной зоны, т.е. появлением состояний с меньшей энергией связи вблизи потолка примесной зоны (см. рис. 3), поэтому при выделении железа логично ожидать уменьшения средней энергии деформации решетки вдоль оси *с*.

Величину энергии деформации решетки можно определить следующим образом [12]:

$$\Delta E = S(\Delta c)^2 / (c_0 \cdot k_c),$$

где $S = a_0^2 \sin 60^\circ$ — площадь базисной плоскости элементарной ячейки; a_0, c_0 — параметры элементарной ячейки TiSe₂; Δc — разность параметров c элементарной ячейки для TiSe₂ и для деформированной ячейки Fe—TiSe₂ с учетом среднеквадратичных смещений атомов титана в направлении оси c, определенных из расчета кристаллической структуры; k_c — сжимаемость решетки вдоль оси c. В виде некоторого упрощения будем использовать сжимаемость для TiSe₂, которая составляет $1,53 \times 10^{-11}$ Па⁻¹ [4]. Рассчитанные величины приведены на рис. 5, ∂ , n, p. Можно видеть, что действительно выделение железа для всех составов сопровождается уменьшением энергии деформации решетки вдоль оси c.

ЗАКЛЮЧЕНИЕ

Подводя итог, можно выделить две принципиально различные ситуации — при низких температурах поведение железа в решетке TiSe₂ характерно для ковалентной примеси, при высоких температурах железо становится ионной примесью. В промежуточной области, повидимому, присутствуют атомы железа в ковалентной и в ионной связи с решеткой. Сложная кинетика перехода между этими двумя состояниями сопровождается нетривиальным поведением параметров ячейки, ширины ван-дер-ваальсовой щели и толщины сэндвича Se—Ti—Se. Во всех исследованных образцах можно выделить общую закономерность перехода — при растворении железа в виде ионной примеси увеличение параметра ячейки в направлении, перпендикулярном слоям, сопровождается сжатием сэндвича Se—Ti—Se и увеличением ширины ван-дер-ваальсовой щели.

Работа выполнена в рамках государственного задания ФАНО России (тема "Спин", № 01201463330) при частичной поддержке Российского фонда фундаментальных исследований (проект № 14-03-00274), УрО РАН (проект № 15-9-2-30).

СПИСОК ЛИТЕРАТУРЫ

- 1. Элиот Р.П. Структуры двойных сплавов. Т.2. М.: Металлургия, 1970.
- 2. Шкварина Е.Г., Цурин В.А., Титов А.Н., Титова С.Г., Федорова О.М. // Физика твердого тела. 2012. **54**, № 3. С. 585.
- 3. Arnaud Y., Chevreton M., Ahouanjinou A., Danot M., Rouxel J. // Solid State Chem. 1976. 18. P. 9 15.
- 4. Титов А.Н., Долгошеин А.В., Бдикин И.К., Титова С.Г. // Физика твердого тела. 2000. **42**, № 9. С. 1610.
- Cui X.Y., Negishi H., Titova S.G., Shimada K., Ohnishi A., Higashiguchi M., Miura Y., Hino S., Jahir A.M., Titov A., Bidadi H., Negishi S., Namatame H., Taniguchi M., Sasaki M. // Phys. Rev. B. – 2006. – 73. – P. 08511.1.
- 6. Титов А.Н., Галиева Е.Г., Антонова О.В. // Физика твердого тела. 2010. 52, № 6. С. 1172.
- 7. Larson A.C., Von Dreele R.B. General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748 (2004).
- 8. Титов А.Н., Ярмошенко Ю.М., Neumann М., Плещев В.Г., Титова С.Г. // Физика твердого тела. 2004. **46**, № 9.– С. 1628.
- 9. *Титов А.Н., Зеленина Л.Н., Чусова Т.П., Шкварина Е.Г. //* Физика твердого тела. 2012. **54**, № 12. С. 2349.
- 10. Yablonskikh M.V., Shkvarin A.S., Yarmoshenko Y.M., Skorikov N.A., Titov A.N. // J. Phys.: Condens. Matter. 2012. 24. P. 045504.
- 11. Галиева Е.Г., Данилова Н.А., Пряничников С.В., Титова С.Г., Титов А.Н., Бобриков И.А., Балагуров А.М. // Физика твердого тела. 2008. **50**, № 2. С. 303.
- 12. Титова С.Г., Титов А.Н. // Физика твердого тела. 2007. 49, № 1. С. 60 63.