2008. Том 49, № 1

Январь – февраль

C. 182 – 186

КРАТКИЕ СООБЩЕНИЯ

УДК 541.49+548.736

КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРА РАЗНОЛИГАНДНОГО СОЕДИНЕНИЯ [Y(Phen){(*i*-C₄H₉)₂PS₂}₂NO₃]

© 2008 В.Л. Варанд, Л.А. Глинская, Р.Ф. Клевцова, С.В. Ларионов*

Институт неорганической химии им. А.В. Николаева СО РАН, г. Новосибирск

Статья поступила 18 апреля 2007 г.

Синтезировано разнолигандное соединение [Y(Phen){(*i*-C₄H₉)₂PS₂}₂NO₃] (I). По дифракционным рентгеновским данным (дифрактометр X8 APEX, λ MoK_{α}, 3788 *F*_{*hkl*}, *R*=0,0677) определена его структура. Кристаллы I ромбические: *a* = 10,6495(8), *b* = 20,006(2), *c* = 35,317(4) Å, *V* = 7524,4(13) Å³, *Z* = 8, $\rho_{\text{выч}}$ = 1,324 г/см³, пространственная группа *Pbca*. Структура составлена из одноядерных дискретных молекул. Координационный полиэдр атома Y — N₂O₂S₄ — искаженный додекаэдр.

Ключевые слова: синтез, разнолигандное соединение, иттрий(III), 1,10фенантролин, кристаллическая и молекулярная структура, диизобутилдитиофосфинат.

Внутрикомплексные соединения металлов с органическими серосодержащими лигандами,

имеющими функциональные группы CS_2^- и PS_2^- , а также разнолигандные комплексы на основе этих хелатов и азотистых гетероциклов являются перспективными молекулярными предшественниками сульфидов металлов [1—3]. Среди сульфидов металлов важную роль играют сульфиды лантаноидов.

К настоящему времени синтезированы разнолигандные комплексы лантаноидов на основе диэтилдитиокарбаматов этих металлов и 1,10-фенантролина (Phen), причем некоторые из этих соединений уже используются для получения сульфидов лантаноидов [4—15]. Кроме того, синтезировано соединение Eu(III), содержащее диизобутилдитиофосфинат-ионы (*i*-Bu₂PS₂⁻) и молекулу Phen [16]. Интерес вызывает синтез и исследование разнолигандных соединений Y(III) с серосодержащими лигандами как потенциальных предшественников сульфида и оксисульфида Y(III), которые являются ценными неорганическими материалами [17—19].

Цель данной работы — получение и исследование методом рентгеноструктурного анализа разнолигандного соединения Y(III), содержащего ионы *i*-Bu₂PS $\frac{1}{2}$ и молекулу Phen.

Экспериментальная часть. В работе использовали реактивы квалификации "х.ч." и "ч"; *i*-Bu₂PS₂Na получили путем обезвоживания 50%-го водного раствора диизобутилдитиофосфината натрия фирмы Fluka до постоянного веса в вакууме над NaOH.

Синтез [Y(Phen){(*i*-C₄H₉)₂PS₂}₂NO₃] (I). К раствору 0,38 г (1 ммоль) Y(NO₃)₃·6H₂O в 5 мл CH₃CN прибавляли при перемешивании раствор 0,73 г (2,5 ммоля) *i*-Bu₂PS₂Na в 10 мл CH₃CN. Выделившийся осадок NaNO₃ немедленно отфильтровывали, затем к фильтрату добавляли 1 мл ортоэтилформиата и раствор 0,2 г (1 ммоль) Phen·H₂O в 5 мл CH₃CN. Через 5—10 мин выпадал белый осадок. Продолжали перемешивание и испаряли растворитель при слабом нагревании (не выше 40 °C) до половины первоначального объема раствора. После охлаждения смеси до комнатной температуры осадок отфильтровывали с отсасыванием, промывали CH₃CN (2 раза по 2—3 мл) и сушили в вакууме. Перекристаллизацию проводили из CHCl₃. Выход 0,55 г (70 %). Найдено, % : C 44,7, H 6,2, N 5,4, S 17,4, Y 11,7. Для $C_{28}H_{44}N_3O_3S_4P_2Y$ вычислено, %: C 44,8, H 5,9, N 5,6, S 17,1, Y 11,9.

^{*} E-mail: lar@che.nsk.su

Элементный анализ на C, H, N выполнен в лаборатории микроанализа НИОХ СО РАН. Разложение проб для анализа на содержание иттрия проводили нагреванием с "царской водкой", а затем со смесью H_2SO_4 и HClO₄ с последующим выпариванием досуха. Осадок растворяли в воде при слабом нагревании, прибавляли ацетатный буфер (pH 5,2), индикатор ксиленоловый оранжевый и титровали раствором трилона Б. Определение серы проводили кулонометрическим титрованием электрогенерируемым бромом в фосфатном электролите (pH 7,2). Точку эквивалентности определяли амперометрическим способом с двумя Pt-электродами при потенциале 250 мВ.

Монокристаллы выращивали медленным испарением этанольного раствора комплекса.

Для РСА соединения I отобрали прозрачный кристалл в форме изометричного обломка. Параметры элементарной ячейки и интенсивности 39322 рефлексов (из них 6606 независимых, собранных в интервале индексов $-7 \le h \le 12, -23 \le k \le 23, -42 \le l \le 41, R(\text{int}) = 0,0559$) измерили на автоматическом дифрактометре X8 APEX ($\lambda \text{Mo}K_{\alpha}$, графитовый монохроматор, φ -сканирование с интервалом 0,5°, $2\theta_{\text{max}} = 50^{\circ}$) по стандартной методике при комнатной температуре. Кристаллы I ромбические: a = 10,6495(8), b = 20,006(2), c = 35,317(4) Å, V = 7524,4(13) Å³, $Z = 8, \rho_{\text{выч}} = 1,324$ г/см³. Пространственная группа *Pbca* выбрана на основе анализа погасаний в массиве интенсивностей, последующие расчеты подтвердили правильность ее выбора. Структура расшифрована прямым методом по комплексу программ SHELX-97 [20] и уточнена полноматричным MHK в анизотропном приближении для неводородных атомов. Позиции атомов Н рассчитаны геометрически и включены в уточнение в изотропном приближении совместно с неводородными атомами.

Окончательные параметры уточнения: R1 = 0,0677, wR2 = 0,2014, для 3788 отражений с $I \ge 2\sigma(I)$; GOOF = 1,041, R1 = 0,1204, wR2 = 2285 по всем отражениям (392 уточняемых параметра). Максимум и минимум остаточной электронной плотности составляют 0,689 и -0,485 еÅ⁻³ соответственно.

Значения позиционных и эквивалентных тепловых параметров базисных атомов комплекса приведены в табл. 1, основные величины межатомных расстояний и валентных углов — в табл. 2. Таблицы координат атомов Н и анизотропных тепловых параметров можно получить у авторов.

Таблица 1

	i			i	n i		i		
Атом	x	У	Ζ	$U_{ m 3KB}$	Атом	x	У	Ζ	$U_{ m 3KB}$
Y(1)	8958(1)	2577(1)	1185(1)	59(1)	C(9f)	7285(8)	389(4)	1092(2)	105(2)
S(1)	7225(2)	2642(1)	587(1)	95(1)	C(10f)	7497(6)	1074(4)	1086(2)	89(2)
S(2)	10257(2)	2482(1)	510(1)	105(1)	C(11f)	11627(10)	70(5)	1387(2)	112(3)
S(3)	9085(2)	2448(1)	1972(1)	109(1)	C(12f)	10521(10)	-184(4)	1331(2)	110(2)
S(4)	6502(2)	2689(1)	1494(1)	100(1)	C(11)	8661(9)	3128(5)	-146(3)	133(3)
P(1)	8638(2)	2540(1)	228(1)	94(1)	C(21)	8957(16)	3841(6)	-66(4)	157(4)
P(2)	7215(2)	2570(1)	2005(1)	99(1)	C(31)	7940(20)	4198(9)	120(6)	307(11)
N(1f)	10911(4)	1889(3)	1314(1)	70(1)	C(41)	9189(19)	4210(10)	-447(5)	300(12)
N(2f)	8615(5)	1348(2)	1168(1)	68(1)	C(51)	8256(12)	1739(8)	-17(4)	207(7)
N(3)	9918(6)	3895(3)	1261(2)	88(2)	C(61)	9114(11)	1472(8)	-293(4)	191(5)
O(1)	10576(4)	3388(2)	1311(1)	93(1)	C(71)	8571(17)	1535(10)	-676(4)	311(13)
O(2)	8784(5)	3765(2)	1176(2)	114(2)	C(81)	9380(20)	754(9)	-194(8)	390(16)
O(3)	10315(6)	4458(3)	1282(2)	148(3)	C(12)	6768(12)	3240(11)	2279(4)	278(11)
C(1f)	12029(6)	2149(4)	1377(2)	89(2)	C(22)	7190(20)	3608(8)	2597(7)	303(12)
C(2f)	13108(6)	1748(5)	1443(2)	109(2)	C(32)	8310(20)	3569(16)	2832(5)	410(20)
C(3f)	12979(7)	1082(5)	1437(2)	110(2)	C(42)	6479(18)	4197(8)	2755(5)	297(10)
C(4f)	11839(7)	791(4)	1382(2)	85(2)	C(52)	6431(11)	1972(7)	2267(4)	183(5)
C(5f)	10795(6)	1212(3)	1315(2)	70(2)	C(62)	6548(14)	1252(7)	2186(6)	230(9)
C(6f)	9602(6)	926(3)	1248(2)	70(2)	C(72)	5720(30)	816(10)	2429(9)	540(30)
C(7f)	9453(8)	222(4)	1253(2)	88(2)	C(82)	7837(15)	973(12)	2148(8)	427(17)
C(8f)	8270(10)	-23(4)	1174(2)	112(3)					

Координаты базисных атомов ($\times 10^4$) и их эквивалентные изотропные тепловые параметры ($\mathring{A}^2 \times 10^3$) в структуре комплекса **I**

Таблица 2

Связь d		Связь	d	Угол	ω	Угол	ω
Y(1) = O(2)	2 384(5)	N(1F) - C(5F)	1 360(8)	O(2) = Y(1) = O(1)	52 1(1)	C(1F) N(1F) $C(5F)$	118 4(6)
Y(1) - O(1)	2,307(3)	N(2f) - C(10f)	1,300(0) 1.343(7)	N(2F) - Y(1) - N(1F)	65.7(2)	C(1F) - N(1F) - Y(1)	123.8(4)
Y(1) - N(2f)	2.486(5)	N(2f) - C(6f)	1,378(8)	S(2) - Y(1) - S(3)	145.84(6)	C(5F) - N(1F) - Y(1)	117.8(4)
Y(1)—N(1f)	2,536(5)	N(3)—O(3)	1,206(6)	S(2) - Y(1) - S(1)	71,55(6)	C(10F) - N(2F) - C(6F)	118,0(5)
Y(1) - S(2)	2,764(2)	N(3)—O(1)	1,246(6)	S(3) - Y(1) - S(1)	141,63(6)	C(10F) - N(2F) - Y(1)	122,6(4)
Y(1)—S(3)	2,796(2)	N(3)—O(2)	1,270(7)	S(2) - Y(1) - S(4)	142,87(6)	C(6F) - N(2F) - Y(1)	119,3(4)
Y(1)—S(1)	2,806(2)	C(1f)-C(2f)	1,420(9)	S(3) - Y(1) - S(4)	70,74(6)	N(1F)— $C(1F)$ — $C(2F)$	122,3(7)
Y(1)—N(3)	2,840(6)	C(2f)— $C(3f)$	1,34(1)	S(1) - Y(1) - S(4)	71,34(6)	C(3F)-C(2F)-C(1F)	118,5(7)
Y(1)—S(4)	2,843(2)	C(3f)—C(4f)	1,36(1)	P(1) - S(1) - Y(1)	88,76(9)	C(2F)—C(3F)—C(4F)	121,2(7)
S(1)—P(1)	1,980(3)	C(4f)—C(5f)	1,416(8)	P(1) - S(2) - Y(1)	89,66(9)	C(3F)—C(4F)—C(5F)	118,1(7)
S(2)—P(1)	1,994(3)	C(4f)—C(11f)	1,46(1)	P(2) - S(3) - Y(1)	89,91(9)	C(3F)— $C(4F)$ — $C(11F)$	124,0(7)
S(3)—P(2)	2,010(3)	C(5f)—C(6f)	1,414(9)	P(2) - S(4) - Y(1)	89,28(8)	C(5F) - C(4F) - C(11F)	118,0(7)
S(4)—P(2)	1,974(3)	C(6f)—C(7f)	1,417(9)	C(11) - P(1) - C(51)	103,2(6)	N(1F)—C(5F)—C(6F)	119,1(5)
P(1)—C(11)	1,77(1)	C(7f)—C(8f)	1,38(1)	C(11) - P(1) - S(1)	114,9(3)	N(1F)—C(5F)—C(4F)	121,5(6)
P(1)—C(51)	1,87(1)	C(7f)—C(12f)	1,42(1)	C(51) - P(1) - S(1)	102,7(5)	C(6F)—C(5F)—C(4F)	119,5(6)
P(2)—C(12)	1,72(1)	C(8f)—C(9f)	1,37(1)	C(11) - P(1) - S(2)	113,6(4)	N(2F)—C(6F)—C(5F)	118,1(5)
P(2)—C(52)	1,73(1)	C(9f)—C(10f)	1,389(9)	C(51) - P(1) - S(2)	111,7(4)	N(2F)—C(6F)—C(7F)	121,8(6)
N(1f)—C(1f)	1,319(7)	C(11f)—C(12f)	1,30(1)	S(1) - P(1) - S(2)	110,0(1)	C(5F)—C(6F)—C(7F)	120,1(6)
				C(12) - P(2) - C(52)	96,0(9)	C(8F)—C(7F)—C(6F)	117,0(7)
				C(12)—P(2)—S(4)	108,2(6)	C(8F) - C(7F) - C(12F)	124,4(8)
				C(52)—P(2)—S(4)	112,8(5)	C(6F) - C(7F) - C(12F)	118,7(7)
				C(12)—P(2)—S(3)	113,7(5)	C(9F)—C(8F)—C(7F)	121,9(7)
				C(52)—P(2)—S(3)	115,3(4)	C(8F)—C(9F)—C(10F)	118,3(7)
				S(4)—P(2)—S(3)	110,1(1)	N(2F)—C(10F)—C(9F)	122,9(7)
				O(3)—N(3)—O(1)	123,7(6)	C(12F) - C(11F) - C(4F)	121,6(8)
				O(3)—N(3)—O(2)	122,6(6)	C(11F)—C(12F)—C(7F)	122,1(8)
				O(1)—N(3)—O(2)	113,7(5)		

Основные межатомные расстояния d, Å и валентные углы ω , град. в структуре комплекса I

Результаты и их обсуждение. При синтезе I использовали органическую среду (CH₃CN), для предотвращения гидролиза добавляли ортоэтилформиат. Синтезированное соединение содержит не только молекулу Phen и ионы *i*-Bu₂PS $\frac{1}{2}$, но и нитрато-группу. Попытки получения

соединения, не содержащего нитратогруппу, за счет увеличения концентрации *i*-Bu₂PS₂Na при синтезе, а также смены растворителя приводили к выделению фаз переменного состава. Ранее полученное разнолигандное соединение Eu(III) имеет состав Eu(Phen)(*i*-Bu₂PS₂)₃ [16]. Возможно, что координация нитрато-группы в I обусловлена как меньшим ионным радиусом иона Y^{3+} по сравнению с ионом Eu³⁺, так и различием электронного строения этих ионов (в ионе Y^{3+} отсутствуют *f*-электроны).

Рис. 1. Строение молекулы [Y(Phen)(*i*-Bu₂PS₂)₂NO₃] в кристалле I с обозначениями неводородных атомов

Рис. 2. Проекция кристаллической структуры соединения [Y(Phen)(i-Bu₂PS₂)₂NO₃] на плоскость (100)

Основу кристаллической структуры комплекса составляют дискретные одноядерные молекулы. Строение молекулы, все атомы которой занимают общие позиции, показано на рис. 1.

В координационную сферу атома Y входят два атома N бидентатно-циклического лиганда Phen на расстояниях 2,486(5), 2,536(5) Å, четыре атома S бидентатно-циклических лигандов *i*-Bu₂PS $_2^-$ на отличающихся расстояниях 2,764(2)—2,843(2) Å и два атома O координированной бидентатно-циклической нитрато-группы на близких расстояниях 2,384(5), 2,407(4) Å. В результате у атома Y (KЧ 8) сформирован координационный полиэдр N₂O₂S₄ в виде искаженного тригонального додекаэдра. При координации лигандов образуется пятичленный хелатный цикл YN₂C₂ и четырехчленные хелатные циклы YO₂N и YS₂P.

Расстояния Y—S и Y—N в координационном узле $YN_2O_2S_4$ хорошо согласуются с аналогичными расстояниями в структурах разнолигандных соединений $Er(2,2'-Bipy)(S_2CNEt_2)_3$ [21], Yb(Phen)(S_2CNEt_2)₃ [9], характеризующихся аналогичными координационными числами и имеющими близкие ионные радиусы центральных атомов [22].

Атомы Р имеют тетраэдрическое окружение. Расстояния Р—S изменяются в достаточно узких пределах 1,974(3)—2,010(3) Å, расстояния Р—C располагается в более широком интервале 1,73(1)—1,87(1) Å. Среднее значение величины валентных углов при атомах Р близко к идеальному тетраэдрическому — 109,4°.

Расчет плоскостей, проходящих через атомы двух металлоциклов YS_2P , показал, что среднее отклонение атомов от их среднестатистических плоскостей равно 0,008 и 0,003 Å, т.е. они практически плоские (двугранные углы между плоскостями SYS и SPS равны 1,3 и 0,5°). Металлоциклы YO_2N и YN_2C_2 также практически плоские со средним отклонением атомов от их среднестатистических плоскостей 0,003 и 0,012 Å соответственно. То же относится и к координированной нитрато-группе и циклам лиганда Phen, которые также практически плоские: среднее отклонение атомов от их плоскостей равно 0,003 и 0,025 Å.

Характер упаковки молекул комплекса представлен на рис. 2 в проекции на плоскость (100). Молекулы располагаются на четырех уровнях вдоль длинной оси *c*. Расположение молекул, размноженных скользящей плоскостью *c* в одном из уровней, показано на рис. 3. Межмолекулярные контакты порядка ван-дер-ваальсовых взаимодействий, а именно: O(2)...C(8f) 3,265(9), O(3)...C(9f) 3,404(9), O(2)...C(9f) 3,456(9) Å, связывают эти молекулы между собой в зигзагообразные цепочки вдоль направления [010]. Между собой цепочки соседних уровней (по оси *c*) имеют лишь слабые контакты между концевыми атомами C лиганда *i*-Bu₂PS₂, минимальные из которых C(72)...C(82) 3,43(1), C(81)...C(81)' 3,57(1) Å.

Разнолигандный комплекс I интересен как объект для изучения его термических превращений в неорганические соединения иттрия.

Рис. 3. Зигзагообразные цепочки молекул вдоль направления [010], расположенные на уровне z = 0,1185 (для атомов иттрия)

СПИСОК ЛИТЕРАТУРЫ

- 1. Ларионов С.В., Земскова С.М. // Рос. хим. журн. 1996. 40, № 4-5. С. 171 178.
- 2. Ларионов С.В., Клевцова Р.Ф., Земскова С.М., Глинская Л.А. // Химия в интересах устойчивого развития. – 1999. – 4, № 4. – С. 451 – 561.
- 3. Larionov S.V. // Russ. J. Inorg. Chem. Suppl. Issue. 2001. 46, N 1. P. S66 S85.
- 4. Горшков Н.И., Сидоренко Г.В., Суглобов Д.Н. // Радиохимия. 1994. 36, № 2. С. 154 156.
- 5. Bessergenev V.G., Ivanova E.N., Kovalevskaya Yu.A. et al. // Spring Meeting of Electrochem. Soc. Los Angeles: Abstracts, 1996. 96-1. P. 1056.
- 6. Su C.G., Tan M.Y., Tang N. et al. // J. Coord. Chem. 1996. **32**, N 3. P. 207 218.
- 7. Bessergenev V.G., Ivanova E.N., Kovalevsayaet Yu.A. // Mater. Res. Bull. 1997. 32, N 10. P. 1403 1410.
- 8. Варанд В.Л., Глинская Л.А., Клевцова Р.Ф., Ларионов С.В. // Журн. структур. химии. 1998. **39**, № 2. С. 300 309.
- 9. *Кузьмина Н.П., Иванов Р.А., Илюхин А.Б., Парамонов С.Е.* // Координац. химия. 1999. **25**, № 8. С. 635 638.
- 10. Варанд В.Л., Глинская Л.А., Клевцова Р.Ф., Ларионов С.В. // Журн. структур. химии. 2000. **41**, № 3. С. 663 668.
- 11. Ivanov R.A., Korsakov I.E., Kuzmina N.P., Kaul A.P. // Mendeleev Commun. 2003. N 3. P. 98 99.
- 12. Иванов Р.А., Корсаков И.Е., Формановский А.А. и др. // Координац. химия. 2000. **28**, № 9. С. 713 720.
- 13. Vasilyeva I.G., Ivanova E.N., Vlasov A.A., Malakhov V.V. // Mater. Res. Bull. 2003. 38, N 3. P. 409 412.
- 14. Домрачев Г.А., Завьялова Л.В., Свечников Г.С. и др. // Журн. общ. химии. 2003. **73**, № 4. С. 593 599.
- 15. Regulacio M.D., Tomson N., Stoll S.L. // Chem. Mater. 2005. 17. P. 3114 3121.
- 16. Варанд В.Л., Глинская Л.А., Клевцова Р.Ф., Ларионов С.В. // Координац. химия. 2000. **26**, № 11. С. 869 877.
- 17. Самсонов Г.Ф., Радзиковская С.В. // Успехи химии. 1961. **30**, № 1. С. 60 91.
- 18. Супоницкий Ю.Л., Кузьмичева Г.М., Елисеев А.А. // Там же. 1988. 57, № 3. С. 357 384.
- 19. Морозов Е.Г., Резник К.А., Кронгауз В.Г. и др. // Неорган. матер. 1993. 29, № 10. С. 1326 1329.
- 20. Sheldrick G.M. SHELX-97, Release 97-2. University of Goettingen, Germany, 1998.
- 21. Su C., Tang N., Tan M., Yu K. // Polyhedron. 1996. 15, N 2. P. 233 239.
- 22. Shannon R.D. // Acta Crystallogr. 1976. A32, N 5. P. 751 767.