УДК 621.382; 353-083; 53-088

ОПТИМИЗАЦИЯ ОТКЛИКА НАНОПРОВОЛОЧНЫХ БИОСЕНСОРОВ

О. В. Наумова, Б. И. Фомин

Институт физики полупроводников им. А. В. Ржанова СО РАН, 630090, г. Новосибирск, просп. Академика Лаврентьева, 13 E-mail: naumova@isp.nsc.ru

Нанопроволочные полевые транзисторы являются высокочувствительными сенсорными элементами, предназначенными для качественного и количественного анализов биологических и химических веществ. Оптимизация режима работы сенсоров — одна из ключевых задач повышения их чувствительности. Предложен алгоритм выбора режима работы сенсоров на основе КНИ-транзисторов, позволяющий обеспечить их максимальный отклик в процессе мониторинга проводимости при детекции целевых частиц.

Ключевые слова: биосенсор, отклик, полевой транзистор.

DOI: 10.15372/AUT20160503

Введение. Хорошо известно, что из-за большого аспектного соотношения поверхность/объём нанопроволоки (НП) с омическими контактами на концах (областями стокаистока) могут быть использованы в качестве высокочувствительных сенсорных элементов [1–7]. В таких сенсорах любая частица, адсорбируемая на поверхность НП, действует как локальный виртуальный затвор, вызывая изменение поверхностного потенциала и соответственно проводимости НП [1, 2]. Предельная чувствительность этих сенсоров составляет одну частицу на проволоку при сопоставимости размеров НП и области обеднения, индуцируемой адсорбируемой частицей. Экспериментально достигнутая в настоящее время концентрационная чувствительность НП-сенсоров при детекции белков, ДНК, РНК и других молекул лежит в диапазоне 10^{-15} – 10^{-16} M [2–7].

Сенсорные элементы могут изготавливаться в виде отдельно стоящих или размещённых на диэлектрике нанопроволок. Локализация НП на диэлектрике (отсечение НП от проводящей подложки слоем диэлектрика, например, при изготовлении их на структурах кремний-на-изоляторе (КНИ)) превращает такой сенсор в полевой МОП-транзистор с двойным затвором. Подложка структур, в частности КНИ, используется в качестве управляющего электрода — тылового затвора (BG), на котором напряжением V_{BG} формируется канал проводимости вблизи границы раздела скрытый диэлектрик — НП. Адсорбируемая частица с зарядом Q_{ad} действует как второй, виртуальный или верхний затвор (TG), вызывая изменение проводимости в канале из-за взаимосвязи потенциалов на противоположных границах НП [8, 9]. Для сенсоров, работающих в режиме обеднения НП, происходит практически параллельный сдвиг затворных характеристик вправо или влево в зависимости от знака заряда адсорбируемой частицы, как схематично показано на рис. 1. При этом модуляция проводимости (или тока между стоком-истоком сенсора $I_{\rm DS}$) при адсорбции частиц на поверхность НП сильно зависит от выбора напряжения V_{BG} — рабочей точки транзистора (ср. точки 1 и 2). Из-за экспоненциальной зависимости тока I_{DS} от поверхностного потенциала в подпороговой области затворных характеристик (в режиме обеднения НП) можно получить максимальный отклик сенсора к адсорбируемым частицам [1, 5, 6]. Таким образом, при детекции частиц в режиме реального времени модуляция проводимости сенсора в конструкции, когда НП локализована на диэлектрике, определяется выбором напряжения V_{BG}.

Рис. 1. Схема нанопроволочного КНИ-транзистора и его временны́е $I_{\rm DS}(t)$ и затворные $I_{\rm DS}(V_{\rm BG})$ зависимости до и после адсорбции положительного или отрицательного заряда на поверхность Si-нанопроволоки

Цель данной работы — определение диапазона напряжений на BG (рабочего диапазона) сенсора, позволяющего обеспечить максимальный отклик к адсорбируемому заряду на поверхности. Для этого были проанализированы поведение затворных характеристик НП-сенсора и его отклик при имитации адсорбции частиц на поверхность НП и предложен алгоритм выбора рабочего напряжения для сенсора, позволяющий оптимизировать его отклик при последующей детекции аналита.

Результаты эксперимента. На рис. 2 представлены зависимости $I_{\rm DS}(V_{\rm BG})$ для КНИ-транзистора, измеренные экспериментально (исходная) и полученные сдвигом исходной характеристики по оси напряжений вправо. Ширина и толщина Si-HII равны 30 нм, толщина скрытого диэлектрика составляет 400 нм. Сдвиг затворных зависимостей по оси

Рис. 2. Зависимости $I_{\rm DS}(V_{\rm BG})$ для КНИ-транзистора: исходная (кривая 1) и полученные сдвигом исходной по оси напряжений на $\Delta V_{\rm BG}(S)$: кривая 2 — 0,05, 3 — 0,1, 4 — 0,2, 5 — 0,5, 6 — 1, 7 — 2, 8 — 3. На вставке показаны соответствующие относительные изменения тока (отклик сенсора)

Рис. 3. Максимальный отклик сенсора на основе КНИ-транзистора в зависимости от сдвига его исходной характеристики $I_{\rm DS}(V_{\rm BG})$ по оси напряжений

напряжений $\Delta V_{\rm BG}$ выражен в единицах S (S — подпороговый наклон затворной характеристики транзистора).

Как отмечалось выше, для работающих в режиме обеднения КНИ-сенсоров (транзисторов) адсорбция частиц на поверхность приводит к параллельному сдвигу затворных зависимостей $I_{\rm DS}(V_{\rm BG})$. Сдвинутые по оси напряжений вправо зависимости $I_{\rm DS}(V_{\rm BG})$ имитируют накопление отрицательно заряженных частиц на поверхности НП.

На вставке рис. 2 показаны соответствующие относительные изменения тока $I_{\rm DS}$ — отклик НП-транзистора R на «адсорбируемый» заряд, рассчитанный как

$$R = \frac{|I_{\rm DS} - I_{\rm DS}^0|}{I_{\rm DS}^0} = \left|\frac{I_{\rm DS}}{I_{\rm DS}^0} - 1\right|.$$
 (1)

Видно, что зависимости R от $V_{\rm BG}$ немонотонны и имеют плато, т. е. достигают максимальных значений $R_{\rm max}$ в определённых диапазонах $V_{\rm BG}$.

Из выражения (1) ясно, что отклик сенсора R стремится к единице, когда выполняется условие $I_{\text{DS}}^0/I_{\text{DS}} \ge 100$. С другой стороны, хорошо известно, что подпороговый наклон МОП-транзистора S показывает, насколько необходимо изменить напряжение на затворе, чтобы обеспечить изменение тока транзистора в 10 раз [10]. Отсюда понятно, что максимальный отклик КНИ-транзистора $R_{\text{max}} = 1$ (относительные изменения тока 100 %) достигается в том случае, если при адсорбции частицы на поверхность его зависимость $I_{\text{DS}}(V_{\text{BG}})$ сдвигается по оси напряжений на 2S и больше. На рис. 3 представлена зависимость R_{max} от ΔV_{BG} , выраженная в единицах S. Видно, что $R_{\text{max}} = 0,1$ (относительные изменения тока сенсора 10 %) достигается при сдвиге зависимостей $I_{\text{DS}}(V_{\text{BG}})$ по оси напряжений на 0,05S. Поскольку сдвиг затворных характеристик выражен в единицах S и S включает все параметры КНИ-транзистора [8, 9], зависимость R_{max} от ΔV_{BG} универсальна для сенсоров с любыми конструктивно-технологическими параметрами.

Результаты анализа зависимостей, приведённых на рис. 2 и 3, позволяют предложить следующий алгоритм выбора рабочего напряжения V_{BG} НП-транзистора (сенсора), необходимого для непрерывного мониторинга модуляции его проводимости при детекции аналита с максимальным откликом к адсорбированным на поверхности частицам. Алгоритм, схематически изображённый на рис. 4, включает следующие шаги:

— измерение исходной (до адсорбции частиц) зависимости $I_{\rm DS}(V_{\rm BG})$ для сенсора;

Puc. 4. Схема алгоритма выбора рабочей точки (напряжения V_{BG}), обеспечивающей максимальный отклик сенсора на адсорбированный заряд при измерении временны́х зависимостей тока (проводимости) НП

— определение подпорогового наклона S для зависимости $I_{\rm DS}(V_{\rm BG})$;

— построение зависимостей $I_{\text{DS}}(V_{\text{BG}})$, сдвинутых по оси напряжений на $\pm nS$ с учётом знака заряда тестируемых частиц (здесь $0 < n \leq 2$);

— расчёт соответствующих зависимостей R от V_{BG} с использованием выражения (1);

— выбор V_{BG} из интервала значений, соответствующих плато на зависимостях R от V_{BG} (см. вставку на рис. 2);

— измерение зависимостей $I_{\rm DS}(t)$ до и после адсорбции тестовых частиц при условии, что $I_{\rm DS}^0/I_{\rm DS} \ge 100$ или $I_{\rm DS}/I_{\rm DS}^0 \ge 100$ при различном знаке заряда адсорбируемых частиц ($Q_{\rm ad} < 0$ и $Q_{\rm ad} > 0$), сдвигающих характеристики $I_{\rm DS}(V_{\rm BG})$ влево или вправо соответственно.

Если последнее условие не выполняется, необходим выбор нового значения V_{BG} (новой рабочей точки).

Заключение. Чувствительность НП-сенсоров обусловлена многими факторами (доставкой аналита, наличием рецепторных слоёв на поверхности сенсора, конструктивнотехнологическими параметрами прибора и др.). Выбор режима работы — одна из ключевых задач повышения чувствительности прибора. На примере КНИ-сенсоров показано, что оптимизация режима (выбор рабочего напряжения) сенсоров может на порядки увеличить их отклик при адсорбции заряда на поверхность. Предложен алгоритм выбора режима работы сенсоров, позволяющий оптимизировать их отклик в процессе последующего мониторинга проводимости при детекции целевых частиц. Данный алгоритм действителен для любого типа сенсоров, разделённых с подложкой слоем изолятора, где подложка используется как управляющий электрод (дополнительный затвор).

СПИСОК ЛИТЕРАТУРЫ

- Неизвестный И. Г. Полупроводниковые нанопроволочные сенсоры // Микроэлектроника. 2009. 38, № 4. С. 243–259.
- Stern E., Klemic J. F., Routenberg D. A. et al. Label-free immunodetection with CMOScompatible semiconducting nanowires // Nature. 2007. 445, Is. 7127. P. 519–522.
- Lu N., Gao A., Dai P. et al. CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing // Small. 2014. 10, Is. 10. P. 2022–2028.
- Gao A., Lu N., Wang Y. et al. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors // Nano Lett. 2012. 12, Is. 10. P. 5262–5268.
- Naumova O. V., Fomin B. I., Nasimov D. A. et al. SOI nanowires as sensors for charge detection // Semicond. Sci. Technol. 2010. 25, N 5. 055004.
- Xuan P., Gao A., Zheng G., Lieber C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors // Nano Lett. 2010. 10, Is. 2. P. 547–552.
- Yang F., Zhang G.-J. Silicon nanowire-transistor biosensor for study of molecule-molecule interactions // Rev. Anal. Chem. 2014. 33, Is. 2. P. 95–110.
- Lim H.-K., Fossum J. G. Threshold voltage of thin-film Silicon-on-insulator (SOI) MOSFET's // IEEE Trans. Electron Devices. 1983. 30, Is. 10. P. 1244–1251.
- Hovel H. J. Si film electrical characterization in SOI substrates by the HgFET technique // Solid-State Electron. 2003. 47, Is. 8. P. 1311–1333.
- 10. Sze S. M. Physics of Semiconductor Devices. N. Y.: John Wiley & Sons, 1981. 868 p.

Поступила в редакцию 30 марта 2016 г.