2015. Том 56, № 3 Май – июнь C. 556 – 564

УДК 541.6:541.49

МОДЕЛИРОВАНИЕ РЕНТГЕНОВСКИХ ЭМИССИОННЫХ И ФОТОЭЛЕКТРОННЫХ СПЕКТРОВ H_2 Рс С ПОМОЩЬЮ МЕТОДА ФУНКЦИОНАЛА ПЛОТНОСТИ

 Γ .И. Семушкина 1 , Л.Н. Мазалов 1,3,4 , С.А. Лаврухина 1 , Т.В. Басова 1 , Р.В. Гуляев 2

Статья поступила 30 января 2015 г.

Проведено рентгеноспектральное, рентгеноэлектронное и квантово-химическое исследование электронного строения H_2 Pc. Выполнен сравнительный анализ экспериментальных и теоретических параметров энергетического спектра и парциального состава ВЗМО молекул фталоцианина. Показано, что ВЗМО H_2 Pc в основном построена из $2p_{\pi}$ - АО углерода $C\gamma\delta$. Наилучшее согласие экспериментальных и теоретических кривых распределения парциальной плотности для ВЗМО наблюдается в случае использования метода функционала плотности в приближении Z+1. Метод DFT-ZORA с модельным функционалом LB94 в базисе QZ4P позволяет с высокой точностью рассчитывать энергии 1s-уровней неэквивалентных атомов углерода и азота H_2 Pc.

DOI: 10.15372/JSC20150320

Ключевые слова: фталоцианин, рентгеновская эмиссионная спектроскопия, фотоэлектронная спектроскопия, метод функционала плотности.

введение

Фталоцианин (H₂Pc) является универсальным модельным соединением, исследуя которое можно получить представление о различных свойствах более сложных веществ, например, таких как фталоцианины переходных металлов (МРс), широко используемые в электронной промышленности [1—7]. Одним из важнейших факторов, учитываемых при отборе веществ с целью создания электронных и сенсорных устройств, является энергетическое положение и атомный состав верхних занятых молекулярных орбиталей (ВЗМО) и нижних свободных молекулярных орбиталей (НСМО). В настоящее время большое внимание уделяется исследованию занятых [8,9] и свободных [10,11] состояний пленочных структур на основе H_2 Pc и MPc. В работе [12] изучен состав ВЗМО с помощью метода фотоэлектронной спектроскопии с использованием синхротронного излучения. Показано, что теоретический расчет энергий связи валентных уровней методом DFT-ZORA (ADF 2012) дает хорошее согласие с данными, полученными при изучении фотоэлектронных спектров. Из расчета энергии связи внутренних уровней следует, что формально три неэквивалентные группы атомов азота можно разделить на две, где мезо-атомы азота, не связанные с атомами водорода, эквивалентны аза-атомам азота (разница в энергии связи не превышает 0,36 эВ). Существует и другая точка зрения, согласно которой протоны находятся в поле всех четырех внутрициклических атомов азота [13, 14]. Поэтому

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия E-mail: spectroscopy@mail.ru

²Институт катализа им. Г.К. Борескова СО РАН, Новосибирск, Россия

³Новосибирский национальный исследовательский государственный университет, Россия

⁴Новосибирский государственный архитектурно-строительный университет, Россия

[©] Семушкина Г.И., Мазалов Л.Н., Лаврухина С.А., Басова Т.В., Гуляев Р.В., 2015

вопрос о природе химической связи между иминоводородными атомами и атомами лиганда является до настоящего времени дискуссионным.

Таким образом, в литературе имеется обширный экспериментальный и теоретический материал по исследованию электронной структуры H_2Pc [10, 11, 15]. Однако комплексный анализ структуры B3MO для H_2Pc на основе изучения мягких рентгеновских эмиссионных спектров всех атомов, входящих в состав соединения, в настоящее время отсутствует. Важной задачей при интерпретации рентгеновских спектров является также выбор метода квантовохимического расчета, который бы позволил описать электронное строение вещества с учетом процессов возбуждений, возникающих при рентгеновском излучении.

В настоящей работе проведена интерпретация экспериментальных рентгеновских эмиссионных и фотоэлектронных спектров H_2 Pc, характеризующих энергетическое положение и парциальный атомный состав ВЗМО, с помощью метода функционала плотности. Расчеты выполнены с использованием программы Jaguar 6.0 в приближении замороженных орбиталей и с учетом дырки (модели Z+1), а также в программе ADF 2013 с учетом релятивистских поправок (метод DFT-ZORA).

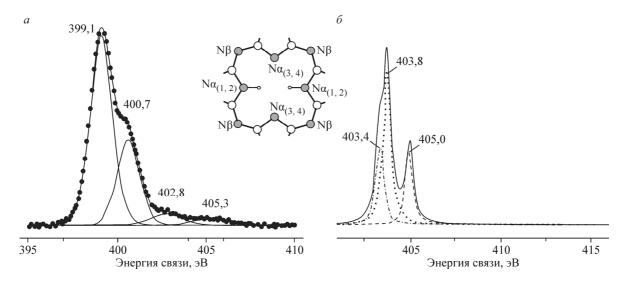
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеновские фотоэлектронные спектры (РФЭС) порошкового образца H_2 Pc получены на приборе ES300 KRATOS. Перед съемкой образец был размолот в агатовой ступке и нанесен на двусторонний проводящий углеродный скотч. В качестве первичного излучения применяли $K\alpha$ -линию алюминия с энергией фотонов 1486,6 эВ. Запись РФЭС проводили в режиме работы рентгеновской трубки 15 кВ×13 мА, что соответствует рассеиваемой мощности ≈200 Вт. Для определения качественного химического состава и наличия примесей были сняты обзорные спектры в диапазоне энергий 0÷1300 эВ с шагом 1 эВ при постоянной энергии пропускания анализатора hv = 50 эВ. Для определения количественного химического состава и состояний индивидуальных элементов были получены спектры основных фотоэлектронных линий элементов с шагом по энергии 0,1 эВ при постоянной энергии пропускания анализатора hv = 25 эВ. Рабочее значение вакуума поддерживали на уровне 2×10^{-8} Торр.

Процедуру обработки РФЭС проводили с помощью программы XPSpeak [16]. Разложение экспериментальных спектров на отдельные компоненты осуществляли с учетом наличия неэквивалентности атомов, входящих в состав H_2 Pc. Для моделирования линии РФЭС использовали сумму функций Гаусса и Лоренца в различном процентном соотношении. Фон учитывался по методу Shirlay [17].

Рентгеновские эмиссионные спектры (РЭС), характеризующие строение ВЗМО, были получены на рентгеновском спектрометре "Стеарат". В качестве кристалл-анализатора для линий $C(K\alpha)$ и $N(K\alpha)$ использовали псевдокристалл меристат ($2d=80\,\text{Å}$). Режим работы рентгеновской трубки: U=8 кВ, I=0,4 А. Порошкообразный H_2 Pc размещали на вторичный анод рентгеновской трубки. Спектры регистрировали пропорциональным счетчиком с метановым наполнением. Соответствующие спектры (рис. 4) представляли собой усреднение десяти экспериментальных спектров. Погрешность определения энергетического положения рентгеновских линий была равна $\sim 0,3$ эВ.

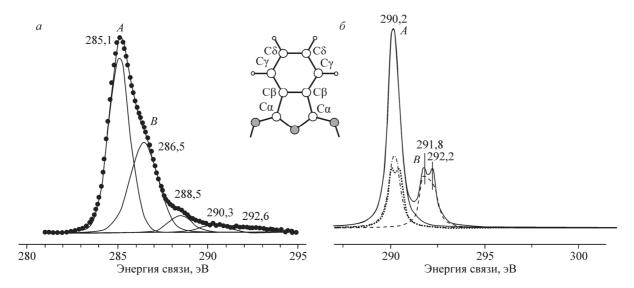
Квантово-химические расчеты молекулы H_2 Рс использовали для интерпретации тонкой структуры рентгеновских фотоэлектронных и эмиссионных спектров. Для расчета электронной структуры H_2 Рс на первом этапе использовали структурные данные для CuPc, взятые из Кембриджского банка структурных данных, с заменой атома меди на атомы водорода и с последующей оптимизацией геометрии молекулы в симметрии D_{2h} . Расчеты проводили с помощью программных комплексов Jaguar 6.0 [18] и ADF 2013 [19]. Для оптимизации геометрии молекулы фталоцианина был использован метод теории функционала плотности (Jaguar 6.0) с гибридным обменно-корреляционным функционалом B3LYP в расширенном базисе 6-31(TM)+G*. Расчеты осуществляли в приближении замороженных орбиталей и с учетом дырки (модель


Z+1). На основании соответствующих расчетов построены модельные эмиссионные спектры с учетом и без учета дырки. Энергию рентгеновских переходов рассчитывали как разницу энергий между одноэлектронными энергиями Кона—Шэма валентных (i) и внутренних уровней (j): $E_{ij} = \varepsilon_j - \varepsilon_i$. Интенсивность отдельных переходов в пределах рентгеновской $K\alpha$ -линии для каждого атома молекулы H_2 Pc (N, C) определяли квадратами коэффициентов $|c_{ik}|^2$ для тех или иных $AO(\phi_k)$, входящих в состав определенной i-ой $B3MO(\Psi_i = \sum c_{ik}\phi_k)$.

Оптимизацию геометрии молекулы H_2Pc в программе ADF проводили методом теории функционала плотности с функционалом PW86x PW91c в базисе TZP, показавшим свою эффективность для аналогичных систем [20]. Далее оптимизированную структуру H_2Pc использовали для расчета рентгеновских фотоэлектронных (C1s и N1s) и эмиссионных спектров (N($K\alpha$) и C($K\alpha$)) методом DFT-ZORA с модельным функционалом LB94 в базисе QZ4P. Результаты расчетов представляли в виде модельных спектров, полученных с помощью программы ADFview, и сопоставляли с экспериментальными данными.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В настоящей работе изучены РЭС С($K\alpha$) и N($K\alpha$) ($2p \rightarrow 1s$ переход) (рис. 4), которые дают информацию об энергетическом положении и парциальном составе ВЗМО для H_2 Pc. Полученные спектры изображены в единой шкале потенциалов ионизации. Взаимную энергетическую привязку спектров к уровню вакуума осуществляли с помощью РФЭС, позволяющих определить энергии связи внутренних 1s-уровней атомов (C1s и N1s) фталоцианина.


Рентгеновские фотоэлектронные спектры. На рис. 1, a показан экспериментальный РФЭС N(1s)-спектр для H_2 Pс. В рассматриваемом спектре наблюдаются две основных линии с энергией связи 399,1 и 400,7 эВ. Соответствующие экспериментальные данные подтверждают ту точку зрения, что каждый атом водорода связан ковалентными связями с атомами азота противоположных пиррольных колец и расположен в плоскости внутреннего макроцикла [21]. Отношение площади данной компоненты (400,7 эВ) ко всей линии N1s соответствует соотношению 3,5, что близко к теоретическому, равному 4. Ранее аналогичные результаты были представлены в статье [13], где показано, что в данной компоненте присутствует дополнительная интенсивная сателлитная особенность, возникающая в результате фотоэмиссии с *аза*-атомов азота ($N\beta$). Кроме того, отметим наличие достаточно выраженных shake-up сателлитов в линии N1s при энергиях 402,8 и 405,3 эВ, ответственных за π — π *-переходы в макроцикле.

 $Puc.\ 1.$ Экспериментальный РФЭС N1s (a) и теоретический РФЭС N1s (сплошная линия) (δ) для H_2 Pc с учетом неэквивалентности атомов азота: N $\alpha_{(1,2)}$ (штриховая линия), N $\alpha_{(3,4)}$ (штрихпунктирная линия) и N β (пунктирная линия)

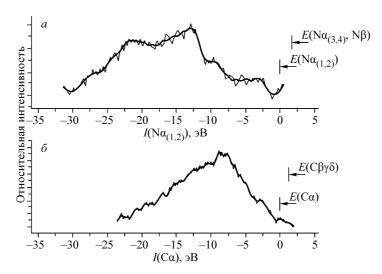
На рис. 1, δ приведен модельный РФЭ спектр N1s, рассчитанный методом DFT—ZORA. Можно предположить, что высокоинтенсивная линия в спектре является суперпозицией двух линий с очень близкими энергиями 403,4 и 403,8 эВ, отвечающих мезо-атомам азота (N $\alpha_{(3,4)}$) и аза-атомом азота (N β), не связанным с атомами водорода. Высокоэнергетическая компонента (405 эВ) обусловлена иминоводородными атомами азота (N $\alpha_{(1,2)}$). Сопоставление энергетического положения экспериментального и модельного спектров, рассчитанного с помощью модельного функционала LB94, показывает разницу энергий 4,3 эВ. В то же время данная величина, полученная на основе расчета в модельном функционале SAOP, превышает 14 эВ. Относительная энергетическая разница между высокоинтенсивными компонентами модельного РФЭС N(1s) H₂Pc (см. рис. 1, δ) хорошо согласуется с экспериментальными значениями (см. рис. 1, α) в пределах ошибки эксперимента 0,2 эВ, вне зависимости от выбранного функционала.

На рис. 2, a приведен экспериментальный РФЭС C(1s) для H_2 Pc. В данной молекуле можно выделить две неэквивалентные группы атомов углерода. Наиболее интенсивный пик Aс $E_{cB}(C1s) = 285,1$ эВ соответствует атомам углерода в составе бензольных колец (С $\beta\gamma\delta$), в то время как второй пик $B \ c \ E_{cs}(C1s) = 286,5 \ эВ$ отвечает атомам углерода в составе макроцикла C_8N_8 (С α). Полученные данные согласуются с результатами работ, в которых изучали распределение электронной плотности на атомах углерода H₂Pc [22]. В отличие от экспериментальных данных, свидетельствующих об эквивалентности атомов углерода ($C\alpha$) в составе макроцикла, теоретический расчет показывает (см. рис. $2, \delta$), что соответствующая эквивалентность наблюдается только для атомов углеродов противоположных пиррольных колец. Энергетическая разница между атомами 1*s*-уровнями атомов углерода Сα неэквивалентных пиррольных колец составляет ~0,4 эВ. Аналогичная тенденция наблюдается и в случае атомов СВ. Периферийные атомы углерода Сүб полностью эквивалентны друг другу вне зависимости от пространственного расположения. Малоинтенсивные дополнительные пики в области более высоких энергий связи 288—293 эВ (см. рис. 2, a) являются shake-up сателлитами [23]. Дополнительнительный сателлит, возникающий в результате фотоэмиссии с атомов углерода бензольных колец, входит в состав высокоэнергитической линии B (см. рис. 2, a) [13, 24]. Сопоставление энергетического положения экспериментального (см. рис. 2, a) и модельного РФЭ (см. рис. $(2, \delta)$ спектров углерода (функционал LB94) показывает разницу энергий \sim 5,1 эВ.

Puc.~2. Экспериментальный РФЭС C1s (a) и теоретический РФЭС C1s (сплошная линия) (δ) для H_2 Рс с учетом неэквивалентности атомов углерода: С α (штриховая линия), С β (пунктирная линия), С γ δ (штрихпунктирная линия)

Соединение	Энергия, эВ						
	C(1s)				N(1s)		
	Сα	Сβ	Сү	Сδ	$N\alpha_{(1,2)}$	$N\alpha_{(3,4)}$	Νβ
H ₂ Pc	286,5	285,1			400,7	399,1	

В таблице приведены энергетические положения основных экспериментальных РФЭС линий H_2 Pc, которые использовали для привязки РЭС к единой шкале потенциалов ионизации.


Рентгеновские эмиссионные спектры. Вследствие наличия в H_2 Рс неэквивалентных групп атомов азота и углерода (см. таблицу) экспериментальные РЭС $NK\alpha$ и $CK\alpha$ необходимо рассматривать как суперпозицию $K\alpha$ -спектров соотвутствующих групп атомов ($C\alpha$, $C\beta\gamma\delta$ и $N\alpha_{(1,2)}$, $N\alpha_{(3,4)}$, β). Так как 1s-уровни данных атомов имеют сильно различающиеся энергии связи, то в суперпозиционном экспериментальном спектре положение уровней вакуума для каждой группы атомов будет отличаться. Положение пределов ионизации ($E(C\alpha)$, $E(C\beta\gamma\delta)$, $E(N\alpha_{(1,2)})$, $E(N\alpha_{(3,4)},\beta)$) для $K\alpha$ РЭС азота и углерода H_2 Рс показано на рис. 3. Различия в энергии связи 1s-уровня H_2 Рс неэквивалентных групп атомов C и N достигает 1,4 и 1,6 эR соответственно (см. таблицу).

Энергия валентных уровней ε_i и энергии, соответствующие им, рентгеновских эмиссионных переходов $(hv)_i$ связаны соотношением:

$$\varepsilon_i = I(1s)_i - (h\nu)_i,\tag{1}$$

где $I(1s)_i$ — потенциал ионизации 1s-уровня атома, спектр которого рассматривается.

Согласно (1), энергетическое положение i-го уровня ε_i в экспериментальном спектре на шкале энергий рентгеновских переходов $(hv)_i$ зависит от энергии связи (потенциала ионизации) внутреннего 1s-уровня, т.е. $(I(1s)_i)$. Следовательно, для того чтобы определить область расположения валентных МО в $K\alpha$ -спектрах углерода, в которых имеется, например, вклад $C\alpha$ атомов и тех или иных атомов азота, необходимо границу, соответствующую потенциалу ионизации $I(C\alpha)$ (см. рис. 3, δ), совместить с пределами ионизации в $K\alpha$ -спектрах, отвечающих неэквивалентным атомам азота в $K\alpha$ -спектре азота (см. рис. 3, a). Аналогично, для определения положения уровней атомов углерода $I(C\beta,\gamma,\delta)$ относительно $K\alpha$ -спектров азота граница $I(C\beta,\gamma,\delta)$ в $K\alpha$ -спектре углерода должна быть совмещена с пределами ионизации атомов азота ($N\alpha$, $N\beta$) в $K\alpha$ -спектре азота.

Рис. 3. Экспериментальный рентгеновский $K\alpha$ -спектр азота (a) и $K\alpha$ -спектр углерода (δ) для H_2 Pc

На РФЭС валентной полосы H_2 Pc (см. рис. 4, a) присутствуют три основные особенности (A, B, C) с энергетическим положением максимумов -5,0, -10,7 и -20,0 эВ соответственно. Сопоставляя экспериментальный РФЭС валентной полосы (см. рис. 4, a) и экспериментальные спектры РЭС С($K\alpha$) и N($K\alpha$) (см. рис. 4, δ , ϵ), можно видеть, что максимальный вклад валентных 2p-орбиталей азота N α (3,4) и N β наблюдается в МО с энергией связи -10,7 эВ, что проявляется в $K\alpha$ -спектре азота наличием особенности B' (см. рис. 4, ϵ), соответствующей максимуму B'' в $K\alpha$ -спектре углерода (С $\beta\gamma\delta$) (см. рис. 4, ϵ) и пику B валентной полосы (см. рис. 4, ϵ). Данная особенность также характерна и для $K\alpha$ -спектров других неэквивалентных групп атомов углерода и азота, которая расположена на \sim 1,6 эВ глубже. Граничная ВЗМО H_2 Pc расположена при энергиях связи -1,5 \pm 0,3 эВ и включает 2p-АО азота (см. рис. 4, ϵ , A'_1) и 2p-АО углерода (см. рис. 4, ϵ , A''_1). Особенность A РФЭС валентной полосы (см. рис. 4, ϵ) связана с МО, которые

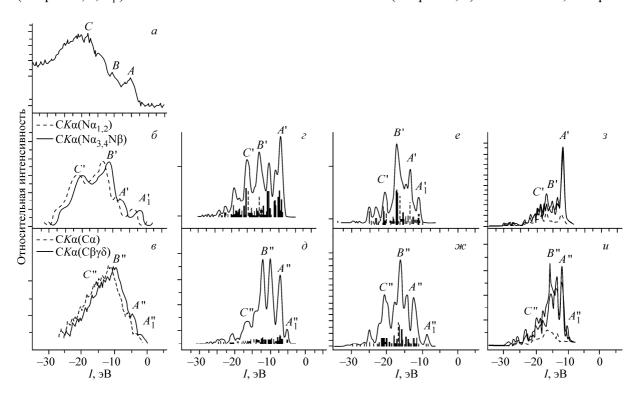


Рис. 4. Экспериментальный РФЭС валентной полосы (а), РЭС NK α (б) и CK α (в), а также теоретические РЭС в приближении основного состояния N(K α) (ε), C(K α) (д) в модели Z+1 N(K α) (е), C(K α) (и), рассчитанные в модели DFT-ZORA для H₂Pc

также построены в равной степени как из 2p-AO атомов азота (см. рис. 4, δ , A'), так и из 2p-AO атомов углерода (см. рис. 4, ϵ , A''). Наиболее глубокий уровень включает в основном 2p-AO азота (см. рис. 4, δ , пик C').

Наряду с экспериментальными РЭС на рис. 4 представлены модельные спектры $N(K\alpha)$ и $C(K\alpha)$, построенные на основе модели замороженных орбиталей (см. рис. 4, ϵ , δ) и в модели Z+1 (см. рис. 4, ϵ , ∞) соответственно. Спектры построены с учетом вкладов всех неэквивалентных групп атомов углерода и азота (вертикальные особенности). Для моделирования спектров на основе квантово-химических расчетов основного состояния использовали приближение Купманса.

Согласно теоретическим расчетам электронной структуры H_2 Рс в модели замороженных орбиталей, ВЗМО соответствует МО симметрии a_u , основной вклад в которую вносят $2p\pi$ -АО углерода группы $C\alpha$ и $C\gamma\delta$ (см. рис. 4, δ , пик A_1''). Пики A' и A'' (см. рис. 4, ϵ , δ) связаны с МО, которые построены из $2p\pi$ -АО атомов азота ($N\alpha_{(3,4)}$ и $N\beta$) и $2p\pi$ -АО атомов углерода внутреннего макроцикла ($C\alpha$). Вклад 2p-АО атома углерода в ВЗМО энергетического интервала -5,0—7,5 эВ варьируется в диапазоне 62,5—86,2 %. В рамках рассматриваемой модели последующие пики B', C' и B'', C'' (см. рис. 4, ϵ , ϵ) характеризуют орбитали как ϵ -, так и ϵ -типа всех неэквивалентных групп, но со значительным вкладом атомов $N\alpha_{(1,2)}$ и $C\alpha$.

Моделирование РЭС $N(K\alpha)$ и $C(K\alpha)$ в приближении Z+1 показывает лучшее согласие по форме спектров, что проявляется в возникновении дополнительных низкоинтенсивных особенностей (см. рис. 4, e, m, пики A_1' , A_1''), характерных также для экспериментальных спектров $N(K\alpha)$ и $C(K\alpha)$ (см. рис. 4, δ , δ , пики A_1' , A_1''). Согласно теоретическому расчету в модели Z+1, пик A_1'' (см. рис. 4, m) соответствует граничной ВЗМО с энергией связи -8,7 эВ, где основной вклад (16,5%) вносят $2p\pi$ -АО атомов углерода $C\alpha$. ВЗМО со значительным вкладом атомов азота (пик A_1' на рис. 4, e) располагается на 2,1 эВ глубже и характеризует $2p\pi$ -АО атомов азота ($N\alpha_{(1,2)}$). Особенности A_1' и A_1'' (см. рис. 4, e, m) связаны с МО, которые построены из $2p\pi$ -АО атомов азота и $2p\pi$ -АО атомов углерода всех неэквивалентных групп. Более глубокие МО имеют орбитали как π -, так и σ -типа всех неэквивалентных групп атомов азота и углерода, со значительным участием 2p-АО группы атомов $N\alpha_{(3,4)}$, $N\beta$ и $C\beta\gamma\delta$.

Наряду с квантово-химическими расчетами валентной полосы Н2Рс, рассчитанными методом DFT в программе Jaguar 6.0, на рис. 4, 3, u представлен расчет РЭС $N(K\alpha)$ и $C(K\alpha)$, выполненный методом функционала плотности с учетом релятивистских поправок DFT-ZORA в программе ADF. Анализ вкладов $2p\pi$ и $2p\sigma$ азота и углерода показывает, что основной вклад в граничные B3MO вносят $2p\pi$ -AO азота и углерода, что коррелирует с данными, полученными методом замороженных орбиталей и Z+1. Что касается сопоставления формы экспериментальных и теоретических спектров $N(K\alpha)$ и $C(K\alpha)$, то в данном случае совпадения не наблюдается. В случае $N(K\alpha)$ -спектра (см. рис. 4, 3) отсутствует низкоинтенсивная особенность, характерная для экспериментального спектра РЭС (см. рис. 4, δ , пик A_1), и несколько занижен вклад 2p-AO азота в ВЗМО с энергией связи от -15,0 до -23,0 эВ (см. рис. 4,3, пик C''). Расчет парциальной плотности углерода в ВЗМО H_2 Рс показывает, что пик A_1'' (см. рис. 4, u), как и в случае модели замороженных орбиталей, имеет симметрию a_u (-10,3 3B), основной вклад в которую вносят $2p\pi$ -АО углерода группы Са (6,5 %) и Суб (4 %). Пики A' и A'' (см. рис. 4, 3, u) связаны с МО, которые построены из $2p\pi$ -AO и из $2p\sigma$ -AO атомов азота ($N\alpha_{(3,4)}$) и атомов углерода ($C\gamma\delta$). Более глубокие ВЗМО, лежащие в энергетическом интервале от -15,0 до -23,0 эВ (рис. 4, з, и, пики B', B'' и C', C'') имеют как π -, так и σ -характер всех неэквивалентных групп атомов азота и углерода с преимущественным вкладом $2p_{\sigma}$ -AO N α и C α , С γ .

Таким образом, сравнительный анализ результатов квантово-химических расчетов в сопоставлении с экспериментальными данными показывает, что ВЗМО H_2 Pc в основном построена из $2p\pi$ -AO углерода $C\gamma\delta$. Наилучшее согласие между экспериментальными и теоретическими

данными по характеру распределения парциальной плотности в ВЗМО получено методом функционала плотности в приближении Z+1. Состав и энергетическое положение граничной ВЗМО H_2 Pc варьируется в зависимости от выбранного метода расчета. Так, расчет методом DFT в модели замороженных орбиталей и методом DFT-ZORA показывает, что граничная ВЗМО имеет симметрию a_u , основной вклад в которую вносят $2p\pi$ -AO углерода группы $C\alpha$ и $C\gamma\delta$ с энергетическим положением -5,3 и -10,2 эВ соответственно. Согласно теоретическому расчету, в модели Z+1, основной вклад (16,5%) в граничную ВЗМО с энергией связи -8,7 эВ вносят $2p\pi$ -AO атомов углерода $C\alpha$.

ЗАКЛЮЧЕНИЕ

Проведено рентгеноспектральное, рентгеноэлектронное и квантово-химическое исследование электронного строения H_2 Pc. Показано, что атомы азота $N\alpha_{(3,4)}$ и $N\beta$ групп эквивалентны, тогда как энергия связи 1s-уровня иминоводородных атомов азота отличается на 1,6 эВ. Согласно экспериментальному анализу 1s-уровней атомов углерода установлено, что в H_2 Pc имеются две неэквивалентные группы атомов углерода $C\alpha$ и $C\beta\gamma\delta$. Кроме того, энергетическая разница между 1s-уровнями атомов углерода $C\alpha$ неэквивалентных пиррольных колец $\sim 0,4$ эВ. Аналогичная тенденция наблюдается и в случае атомов $C\beta$. Периферийные атомы углерода $C\gamma\delta$ полностью эквивалентны друг другу вне зависимости от пространственного расположения. Метод DFT-ZORA позволяет с высокой точностью моделировать относительное энергетическое положение 1s-уровней неэквивалентных атомов H_2 Pc относительно друг друга, однако абсолютное значение энергий связи отличается от экспериментальных более чем на 5,0 эВ.

Рентгеноспектральное и рентгеноэлектронное исследование электронной структуры H_2 Рс показало, что граничная B3MO ($-1,5\pm0,3$ эВ) включает 2p-AO азота и 2p-AO углерода. Наилучшее согласие между экспериментальными и теоретическими данными по характеру распределения парциальной плотности в B3MO получено методом функционала плотности в приближении Z+1. Атомный состав и энергетическое положение граничной B3MO H_2 Рс варьируется в зависимости от выбранного метода расчета. Так, расчет методом DFT в основном состоянии и методом DFT-ZORA показывает, что граничная B3MO имеет симметрию a_u , основной вклад в которую вносят $2p\pi$ -AO углерода группы $C\alpha$ и $C\gamma\delta$ с энергиями -5,3 и -10,2 эВ соответственно. Согласно теоретическому расчету в рамках модели Z+1, в граничную B3MO с энергией -8,7 эВ основной вклад (16,5 %) вносят $2p\pi$ -AO атомов углерода $C\alpha$. Следующая B3MO со значительным вкладом атомов азота располагается на 2,1 эВ глубже и характеризует $2p\pi$ -AO атомов азота ($N\alpha_{(1,2)}$).

СПИСОК ЛИТЕРАТУРЫ

- 1. Waltera M.G., Rudine A.B., Wamser C.C. // J. Porphyrins Phthalocyanines. 2010. 14. P. 759 792.
- 2. Xue J., Rand B.P., Uchida S., Forrest S.R. // Adv. Mater. 2005. 17. P. 66 71.
- 3. Hohnholza D., Steinbrecherb S., Hanacka M. // J. Mol. Struct. 2000. **521**. P. 231 237.
- 4. Itoh E., Ohmori Y., Miyairi K. // Jpn. J. Appl. Phys. 2004. 43, N 2. P. 817 821.
- 5. Cho S.W., Piper L.F.J., DeMasi A. et al. // J. Phys. Chem. C. 2010. 114. P. 1928 1933.
- 6. *Blochwitz J.* Organic light-emitting diodes with doped charge transport layers. Doctoral dissertation. Dresden, 2001.
- 7. *Юрре Т.А.*, *Рудая Л.И.*, *Климова Н.В.*, *Шаманин В.В.* // Физика и техника полупроводников. 2003. **53**, № 7. С. 835 843.
- 8. *Cook P., Liu X., Yang W., Himpsel F.* // Chem. Phys. 2009. **131**. P. 194701 (1 10).
- 9. Kroll T., Kraus R., Schonfelder R., Aristov V.Yu., Molodtsova O.V. // J. Chem. Phys. 2012. 137. P. 054306 (1 7).
- 10. *Berkowitz J.* // J. Chem. Phys. 1979. **70**, N 6. P. 2819 2828.
- 11. Alfredsson G., Brena B., Nilson K. et al. // Chem. Phys. 2005. 122. P. 214723 (1 6).
- 12. Nardi M.V., Detto F., Aversa L. et al. // Phys. Chem. Chem. Phys. 2013. 15. P. 12864 12881.
- 13. Enderman H. // J. Phys. Chem. 1940. **190**. P. 129 131.
- 14. Березин Б.Д. // Изв. вузов. Химия и хим. технология. 1982. 2, № 5. С. 165 172.

- 15. Nilson K., Ahlund J., Shariati M.-N. et al. // J. Chem. Phys. 2012. 137. P. 044708 (1 9).
- 16. XPSpeak program package, version 4.1, The Chinese University of Hong Kong, Hong Kong, 2000.
- 17. *Shirley D.A.* // Phys. Rev. B. 1972. **5**. P. 4709 4714.
- 18. Jaguar program package, version 6.0, Schrodinger, LLC, New York, 2005.
- 19. ADF program package, version 2013.01c, Vrije Universities, Theoretical chemistry, HV Amsterdam, Nitherlands, 2013.
- 20. Zhang Y., Wang S., Demasi A. et al. // J. Mater. Chem. -2008. -18. -P. 1792 -1798.
- 21. Шапошников Г.П., Кулинич В.П., Майзлиш В.Е. Модифицированные фталоцианины и их структурные аналоги. М.: КРАСАНД, 2013.
- 22. Guangming Liu, Klein A., Thissen A., Jaegermann W. // Surf. Sci. 2003. 539. P. 37 48.
- 23. Brena B., Luo Y. // Radiat. Phys. and Chem. 2006. 75. P. 1578 1581.
- 24. *Shariati M.-N.* Electronic and geometric structure of phthalocyanines on Metals. Digital Comprehensive summaries of Uppsals Dissertations from the faculty of science and technology. Uppsala, 2012.
- 25. Мазалов Л.Н., Федоренко А.Д. и др. // Журн. структур. химии. 2013. 54, № 5. С. 860 869.