УДК 57.084.2:577.118:546.06

Элементный состав и интенсивность накопления химических элементов в листьях сибирской облепихи (*Hippiophae rhamnoides* L.)

Г. М. СКУРИДИН¹, О. В. ЧАНКИНА², А. А. ЛЕГКОДЫМОВ³, Н. В. БАГИНСКАЯ¹, К. П. КУЦЕНОГИЙ²

¹Институт цитологии и генетики Сибирского отделения РАН, проспект Академика Лаврентьева, 10, Новосибирск 630090 (Россия)

E-mail: skuridin@bionet.nsc.ru

²Институт химической кинетики и горения им. В. В. Воеводского Сибирского отделения РАН, ул. Институтская, 3, Новосибирск 630090 (Россия)

³Институт ядерной физики им. Г. И. Будкера Сибирского отделения РАН, проспект Академика Лаврентьева, 11, Новосибирск 630090 (Россия)

(Поступила 27.12.13; после доработки 03.02.14)

Аннотация

Исследован элементный состав зеленых листьев сибирской облепихи (*Hippophae rhamnoides* L. ssp. mongolica Rousi), произрастающей в эндемичных условиях Западной Сибири. Методом РФА-СИ (рентгенофлуоресцентный анализ с использованием синхротронного излучения) определены одновременное количественное содержание K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Pb в зеленых листьях и почве, а также коэффициенты биологического поглощения этих элементов. Выявлены видоспецифические особенности поглощения элементов листьями облепихи, что выражается в повышенной относительно земной фитомассы аккумуляции жизненно необходимого хрома и элементов с неустановленной биологической ролью: ниобия, скандия, титана, циркония и стронция. Показано, что листья сибирской облепихи могут служить пищевым источником жизненно необходимых хрома и марганца в виде легко усваиваемой биогенной формы. Установлено, что плоды облепихи не концентрируют токсичные химические элементы свинец и мышьяк.

Ключевые слова: элементный состав, синхротронное излучение, листья облепихи

введение

В последнее время листья облепихи крушиновидной (*Hi ppophae rhamnoides* L.) привлекают повышенное внимание фармакологов, поскольку в них обнаружен практически тот же комплекс биологически активных органических веществ (БАВ), что и в плодах [1]. Известно, что активность многих растительных БАВ фенольного ряда проявляется только в виде органоминеральных комплексов [2–4]. Листья облепихи содержат большое количество фенольных соединений и применяются при производстве продукции разнообразного лечебно-профилактического действия, включая препараты радиопротекторного направления [5, 6].

Минеральный состав листьев сибирской облепихи (*Hippophae rhamnoides* L. ssp. mongolica) на сегодняшний день исследован не в полной мере. Так, определена остаточная концентрация эссенциальных элементов (K, Ca, Fe, Mg, Zn, Cu и Co) в шроте из листьев сибирской облепихи после экстракции жирорастворимых веществ [7]. Известны концентрации K, Ca и Mg в цельных листьях сибирской облепихи, выращиваемой в средней полосе России [8].

© Скуридин Г. М., Чанкина О. В., Легкодымов А. А., Багинская Н. В., Куценогий К. П.

В то же время нет сведений об интенсивности накопления почвенных элементов в листьях облепихи. Эта информация очень важна, когда речь идет об использовании листьев при выработке пищевой и лечебно-профилактической продукции [1], особенно в случае выращивания растений на почвах с повышенным содержанием токсичных элементов – мышьяка, свинца и других [9]. Для адекватного анализа содержания всего комплекса элементов в одной пробе материала предпочтителен высокочувствительный метод, который обеспечивает их одновременное количественное определение. Метод рентгенофлуоресцентного анализа с использованием синхротронного излучения (РФА-СИ) позволяет количественно определять содержание элементов в диапазоне атомных масс от калия до урана, независимо от их соотношения в материале, без необходимости предварительно озолять пробу [10, 11].

Цель данного исследования – количественное определение элементного состава листьев сибирской облепихи и выявление закономерностей поглощения листьями отдельных элементов из почвы.

МАТЕРИАЛЫ И МЕТОДЫ

Средние пробы листьев облепихи четырех сортов селекции ИЦиГ СО РАН (Новосибирск), созданных на основе генофонда алтайских популяций: "Зарница", "Зырянка", "Красный Факел" и "Сибирский Румянец" [12], – собраны в фазе роста сформировавшихся плодов с растений, произраставших на общей делянке. Листья обезвоживали в сушильном шкафу до постоянной массы при 105 °С, размалывали на мельнице пропеллерного типа при 10 000 мин⁻¹ в течение 30 с и просеивали через капроновое сито с размером ячеек 0.5×0.5 мм для удаления крупных частиц.

Одновременно с листьями отбирали средние пробы почвы непосредственно из-под исследуемых растений с глубины наибольшей плотности ризосферы (10–15 см ниже слоя органической подстилки, почвенный горизонт A1-A2). Тип почвы – серая лесная, pH 5.5. Почву обезвоживали при 105 °С до постоянной массы. Во избежание абразивного заноса элементов с металлического ножа мельницы пробы почвы размельчали в фарфоровой ступке и просеивали через капроновое сито с размером ячеек 0.5×0.5 мм.

Элементный состав листьев и почвы определялся методом рентгенофлуоресцентного анализа с использованием синхротронного излучения (РФА-СИ). Измерения проводили на станции элементного анализа в Сибирском центре синхротронного и терагерцового излучения ИЯФ им. Г. И. Будкера СО РАН (Новосибирск) на накопителе электронов ВЭПП-3 по методике, описанной в работе [10].

Из порошкообразной массы подготовленного к анализу образца в специальной пресс-форме формировали таблетку массой 30 мг и диаметром 1.0 см. Образец в виде таблетки помещали во фторопластовые кольца между двумя химически чистыми пленками толщиной 5 мкм, затем образец облучали. Спектры характеристического флуоресцентного рентгеновского излучения (SXRF) получали при облучении образцов с энергией возбуждения 23 кэВ. Для количественного анализа спектры SXRF обрабатывались с использованием пакета программного обеспечения AXIL (QXAS, IAEA).

Концентрацию элементов определяли методом внешнего стандарта. В качестве внешних стандартов, как наиболее близких по составу к определяемым образцам, использованы российские стандарты: злаковой травосмеси СОРМ1 ГСО 8242-2003 для растительных тканей и БИЛ-1 ГСО 7126-94 для почвенных образцов.

Исследовали количественное содержание 22 химических элементов: K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Pb.

Коэффициент биологического поглощения (КБП) каждого элемента листьями из почвы определяли как соотношение концентраций [13]: КБП_А = $(C_{A/0}/C_{A/n}) \cdot 100 \%$ где А – химический элемент; $C_{A/0}$ – концен-

трация элемента в сухом веществе листьев; $C_{A/n}$ – концентрация элемента в почве.

В качестве эталона для сравнения использованы литературные данные по усредненной земной фитомассе, представляющей собой сумму надземных и подземных частей растений земной поверхности [13–15]. Общая оценка поглощения химических элементов различными тканями облепихи в виде индекса биологического поглощения приведена нами в работе [16].

Степень удовлетворения потребности человеческого организма в микроэлементах определяли в соответствии с официальными нормами физиологических потребностей в энергии и пищевых веществах для различных групп населения РФ [17].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Кларки элементов различаются в миллионы раз, поэтому по данному показателю элементы разделяли на три группы: 1) группа А – концентрация элементов в земной литосфере превышает 100 мкг/г;

- 2) группа В от 10 до 100 мкг/г;
- 3) группа С менее 10 мкг/г.

В табл. 1 приведены данные по содержанию элементов в почве и сухом веществе листьев облепихи. Для сравнения указана также средняя концентрация элементов в фитомассе Земли [14].

Элементы группы А

Железо. Концентрации железа максимальны относительно остальных микроэлементов

ТАБЛИЦА 1

Абсолютная концентрация элементов, коэффициент биологического поглощения фитомассой и листьями (КБП_ф и КБП_л соответственно) и доля суточной потребности (СП) человека (содержание в 10 г сухих листьев)

Элементы	Земная почва, м. д.*	Почва ИЦиГ, мкг/г	КБП $_{\phi}$, %	Листья		
				Содержание, мкг/г	КБП _л , %	СП, %
			Группа А			
Fe	40 000	23525 ± 938	0.35	186 ± 30	0.78 ± 0.08	19
K	14 000	15462 ± 907	100	7406 ± 204	46.7 ± 2.8	2.9
Ca	15 000	13033 ± 946	120	21490 ± 1897	168 ± 13	21
Ti	5000	4623 ± 276	0.02	6.67 ± 1.53	0.145 ± 0.022	н/о
Mn	1000	772 ± 30	63	127 ± 6.1	16.7 ± 1.2	67
Zr	400	348±88	0.2	3.5 ± 1.0	1.27 ± 0.16	н/о
Sr	250	171 ± 5	10	68.7±7.1	39.9 ± 4.4	н/о
			Группа В			
Zn	90	45.5 ± 0.9	111	19.0 ± 4.5	41.8 ± 10.9	1.6
V	90	87.3±9.4	1.8	0.27 ± 0.07	0.33 ± 0.12	н/о
Cr	70	65.5 ± 6.9	0.3	2.00 ± 0.70	2.73 ± 0.71	39
Ni	50	42.5 ± 2.4	6.0	1.67 ± 0.22	4.16 ± 0.83	н/о
Rb	35	60.0 ± 3.3	57	5.27 ± 0.45	8.48 ± 0.78	н/о
Cu	30	20.0 ± 1.1	47	2.40 ± 0.17	12.3 ± 1.8	2.5
Y	30	23.3 ± 1.2	-	0.64 ± 0.26	2.86 ± 1.34	н/о
Pb	12	11.3 ± 0.1	23	0.81 ± 0.13	7.07 ± 1.21	н/о
Nb	10	11.0 ± 1.3	0.2	0.41 ± 0.10	3.79 ± 1.21	н/о
			Группа С			
Sc	7.0	4.75 ± 1.65	0.11	0.027 ± 0.003	1.2 ± 0.54	н/о
Co	8.0	9.75 ± 0.25	6.3	0.073 ± 0.012	0.76 ± 0.14	7.1
As	6.0	6.28 ± 0.46	3.3	0.11 ± 0.03	1.67 ± 0.26	н/о
Se	0.4	1.53 ± 0.62	50	0.18 ± 0.05	9.87 ± 1.86	2.5
Br	10	4.38 ± 0.61	150	5.53 ± 2.22	149 ± 57	н/о
Mo	1.2	0.56 ± 0.13	75	$0.067 {\pm} 0.009$	15.7 ± 1.4	1.0

Примечания. 1. н/о - не определено. 2. Прочерк - литературных данных нет.

*По Bowen, 1966 (Цит. по [15]).

и достигают 180 мкг/г. Это обусловлено участием жизненно важного элемента в осуществлении многих функций как животных, так и растительных организмов, в первую очередь в фотосинтезе. Несмотря на малый коэффициент его поглощения из почвы (КБП_{Fe} < 0.8 %), в зеленых растениях обеспечивается необходимый уровень железа [2]. Содержание железа в листовом шроте облепихи сопоставимо с его содержанием в листьях и составляет 381–411 мкг/г.

Кальций активно аккумулируется листьями сибирской облепихи. Интенсивность накопления в листьях в 1.4 раза превосходит фитомассу и в 1.7 раза – почвенную концентрацию, на основании чего облепиху можно отнести к растениям-концентраторам кальция в листьях. При этом содержание элемента идентично в эндемичных условиях и в условиях интродукции в средней полосе России [8].

Калий, один из наиболее подвижных элементов почвенного раствора, хорошо проникает в листья облепихи. Его концентрация здесь достигает 7400 мкг/г. Условия интродукции практически не влияют на этот показатель [8].

Титан. Несмотря на довольно высокое содержание титана в почвах (4600 мкг/г), он поглощается растениями крайне слабо [13]. Тем не менее листья облепихи аккумулируют этот элемент с интенсивностью, которая в семь раз превышает аккумуляцию наземной фитомассой. Аналогичное явление отмечено нами при исследовании элементного состава плодов [18].

Марганец. Общее содержание этого жизненно важного элемента в листьях облепихи достигает 130 мкг/г, тогда как в обезжиренном шроте обнаружено лишь до 50 мкг/г марганца [7], еще меньше в плодах – 17 мкг/г [18].

Цирконий характеризуется относительно невысокой (3.5 мкг/г) концентрацией в листьях. При этом его коэффициент поглощения листьями более чем в 6 раз превышает показатель для фитомассы и в 4 раза – для плодов [18].

Стронций – химически близкий аналог кальция [13]. Однако его поглощение листьями облепихи в 4 раза больше по сравнению с поглощением фитомассой и в 20 раз – по сравнению с поглощением плодами облепихи [18].

Элементы группы В

Цинк. Характеризуется относительно высокой интенсивностью накопления среди других химических элементов группы. В листьях сибирской облепихи обнаружено до 20 мкг/г этого эссенциального элемента, столько же содержится и в плодах (18.8 мкг/г) [18], тогда как в листовом шроте зафиксировано от 43 до 95 мкг/г [7].

Хром. Относится к эссенциальным элементам с низким коэффициентом поглощения (порядка 0.3 %) [15]. Вместе с тем листья облепихи накапливают его почти в 10 раз интенсивнее по сравнению с фитомассой. Этот факт интересен в плане возможного использования листьев облепихи в качестве естественного источника биогенного хрома.

Аналогичный характер поглощения листьями обнаружен и для элемента с еще не установленной биологической ролью – **ниобия**.

Никель. Его поглощение и концентрация в листьях облепихи невысокие и несколько ниже среднего показателя фитомассы.

Медь. Поглощение этого жизненно необходимого элемента листьями облепихи существенно меньше по сравнению с фитомассой. Полученные нами данные по ее содержанию в листьях облепихи (2.40 мкг/г) близки к таковым для листового шрота (2.6–4.0 мкг/г) [7].

Свинец и рубидий. Земная фитомасса накапливает свинец и рубидий с умеренной интенсивностью: КБП равен 23 и 57 % соответственно. Однако в листьях сибирской облепихи их накапливается всего 7-8 % от почвенного содержания.

Элементы группы С

Бром. Содержание брома в листьях облепихи превышает почвенное содержание. Феномен избыточного накопления этого элемента наземными растениями известен давно, но еще не получил биологического объяснения [15]. Облепиха – не исключение: интенсивность накапливания этого элемента в листьях составляет 150 %.

Кобальт. Концентрация элемента в листьях чрезвычайно низкая — 0.073 мкг/г. В листовом шроте [7] и плодах облепихи [18] кобальт присутствует в следовых количествах, тогда как средняя фитомасса аккумулирует его на уровне 0.5 мкг/г [14]. Это свидетельствует о наличии активного биологического барьера для проникновения этого элемента в листовые ткани облепихи.

Молибден присутствует в концентрации 0.07 мкг/г, что значительно меньше по сравнению с его содержанием в плодах (0.25 мкг/г) [18].

Селен и мышьяк. Концентрация этих элементов в листьях облепихи (0.18 и 0.11 мкг/г соответственно) практически не отличается от их концентрации в плодах: 0.20 и 0.13 мкг/г соответственно [18].

ЗАКЛЮЧЕНИЕ

Впервые методом РФА-СИ исследован элементный состав и определено количественное содержание в листьях сибирской облепихи (*Hi ppophae rhamnoides* L.) 22 химических элементов: K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Pb, – а также выявлена интенсивность поглощения этих элементов из почвы.

Установлено, что листья сибирской облепихи характеризуются избирательным накоплением отдельных химических элементов относительно их почвенного содержания. Накопление кальция и брома избыточное, поглощение других элементов из почвы относительно слабое и сопоставимо с показателем для усредненной земной фитомассы. Вместе с тем обнаружены видоспецифические особенности в накоплении отдельных элементов листьями. Так, относительно земной фитомассы многократно повышено накопление жизненно необходимого хрома и элементов с неустановленной биологической ролью: ниобия, скандия, титана, циркония и стронция.

Листья сибирской облепихи могут служить реальным источником жизненно необходимых элементов в виде легко усваиваемой биогенной формы [4]: в 10 г сухого вещества содержится примерно 70 % суточной потребности человека в Mn, до 20 % Ca и Fe, до 40 % Cr. При этом важно отметить, что листья облепихи не накапливают такие токсичные элементы, как мышьяк и свинец.

СПИСОК ЛИТЕРАТУРЫ

- 1 Кошелев Ю. А., Агеева Л. Д. Облепиха. Бийск: изд. БПГУ, 2004. 320 с.
- 2 Битюцкий Н. Б. Необходимые микроэлементы растений. М.: Наука, 2005. 256 с.
- 3 Tolkachev O. N., Shipulina L. D. // Seabuckthorn a Resource of Health, a Challenge to Modern Technology. Proc. of the 1st Congress of the Int. Seabuckthorn Association. Berlin, 2003, P. 90–103.
- 4 Ловкова М. Я., Рабинович А. М., Пономарева С. Н., Бузук Г. Н., Соколова С. М. Почему растения лечат. М.: Наука, 1989, С. 24–36.
- 5 Sawney R. C., Basu M., Jayamurthy P., Gupta A., Ganju L. // Seabuckthorn on the Way Between Science and Industry Interaction. Proc. of the Fourth Int. Seabuckthorn Association Conf. Barnaul, 2009. P. 175–176.
- 6 Hua Shengzhuo, Xu Tao. // Proc. of the 5th Int. Seabuckthorn Association Conf. Xining, 2011. P. 110.
- 7 Солоненко Л. П., Кошелев Ю. А., Агеева Л. Д. // II Междунар. симп. по облепихе: Тез. докл. Новосибирск, 1993. С. 135–137.
- 8 Елисеев И. П., Шумратова Т. И. // Плодово-ягодные культуры. Тр. ГСХИ. 1974. Т. 77. С. 94–100.
- 9 Шмонов А. М. // Новое в биологии, химии и фармакологии облепихи. Новосибирск: Наука, 1991. С. 181–189.
- 10 Барышев В. Б., Золотарев К. В., Кобелева Н. А., Потемкин В. Л., Ходжер Т. В. // Поверхность. Рентген., синхротр. и нейтр. исследования. 2002. № 11. С. 56–60.
- 11 Barishev V. A., Kulipanov G. N., Scrinsky A. N. // Handbook of Synchrotron Radiation / G. Brown, D. Moncton (Eds.). Amsterdam: Elsevier, 1991. Vol. 3. 639 p.
- 12 Щапов Н. С., Белых А. М. Сорта облепихи селекции ИЦиГ и Новосибирской ЗПЯОС им. И. В. Мичурина // Сб. "Облепиха в лесостепи Приобья". Новосибирск: СО РАСХН, СО РАН, 1999. С. 50–55.
- 13 Перельман А. И., Касимов Н. С. Геохимия ландшафта. М.: Астрея-2000, 1999. 730 с.
- 14 Bowen H. J. M. Trace Elements in Biochemistry. London-NY: Acad. Press, 1966. 241 р. (Цит. по [15]).
- 15 Ковальский В. В. Геохимическая экология. М.: Наука, 1974. 299 с.
- 16 Скуридин Г. М., Чанкина О. В., Легкодымов А. А., Креймер В. К., Багинская Н. В., Куценогий К. П. // Изв. РАН. Сер. физ. 2013. Т. 77, № 2. С. 229–232.
- 17 Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации. Методические рекомендации MP 2.3.1.2432-08 от 18 декабря 2008. М., 2008.
- 18 Скуридин Г. М., Чанкина О. В., Легкодымов А. А., Багинская Н. В., Креймер В. К., Куценогий К. П. // Химия уст. разв. 2013. Т. 21, № 5. С. 525-532.