УДК 532.52 + 533.95

О ВОЗМОЖНОСТИ СНИЖЕНИЯ ПРОБИВНОГО ДЕЙСТВИЯ КУМУЛЯТИВНЫХ ЗАРЯДОВ В МАГНИТНОМ ПОЛЕ

С. В. Федоров, А. В. Бабкин, С. В. Ладов,

Г. А. Швецов*, А. Д. Матросов*

Московский государственный технический университет им. Н. Э. Баумана, 105005 Москва * Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск E-mail: shvetsov@hydro.nsc.ru

Рассмотрена возможность снижения пробивного действия кумулятивных зарядов посредством создания перед преградой магнитного поля с ориентацией линий индукции вдоль оси заряда. Исследование задачи проводится на основе результатов экспериментов, в которых при создании магнитного поля в облицовке кумулятивного заряда перед его подрывом зафиксировано резкое снижение пробивного действия или его отсутствие. Для определения изменения магнитной индукции в облицовке кумулятивного заряда при его движении в магнитном поле использована расчетная схема двух проводящих соосных цилиндрических оболочек, соответствующих корпусу и облицовке заряда, в предположении постоянства плотности индукционных токов по толщине оболочек. На поверхности внешней оболочки задавалось продольное магнитное поле, закон изменения которого выбирался в зависимости от пространственного распределения поля перед преградой и скорости движения заряда. Проведены оценки интенсивности магнитного поля, при создании которого можно рассчитывать на существенное снижение пробивного действия кумулятивных зарядов различного диаметра.

Ключевые слова: взрыв, кумулятивный заряд, пробивное действие, магнитное поле.

Введение. В экспериментах [1], в которых создавалось аксиальное магнитное поле в облицовке кумулятивного заряда (K3) непосредственно перед его подрывом, обнаружено значительное снижение пробивного действия. Эксперименты проводились с зарядами диаметром 50 мм, имеющими медную коническую облицовку с углом раствора 50°. Уменьшение глубины пробития стальной преграды более чем в два раза наблюдалось при индукции начального поля в облицовке, составляющей десятые доли тесла. При несколько бо́льших интенсивностях начального поля, созданного в облицовке (приблизительно 0,5 Тл), пробивное действие заряда отсутствовало. По-видимому, этот эффект обусловлен резким усилением магнитного поля в области струеобразования [2]. Нарушение действия КЗ при предварительном создании в его облицовке магнитного поля может быть вызвано усилением поля в полости облицовки, что имеет место при работе магнитокумулятивных генераторов — устройств для получения сверхсильных магнитных полей. Вследствие магнитной кумуляции возможно проявление мощных термических и механических эффектов, способных повлиять на характер действия КЗ. Кроме того, в соответствии с эффектом "вмороженности" магнитного поля в вещество [3] к усилению поля может приводить быстрое движение проводящей среды, сопровождающееся деформацией растяжения в направлении линий магнитной индукции. При этом в пренебрежении сжимаемостью среды и диффузией поля, обусловленной конечной электропроводностью материала, изменение магнитной индукции В в среде должно происходить пропорционально изменению длины материальных волокон, ориентированных изначально вдоль линий индукции. Диффузион-

Рис. 1. Механизм усиления магнитного поля в области струеобразования при схлопывании облицовки кумулятивного заряда

ные процессы в среде, приводящие к сглаживанию неоднородностей поля при их появлении и ускоряющиеся при уменьшении электропроводности среды, очевидно, ослабляют генерацию поля. Поэтому для значительного усиления магнитного поля необходимо, чтобы скорость его "накачки" в результате деформирования среды существенно превышала скорость диффузионного "рассасывания" поля.

В процессе формирования кумулятивной струи (КС) материал облицовки, движение которого в радиальном направлении при соударении на оси заряда прекращается, испытывает огромные деформации растяжения в осевом направлении, т. е. в направлении линий магнитной индукции поля, созданного в облицовке. В данном случае проявление эффекта "вмороженности" должно приводить к генерации и усилению поля $B = B_0 l/l_0$ непосредственно в материале формирующейся струи (рис. 1). Сопровождающее этот процесс возникновение "распирающих" электромагнитных сил в КС может привести к ее разрушению с радиальным рассеиванием материала и потере пробивной способности. Влияние магнитного поля на процесс формирования КС при обжатии кумулятивной облицовки рассматривалось на основе численного моделирования в рамках двумерной осесимметричной задачи магнитной гидродинамики о схлопывании конической оболочки с созданным в ней однородным аксиальным магнитным полем под действием внешнего давления, соответствующего нагружению оболочки продуктами детонации заряда ВВ (материал оболочки полагался идеально проводящим). На рис. 2 показано формирование КС при динамическом обжатии оболочки с углом раствора 60° и диаметром основания 60 мм в отсутствие магнитного поля и при его начальной интенсивности $B_0 = 0.2$; 0.5 Тл. Видно, что наличие магнитного поля в полости оболочки приводит к радиальному рассеиванию формирующейся КС.

С помощью рентгеновской диагностики проведены экспериментальные исследования работы кумулятивных зарядов, находящихся во внешнем магнитном поле. В экспериментах использовался K3 диаметром 30 мм, имеющий медную коническую облицовку толщиной 1 мм с углом раствора 30°. Магнитное поле в облицовке создавалось с помощью одновиткового соленоида, выполненного из медной шины толщиной 4 мм, внутри которого находился K3. В качестве источника электрической энергии использовалась конденсаторная батарея емкостью от 3,2 до 6,4 мФ. Время задержки между коммутацией разрядной

Рис. 2. Влияние магнитного поля на процесс формирования кумулятивной струи:

 $a - B_0 = 0; \ extsf{6} - B_0 = 0,2$ Тл; $e - B_0 = 0,5$ Тл

цепи и подрывом K3 выбиралось таким образом, чтобы к моменту начала схлопывания облицовки достигался максимум поля в ее центре. Индукция магнитного поля в облицовке в момент подрыва K3 определялась на основе экспериментальных токовых кривых с учетом установленной в тарировочных опытах взаимосвязи между разрядным током соленоида и магнитным полем в полости облицовки. На рис. 3 приведены рентгенограммы KC, сформировавшихся при индукции поля в центре облицовки в момент ее схлопывания $B_0 = 0.84$ Tл (рис. 3.a) и $B_0 = 1.4$ Tл (рис. 3.6). Время съемки в обоих случаях одно и то же. Зафиксированные на приведенных рентгенограммах картины разрушения KC, приобретающей форму расширяющейся полой трубки (рис. 3.a) вплоть до полного ее диспергирования (рис. 3.6), свидетельствуют о "взрыве" в струе, обусловленном, очевидно, "накачкой" сильного магнитного поля.

Эффект нарушения нормального функционирования K3 в магнитном поле относительно небольшой интенсивности (десятые доли тесла) может быть использован для антитеррористической защиты от действия кумулятивных средств поражения различных объектов посредством их магнитной экранировки — создания перед защищаемым объектом магнитного поля (с ориентацией линий индукции преимущественно вдоль оси подлетающего K3).

Постановка задачи. Главным условием реализации данного способа защиты является обеспечение проникновения магнитного поля необходимой интенсивности в облицовку K3 к моменту его подрыва. Быстрому протеканию этого процесса препятствует проводящий корпус K3, в котором в соответствии с законом электромагнитной индукции при движении в магнитном поле индуцируются вихревые электрические токи [3], экранирующие облицовку. Интенсивность магнитного поля, проникшего в облицовку, зависит от времени пребывания в нем K3. Поэтому процесс проникновения поля в облицовку определяется не

Рис. 3. Рентгенограммы кумулятивных струй, формирующихся при создании магнитного поля в облицовке кумулятивного заряда: $a - B_0 = 0.84 \text{ Tr}; \ \delta - B_0 = 1.4 \text{ Tr}$

только его пространственным распределением вблизи защищаемого объекта, но и скоростью движения K3 (чем больше протяженность области с созданным магнитным полем вдоль траектории движения K3 и чем меньше скорость K3, тем бо́льшая интенсивность поля может достигаться в облицовке). Размер области пространства с магнитным полем зависит от размеров источника поля, размещаемого на защищаемом объекте, и, следовательно, от размеров самого объекта. Для выяснения принципиальной возможности намагничивания облицовки K3 за время его подлета к объекту заданного размера рассмотрим модельный объект (одновременно являющийся источником магнитного поля) сферической формы радиусом R_0 (рис. 4), создающий стационарное поле. Во внешнем по отношению к объекту пространстве (в котором предполагается, что другие источники поля отсутствуют) магнитное поле является потенциальным. Вводя скалярную функцию $\varphi(\mathbf{r})$ потенциала поля ($\mathbf{B} = \operatorname{grad} \varphi$) и полагая создаваемое сферическим объектом поле осесимметричным, для определения функции $\varphi(r, \theta)$ в сферической системе координат (r, θ) с началом в центре объекта получаем уравнение Лапласа

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\varphi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\varphi}{\partial\theta}\right) = 0.$$
(1)

Решение данного уравнения имеет наиболее простой вид, если на поверхности сферы $r = R_0$ (рис. 4) распределение радиальной компоненты B_r вектора магнитной индукции по полярному углу θ задается выражением

$$B_r(R_0,\theta) = \frac{\partial\varphi}{\partial r}\Big|_{r=R_0} = B_s \cos\theta, \qquad (2)$$

где B_s — магнитная индукция в полюсе сферы ($r = R_0, \theta = 0$).

Рис. 4. Расчетная схема для определения магнитной индукции в облицовке кумулятивного заряда при его движении в магнитном поле

Решение внешней задачи Неймана (1), (2) для магнитного потенциала $\varphi(r,\theta)$ дается соотношением $\varphi = -0.5B_s R_0^3 \cos \theta / r^2$ [4], которое позволяет определить компоненты вектора магнитной индукции в окружающем сферический объект пространстве:

$$B_r = \frac{\partial \varphi}{\partial r} = B_s R_0^3 \frac{\cos \theta}{r^3}, \qquad B_\theta = \frac{1}{r} \frac{\partial \varphi}{\partial \theta} = \frac{B_s R_0^3}{2} \frac{\sin \theta}{r^3}.$$
 (3)

Магнитное поле ориентировано преимущественно вдоль оси подлетающего к объекту K3, если траектория его движения параллельна оси симметрии z созданного поля (рис. 4). В дальнейшем будем рассматривать именно такие траектории подлета. С учетом (3) распределения продольной B_z и поперечной B_x компонент вектора магнитной индукции вдоль данных траекторий имеют вид

$$B_z = \frac{B_s R_0^3}{2} \frac{2z^2 - x^2}{(z^2 + x^2)^{5/2}}, \qquad B_x = \frac{3B_s R_0^3}{2} \frac{xz}{(z^2 + x^2)^{5/2}}.$$
(4)

Здесь осевая координата z отсчитывается от центра объекта; x — радиальная координата в цилиндрической системе координат (x, z). Из (3), (4) следует, что распределение магнитного поля вокруг рассматриваемого сферического объекта определяется двумя параметрами: радиусом объекта R_0 и магнитной индукцией в полюсе сферы B_s . На поверхности сферы $(r = R_0)$ абсолютное значение магнитной индукции $B = \sqrt{B_r^2 + B_\theta^2}$ максимально в полюсе сферы ($\theta = 0$) и монотонно уменьшается по мере приближения к ее экваториальной плоскости, составляя на экваторе ($\theta = 90^\circ$) 50 % максимального значения.

Для определения изменения магнитной индукции в облицовке K3 при движении его в заданном магнитном поле сферического объекта используем упрощенную расчетную схему двух проводящих соосных цилиндрических оболочек с радиусами R_1 , R_2 и толщинами δ_1 , δ_2 (рис. 4), соответствующих корпусу и облицовке K3. Система оболочек полагается помещенной во внешнее аксиальное магнитное поле $B_e(t)$, закон изменения которого в зависимости от времени t должен определяться, очевидно, распределением продольной компоненты магнитного поля B_z (4) вдоль траектории подлета K3 и скоростью K3 v_0 :

$$B_e(t) = B_z(z(t)) = \frac{B_s R_0^3}{2} \frac{2(z_0 - v_0 t)^2 - x^2}{((z_0 - v_0 t)^2 + x^2)^{5/2}}.$$
(5)

Здесь начальная координата K3 z_0 ($z = z_0 - v_0 t$) выбирается на достаточном удалении от объекта (где магнитное поле практически отсутствует). В предположении равномерного распределения азимутальных индукционных токов по толщинам оболочек [5] их плотность j_1 во внешней и j_2 во внутренней оболочках определяется по формулам

$$j_1 = (B_1 - B_e)/(\mu_0 \delta_1), \qquad j_2 = (B_2 - B_1)/(\mu_0 \delta_2),$$

где $\mu_0 = 4\pi \cdot 10^{-7}$ — магнитная постоянная, Гн/м; B_1 , B_2 — магнитная индукция в зазоре между оболочками и в полости внутренней оболочки соответственно (рис. 4). Записывая закон электромагнитной индукции Фарадея для каждой оболочки, для определения эволюции величин B_1 и B_2 получаем следующую систему обыкновенных дифференциальных уравнений:

$$\frac{dB_1}{dt} = \frac{2\eta_1 R_1}{\mu_0 \delta_1 (R_1^2 - R_2^2)} \left(B_e - B_1\right) - \frac{2\eta_2 R_2}{\mu_0 \delta_2 (R_1^2 - R_2^2)} \left(B_1 - B_2\right),$$
$$\frac{dB_2}{dt} = \frac{2\eta_2}{\mu_0 \delta_2 R_2} \left(B_1 - B_2\right)$$

 $(\eta_1, \eta_2 -$ удельное сопротивление материалов наружной и внутренней оболочек соответственно). Для дальнейшего анализа результатов расчетов данную систему запишем в виде

$$\frac{dB_1}{dt} = \frac{1}{1 - \alpha^2} \left(\frac{B_e - B_1}{\tau_1} - \alpha^2 \frac{B_1 - B_2}{\tau_2} \right), \\
\frac{dB_2}{dt} = \frac{B_1 - B_2}{\tau_2},$$
(6)

где τ_1 , τ_2 — характерные времена диффузии магнитного поля [5] для наружной и внутренней оболочек:

$$\tau_1 = 0.5\mu_0 \delta_1 R_1 / \eta_1, \qquad \tau_2 = 0.5\mu_0 \delta_2 R_2 / \eta_2, \tag{7}$$

 $\alpha = R_2/R_1$ — соотношение радиусов оболочек.

Система уравнений (6) интегрировалась численно при нулевых начальных условиях для магнитных индукций B_1 , B_2 и законе изменения внешнего поля B_e в форме (5). В расчетах было рассмотрено четыре типа системы оболочек (рис. 4), соответствующих реальным K3. Во всех случаях наружная оболочка (корпус K3) полагалась алюминиевой ($\eta_1 = 2,8 \cdot 10^{-8}$ Ом·м), а внутренняя (кумулятивная облицовка) — медной ($\eta_2 = 1,75 \cdot 10^{-8}$ Ом·м). Размеры поперечного сечения внутренней оболочки соответствовали размерам среднего поперечного сечения конической кумулятивной облицовки (в частности, безразмерный параметр α в системе (6) принимался равным 0,5). Рассматриваемые системы оболочек были отнесены к четырем типам K3 (обозначаемым в дальнейшем K3-1, K3-2, K3-3 и K3-4). В таблице для каждого типа K3 приведены использовавшиеся в расчетах геометрические размеры оболочек, а также рассчитанные на основе (7) характерные времена диффузии магнитного поля (размер R_1 внешней оболочки определяет

Параметры эквивалентных систем проводящих оболочек для различных кумулятивных зарядов

				5 5	•		
-	Тип КЗ	R_1 , MM	R_2 , MM	δ_1 , mm	δ_2 , mm	$ au_1$, mc	$ au_2$, mc
	K3-1	35,0	17,5	1,1	$1,\!2$	0,86	0,75
	K3-2	50,0	25,0	$1,\!6$	1,9	1,79	1,70
	K3-3	65,0	32,5	2,0	2,2	2,92	2,57
	K3-4	80,0	40,0	2,5	2,8	$4,\!49$	4,02

Рис. 5. Распределение вдоль оси симметрии магнитного поля в облицовке различных кумулятивных зарядов при их подлете к сферическому источнику: $a - \text{K3-1}; \ 6 - \text{K3-2}; \ 6 - \text{K3-3}; \ c - \text{K3-4}; \ 1 - B_e/B_s; \ 2-5 - B_2/B_s \ (2 - v_0 = 100 \text{ м/c}; \ 3 - v_0 = 200 \text{ м/c}; \ 4 - v_0 = 300 \text{ м/c}; \ 5 - v_0 = 400 \text{ м/c})$

диаметр соответствующего типа K3). Диапазон скоростей v_0 подлета к объекту для всех K3 составлял 100 ÷ 400 м/с.

На рис. 5 показано изменение внешнего поля B_e (5) и поля B_2 в полости кумулятивной облицовки для подлетающих K3 различного типа в зависимости от их текущей координаты z относительно центра сферического объекта (см. рис. 4) при движении K3 вдоль оси симметрии поля (x = 0). Радиус сферического объекта R_0 (определяющий размер области с магнитным полем) принят равным 1 м. Из рис. 5 следует, что увеличение скорости K3 приводит к уменьшению индукции проникающего в его облицовку поля. Однако для K3-1 (диаметр 70 мм) во всем рассмотренном диапазоне скоростей подлета индукция B_2 поля в облицовке остается достаточно близкой к индукции внешнего поля (даже при ско-

Рис. 6. Распределение магнитного поля в облицовке K3-1 и K3-2 при их подлете к сферическому источнику вдоль прямой, параллельной оси симметрии и находящейся на расстоянии от нее, равном половине радиуса источника: *a* — K3-1; *б* — K3-2; остальные обозначения те же, что на рис. 5

рости $v_0 = 400 \text{ м/c}$ значение B_2 составляет более 30 % значения B_e). Для K3-2 (диаметр 100 мм) индукция поля в облицовке при максимальных скоростях движения уменьшается и составляет примерно 17 % индукции поля, создаваемого объектом. Что касается K3-3 и K3-4 (диаметры 130 и 160 мм), то при сверхзвуковых скоростях их подлета ($v_0 = 400 \text{ м/c}$) интенсивность магнитного поля в облицовке составляет лишь 5÷10 % интенсивности "намагничивающего" поля. При скоростях K3-3 и K3-4, близких к $v_0 = 100 \text{ м/c}$, интенсивность повышается до значений ($0,25 \div 0,35$) B_e . На рис. 6 показано изменение полей B_e и B_2 для K3-1 и K3-2 при их приближении к сферическому объекту вдоль прямой, параллельной оси z и находящейся на расстоянии $x = 0,5R_0$ от нее. Индукция продольного поля B_e (5), создаваемого объектом на этой прямой, меньше, чем на оси симметрии. В результате для K3-1 индукция поля B_2 в облицовке к моменту подхода к границе объекта составляет 25÷50 % максимума поля B_s в полюсе объекта, для K3-2 — 15÷35 %.

Из анализа результатов расчетов следует, что эффективность проникновения поля в облицовку K3 зависит от соотношения характерного времени диффузии поля для системы корпус K3 — облицовка и характерного времени τ_m пребывания K3 в области с магнитным полем. Для рассматриваемого сферического источника поля (см. рис. 4) время τ_m может быть определено по формуле $\tau_m = R_0/v_0$. При $R_0 = 1$ м и $v_0 = 100 \div 400$ м/с значение $\tau_m = 2,5 \div 10,0$ мс. Если в качестве характерного времени диффузии поля для системы корпус K3 — облицовка принять сумму времен τ_1 и τ_2 , то с использованием данных таблицы легко определить необходимое время τ_m "намагничивания" различных типов K3: для эффективного проникновения поля в облицовку необходимо, чтобы значение τ_m в несколько раз превышало характерное время диффузии поля. Из этого условия может быть определиванность области с магнитным полем и соответственно размеры источника поля.

Для определения параметров источника поля, предназначенного для противодействия конкретным типам K3, важной является информация об интенсивности поля в облицовке, нейтрализующего действие K3. Как отмечено выше, в экспериментах с K3 диаметром 50 мм [1] уменьшение глубины проникания KC в стальные преграды более чем в два раза наблюдалось при индукции магнитного поля в облицовке, составлявшей десятые доли тесла. На основе проведенных расчетов можно предположить, что с увеличением диаметра K3 кумулятивное действие будет отсутствовать при более слабом начальном поле в облицовке (с увеличением размеров облицовки повышается эффективность "накачки" поля в области струеобразования при ее схлопывании вследствие уменьшения скорости диффузионных процессов). Поэтому для реальных КЗ нейтрализующим может оказаться создание в момент подрыва в кумулятивной облицовке поля с индукцией, составляющей десятые доли тесла. Если это предположение верно (подтвердится экспериментально), то возможна достаточно простая и эффективная реализация предлагаемого способа магнитной защиты объектов от кумулятивных средств поражения с использованием в качестве источников магнитного поля электромагнитов с ферромагнитными сердечниками. Максимальная интенсивность магнитного поля, создаваемого такими электромагнитами, определяется индукцией насыщения сердечника, которая может достигать $1.5 \div 2.0$ Тл [6]. Полагая в расчетной схеме $B_s \approx 1.5$ Тл, можно установить, что при радиусе магнитной сферы $R_0 = 1$ м для K3-1 и K3-2 при подлете к ее поверхности обеспечивается магнитная индукция B_2 в облицовке не менее 0,4 и 0,3 Тл соответственно. При увеличении радиуса сферы до $R_0 = 2$ м сопутствующее расширение окружающей магнитной области позволяет намагнитить облицовку КЗ-3 к моменту контакта до 0,3 Тл, а облицовку КЗ-4 — до 0,2 Тл даже при скорости подлета данных K3 на уровне $v_0 = 400$ м/с.

Заключение. Проведенные расчеты показывают принципиальную возможность реализации магнитной экранировки объектов от действия КЗ. Отметим, что к нарушению нормального функционирования КЗ может привести создание в его облицовке не только продольного (аксиального) магнитного поля (рассмотренного в данной работе), но и поперечного. При создании в облицовке магнитного поля, перпендикулярного ее оси, возможно усиление поля в струеобразующем слое облицовки при ее схлопывании, вследствие чего струеобразование может отсутствовать. Отмеченное обстоятельство может существенно упростить реализацию магнитной экранировки объектов, так как в случае его экспериментального подтверждения будет отсутствовать необходимость отслеживания взаимной ориентации линий магнитной индукции создаваемого защитного поля и оси подлетающего КЗ.

ЛИТЕРАТУРА

- 1. Федоров С. В., Бабкин А. В., Ладов С. В. О влиянии магнитного поля, создаваемого в облицовке кумулятивного заряда, на его пробивное действие // Физика горения и взрыва. 1999. Т. 35, № 5. С. 145–146.
- 2. Федоров С. В., Бабкин А. В., Ладов С. В. Проявление магнитокумулятивного эффекта при взрыве кумулятивного заряда с созданным в его облицовке аксиальным магнитным полем // Журн. техн. физики. 2003. Т. 73, вып. 8. С. 111–117.
- 3. **Ландау Л. Д.** Электродинамика сплошных сред / Л. Д. Ландау, Е. М. Лифшиц. М.: Наука, 1982.
- 4. **Тихонов А. Н.** Уравнения математической физики / А. Н. Тихонов, А. А. Самарский. М.: Наука, 1966.
- 5. Кнопфель Г. Сверхсильные импульсные магнитные поля. М.: Мир, 1972.
- Преображенский А. А. Магнитные материалы и элементы / А. А. Преображенский, Е. Г. Бишард. М.: Высш. шк., 1986.

Поступила в редакцию 30/Х 2006 г.