УДК 539.376

РЕШЕНИЕ СТОХАСТИЧЕСКОЙ КРАЕВОЙ ЗАДАЧИ УСТАНОВИВШЕЙСЯ ПОЛЗУЧЕСТИ ДЛЯ ТОЛСТОСТЕННОЙ ТРУБЫ МЕТОДОМ МАЛОГО ПАРАМЕТРА

А. А. Должковой, Н. Н. Попов, В. П. Радченко

Самарский государственный технический университет, 443100 Самара E-mails: alexdol@poria.ru, popov@pm.samgtu.ru, radch@samgtu.ru

Методом малого параметра в третьем приближении получено решение физически и статистически нелинейной задачи установившейся ползучести для толстостенной трубы, находящейся под действием внутреннего давления. Вычислены дисперсии случайных скоростей деформаций ползучести и перемещений. Полученные результаты сравниваются с решением аналогичной задачи в первом и втором приближениях. Предложена методика оценки надежности толстостенной трубы по деформационным критериям отказа.

Ключевые слова: стохастическая неоднородность, статистическая нелинейность, установившаяся ползучесть, толстостенная труба, краевая задача, метод малого параметра.

1. Существенное влияние случайных возмущений механических характеристик материала на поля деформаций и напряжений и необходимость построения соответствующих стохастических моделей для расчетов на прочность отмечались во многих работах (см., например, [1–3]). Особую актуальность эта проблема приобретает для деформации ползучести, разброс экспериментальных значений которой может составлять до 50–70 %, и такие результаты приходится рассматривать как приемлемые [3–5].

Исследование напряженно-деформированного состояния элементов конструкций, работающих в условиях нелинейной ползучести, является достаточно сложной задачей даже в детерминированной постановке. Необходимость учета микронеоднородностей материала приводит к стохастическим краевым задачам, в которых кроме физической нелинейности определяющих уравнений приходится учитывать и статистическую нелинейность. Отмеченные сложности приводят к тому, что аналитические решения стохастических краевых задач ползучести получены лишь в ряде простейших случаев [6–9].

Одним из методов решения стохастических краевых задач как в упругой области, так и в условиях ползучести является метод малого параметра [6–10]. Однако вследствие существенных трудностей вычисления моментов второго и более высоких порядков случайной функции он позволяет найти решения краевых стохастических задач установившейся ползучести лишь в первом приближении [6, 8].

В настоящей работе ставится задача построения аналитического решения краевой задачи установившейся ползучести для толстостенной трубы под действием внутреннего давления методом малого параметра до третьего приближения.

Рассмотрим данную задачу в цилиндрических координатах для случая плоского деформированного состояния ($\varepsilon_z(r,t) = 0$ или $\dot{\varepsilon}_z(r,t) = 0$) в предположении, что стохастические неоднородности материала цилиндрической оболочки описываются функцией одной переменной — радиуса r. При этом компоненты тензоров деформаций и напряжений будут также случайными функциями только радиуса r.

Деформации ползучести ε_r и ε_{φ} в соответствии с теорией вязкого течения (установившейся ползучести) описываются следующими реологическими соотношениями в стохастической форме [9]:

$$\dot{\varepsilon}_r = -(\sqrt{3}/2)c(\sigma_\varphi - \sigma_r)^n [1 + \alpha U(r)],$$

$$\dot{\varepsilon}_\varphi = (\sqrt{3}/2)c(\sigma_\varphi - \sigma_r)^n [1 + \alpha U(r)],$$
(1)

где σ_r , σ_{φ} — радиальное и тангенциальное напряжения; U(r) — случайная функция, описывающая стохастическую неоднородность материала оболочки трубы, статистические характеристики которой известны: $\langle U \rangle = 0$, $\langle U^2 \rangle = 1$; α — коэффициент вариации механических свойств ($0 < \alpha < 1$); c, n — постоянные материала; $\langle \cdot \rangle$ — символ математического ожидания.

Напряжения σ_r и σ_φ удовлетворяют дифференциальному уравнению равновесия

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r - \sigma_\varphi}{r} = 0 \tag{2}$$

и граничным условиям

$$\sigma_r(a) = -q, \qquad \sigma_r(b) = 0, \tag{3}$$

где *а* и *b* — внутренний и наружный радиусы трубы; *q* — давление.

Компоненты тензора скоростей деформаций удовлетворяют условию совместности

$$r\frac{d\dot{\varepsilon}_{\varphi}}{dr} + \dot{\varepsilon}_{\varphi} - \dot{\varepsilon}_{r} = 0.$$
(4)

Рассмотрим задачу определения напряженного состояния трубы, которая сводится к решению системы уравнений (1), (2), (4) относительно напряжений при граничных условиях (3). Эта система может быть приведена к статистически нелинейному уравнению второго порядка относительно радиального напряжения (штрихом обозначается дифференцирование по r):

$$r(1+\alpha U(r))\sigma_r'' + \left(\frac{n+2}{n}\left(1+\alpha U(r)\right) + \frac{r}{n}\alpha U_r'\right)\sigma_r' = 0.$$
(5)

Для получения приближенного аналитического решения этого уравнения используется метод разложения радиального напряжения σ_r по малому параметру α :

$$\sigma_r = \sigma_{r0} + \sum_{k=1}^{\infty} \alpha^k \sigma_{rk}, \qquad \langle \sigma_r \rangle = \sigma_{r0}.$$
(6)

Подставляя (6) в уравнение (5) и приравнивая множители при одинаковых степенях α , получаем следующую систему уравнений:

$$r\sigma_{r0}'' + \frac{n+2}{n}\,\sigma_{r0}' = 0;\tag{7}$$

$$r\sigma_{r1}'' + \frac{n+2}{n}\,\sigma_{r1}' = -\frac{r}{n}\,U'\sigma_{r0}';\tag{8}$$

$$r\sigma_{rk}'' + \frac{n+2}{n}\sigma_{rk}' = -\frac{r}{n}U'[\sigma_{rk-1}' - U\sigma_{rk-2}' + U^2\sigma_{rk-3}' - \dots + (-1)^{k-1}U^{k-1}\sigma_{r0}'],$$

$$k = 2, 3, 4, \dots.$$
(9)

Решение данной системы в рекуррентной форме связано с трудностями вычислительного характера. Поэтому ограничимся системой четырех первых уравнений. Она будет состоять из уравнений (7), (8) и следующих двух уравнений, полученных из (9) при k = 2, 3:

$$r\sigma_{r2}'' + \frac{n+2}{n}\sigma_{r2}' = -\frac{r}{n}U'(\sigma_{r1}' - U\sigma_{r0}');$$
(10)

$$r\sigma_{r3}'' + \frac{n+2}{n}\sigma_{r3}' = -\frac{r}{n}U'(\sigma_{r2}' - U\sigma_{r1}' + U^2\sigma_{r0}').$$
(11)

Система уравнений (7), (8), (10), (11) при граничных условиях (3) дает следующее решение:

$$\sigma_{r0} = A[b^{-2/n} - r^{-2/n}]; \tag{12}$$

$$\sigma_{r1} = \frac{2A}{n^2} \Big[(a^{-2/n} - r^{-2/n}) H_1 - I_1(r) \Big];$$
(13)

$$\sigma_{r2} = \frac{2A}{n^2} \Big[\frac{n+1}{2n} I_2(r) - \frac{2H_1}{n^2} I_1(r) + C_1(a^{-2/n} - r^{-2/n}) \Big];$$
(14)

$$\sigma_{r3} = \frac{2A}{n^2} \Big[-\frac{2n^2 + 3n + 1}{6n^2} I_3(r) + \frac{(n+1)H_1}{n^3} I_2(r) - \frac{2}{n^2} C_1 I_1(r) + C_2 (a^{-2/n} - r^{-2/n}) \Big], \quad (15)$$

где

$$A = q/(a^{-2/n} - b^{-2/n}); \qquad H_k = BI_k(b) \quad (k = 1, 2, 3); \qquad B = 1/(a^{-2/n} - b^{-2/n});$$
$$I_k(r) = \int_a^r U^k(x) x^{-1-2/n} dx \quad (k = 1, 2, 3);$$
$$C_1 = \frac{2H_1^2}{n^2} - \frac{n+1}{2n} H_2; \qquad C_2 = \frac{2n^2 + 3n + 1}{6n^2} H_3 - \frac{n+1}{n^3} H_1 H_2 + \frac{2}{n^2} C_1 H_1.$$

Выражение (12) — известное детерминированное решение [11], а (13)–(15) — решения, обусловленные стохастической постановкой задачи. Таким образом, решение (12)–(15) определяет радиальное напряжение σ_r в третьем приближении.

Теперь найдем приближенные значения компонент тензора скоростей деформаций $\dot{\varepsilon}_r$ и $\dot{\varepsilon}_{\varphi}$, имеющих представление (1). Величину $\sigma_{\varphi} - \sigma_r$, входящую в соотношения (1), с помощью полученных решений (12)–(15) и (2) можно представить в виде

$$\sigma_{\varphi} - \sigma_r = r(\sigma'_{r0} + \alpha \sigma'_{r1} + \alpha^2 \sigma'_{r2} + \alpha^3 \sigma'_{r3}).$$
(16)

Возводя левую и правую части соотношения (16) в степень n и подставляя полученное выражение в (1), можно найти выражение для компоненты $\dot{\varepsilon}_{\varphi}$:

$$\dot{\varepsilon}_{\varphi} = r^n (\sigma'_{r0} + \alpha \sigma'_{r1} + \alpha^2 \sigma'_{r2} + \alpha^3 \sigma'_{r3})^n (1 + \alpha U).$$

Разлагая степенную функцию $(\sigma'_{r0} + \alpha \sigma'_{r1} + \alpha^2 \sigma'_{r2} + \alpha^3 \sigma'_{r3})^n$ в ряд Тейлора по α и учитывая только члены до третьего порядка малости, после несложных преобразований получим

$$\dot{\varepsilon}_{\varphi} = \frac{T}{r^2} \left[1 + \frac{2\alpha}{n} H_1 + \frac{2\alpha^2(n+1)}{n^3} H_1^2 - \frac{\alpha^2(n+1)}{n^2} H_2 + \frac{\alpha^3(2n^2 + 3n + 1)}{3n^3} H_3 - \frac{2\alpha^3(n+1)^2}{n^4} H_1 H_2 + \frac{4\alpha^3(n+1)(n+2)}{3n^5} H_1^3 + o(\alpha^3) \right] = -\dot{\varepsilon}_r, \quad (17)$$

где $T = (\sqrt{3})^{n-1} c A^n / n^n$.

С учетом соотношения (17) выражение для функции перемещений имеет следующий вид:

$$u(t) = \varepsilon_{\varphi}r = (\dot{\varepsilon}_{\varphi}t)r = T\frac{t}{r} \Big[1 + \frac{2\alpha}{n}H_1 + \frac{2\alpha^2(n+1)}{n^3}H_1^2 - \frac{\alpha^2(n+1)}{n^2}H_2 + \frac{\alpha^3(2n^2+3n+1)}{3n^3}H_3 - \frac{2\alpha^3(n+1)^2}{n^4}H_1H_2 + \frac{4\alpha^3(n+1)(n+2)}{3n^5}H_1^3 + o(\alpha^3) \Big].$$
(18)

2. Найдем основные статистические характеристики радиального перемещения u(t). Эти характеристики будем вычислять в предположении, что случайная функция U(r), задающая случайное поле возмущений механических свойств материала, распределена по нормальному закону. В этом случае моменты нечетных порядков равны нулю, а центральные моменты четных порядков выражаются через моменты второго порядка. Например, центральные моменты четвертого порядка вычисляются по формуле [12]

$$\langle I_1 I_2 I_3 I_4 \rangle = k_{12} k_{34} + k_{13} k_{24} + k_{14} k_{23}, \tag{19}$$

где \mathring{I}_k — центрированные случайные величины; k_{ij} — моменты второго порядка. Все моменты второго порядка выражаются через моменты случайной функции $I_k(r)$:

$$\langle I_{1}(r) \rangle = \int_{a}^{r} \langle U(x) \rangle x^{-1-2/n} \, dx = 0,$$

$$\langle I_{1}^{2}(r) \rangle = \int_{a}^{r} \int_{a}^{r} \langle U(x_{1})U(x_{2}) \rangle x_{1}^{-1-2/n} x_{2}^{-1-2/n} \, dx_{1} \, dx_{2} =$$

$$= \int_{a}^{r} \int_{a}^{r} K(x_{2} - x_{1}) x_{1}^{-1-2/n} x_{2}^{-1-2/n} \, dx_{1} \, dx_{2},$$

$$\langle I_{2}(r) \rangle = \int_{a}^{r} \langle U^{2}(x) \rangle x^{-1-2/n} \, dx = \int_{a}^{r} x^{-1-2/n} \, dx = \frac{n}{2} \, (a^{-2/n} - r^{-2/n}),$$

$$\langle I_{3}(r) \rangle = \int_{a}^{r} \langle U^{3}(x) \rangle x^{-1-2/n} \, dx = 0,$$

(20)

где $K(x_2 - x_1)$ — корреляционная функция случайного однородного поля U(r).

Учитывая формулы (20), получаем следующее соотношение для средних перемещений:

$$M_u = \langle u(t) \rangle = T \frac{t}{r} \Big[1 + \frac{2\alpha^2 (n+1) \langle H_1^2 \rangle}{n^3} - \frac{\alpha^2 (n+1) \langle H_2 \rangle}{n^2} + o(\alpha^3) \Big].$$
(21)

Рассматривая выражения (17) и (18) как суммы зависимых случайных функций, для дисперсий случайных перемещений и случайных скоростей деформаций можно получить следующие соотношения:

$$D_u = D[u(t)] = T^2 \frac{t^2}{r^2} \left[\frac{4\alpha^2}{n^2} D[H_1] + \frac{4\alpha^4(n+1)^2}{n^6} D[H_1^2] + \frac{\alpha^4(n+1)^2}{n^4} D[H_2] + \frac{\alpha^6(2n^2+3n+1)^2}{9n^6} D[H_3] + \frac{4\alpha^6(n+1)^4}{n^8} D[H_1H_2] + \frac{16\alpha^6(n+1)^2(n+2)^2}{9n^{10}} D[H_1^3] + \frac{16\alpha^6(n+1)^2(n+2)^2}{9n^{10}} D[H_1^3] + \frac{16\alpha^6(n+1)^4}{9n^{10}} D[H_1^3] + \frac{16\alpha^6(n+1)^2(n+2)^2}{9n^{10}} D[H_1^3] + \frac{16\alpha^6(n+1)^4}{9n^{10}} D[H_1^3] + \frac{16\alpha^6(n+1)^4}{9n^{10$$

$$+\frac{4\alpha^{4}(2n^{2}+3n+1)}{3n^{4}}\langle\mathring{H}_{1}\mathring{H}_{3}\rangle -\frac{12\alpha^{4}(n+1)^{2}}{n^{5}}\langle\mathring{H}_{1}^{2}\mathring{H}_{2}\rangle +\frac{16\alpha^{4}(n+1)(n+2)}{3n^{6}}\langle\mathring{H}_{1}^{4}\rangle - -\frac{4\alpha^{6}(2n^{2}+3n+1)(n+1)^{2}}{3n^{7}}\langle\mathring{H}_{1}\mathring{H}_{2}\mathring{H}_{3}\rangle +\frac{8\alpha^{6}(2n^{2}+3n+1)(n+1)(n+2)}{9n^{8}}\langle\mathring{H}_{1}^{3}\mathring{H}_{3}\rangle - -\frac{16\alpha^{6}(n+1)^{3}(n+2)}{9n^{9}}\langle\mathring{H}_{1}^{4}\mathring{H}_{2}\rangle + o(\alpha^{6})\Big]; \quad (22)$$
$$D[\dot{\varepsilon}_{\varphi}] = D[\dot{\varepsilon}_{r}] = D_{u}/(t^{2}r^{2}). \quad (23)$$

Используя формулу (19), запишем подробно каждое слагаемое формул (21)-(23):

$$\begin{split} D[H_1] &= \langle H_1^2 \rangle = B^2 I K(n), \\ D[H_1^2] &= \langle \dot{H}_1^4 \rangle = 3 \langle H_1^2 \rangle^2 = 3B^4 (IK_1(n))^2, \qquad \langle H_2 \rangle = B \langle I_2(b) \rangle = n/2, \\ D[H_2] &= \langle \dot{H}_2^2 \rangle = B^2 \int_a^b \int_a^b \langle U^2(x_1) U^2(x_2) \rangle x_1^{-1-2/n} x_2^{-1-2/n} \, dx_1 \, dx_2 = \frac{n^2}{4} + 2B^2 I K_2(n), \\ D[H_3] &= \langle \dot{H}_3^2 \rangle = B^2 \int_a^b \int_a^b \langle U^3(x_1) U^3(x_2) \rangle x_1^{-1-2/n} x_2^{-1-2/n} \, dx_1 \, dx_2 = 9B^2 I K_1(n), \\ D[H_1H_2] &= \langle \dot{H}_1^2 \dot{H}_2^2 \rangle = B^4 \int_a^b \int_a^b \int_a^b \int_a^b \langle U(x_1) U(x_2) U^2(x_3) U^2(x_4) \rangle \times \\ &\times x_1^{-1-2/n} x_2^{-1-2/n} x_3^{-1-2/n} x_4^{-1-2/n} \, dx_1 \, dx_2 \, dx_3 \, dx_4 = \\ &= (n^2/4) B^2 I K_1(n) + (n/2) B^3 I K_3(n) + 2B^4 (I K_1(n))^2 + 4B^4 I K_4(n), \\ D[H_1^3] &= \langle \dot{H}_1^6 \rangle = B^6 \int_a^b \int_a^b \int_a^b \int_a^b \int_a^b \int_a^b \langle U(x_1) U(x_2) U(x_3) U(x_4) U(x_5) U(x_6) \rangle \times \\ &\times x_1^{-1-2/n} x_2^{-1-2/n} x_3^{-1-2/n} x_5^{-1-2/n} x_6^{-1-2/n} \, dx_1 \, dx_2 \, dx_3 \, dx_4 \, dx_5 \, dx_6 = \\ &= 9B^6 (I K_1(n))^3, \end{split}$$

$$\langle \mathring{H}_{1}^{2} \mathring{H}_{2} \rangle = B^{3} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \langle U(x_{1})U(x_{2})U^{2}(x_{3}) \rangle x_{1}^{-1-2/n} x_{2}^{-1-2/n} x_{3}^{-1-2/n} dx_{1} dx_{2} dx_{3} = (n/2)B^{2}IK_{1}(n) + 2B^{3}IK_{3}(n),$$

$$\langle \mathring{H}_{1}\mathring{H}_{3} \rangle = B^{2} \int_{a}^{b} \int_{a}^{b} \langle U(x_{1})U^{3}(x_{2}) \rangle x_{1}^{-1-2/n} x_{2}^{-1-2/n} dx_{1} dx_{2} = 3B^{2}IK_{1}(n),$$

$$\langle \mathring{H}_{1}^{4} \rangle = B^{4} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \langle U(x_{1})U(x_{2})U(x_{3})U(x_{4}) \rangle \times$$

$$\times x_{1}^{-1-2/n} x_{2}^{-1-2/n} x_{3}^{-1-2/n} x_{4}^{-1-2/n} dx_{1} dx_{2} dx_{3} dx_{4} = 3B^{4}(IK_{1}(n))^{2},$$

$$\begin{split} \langle \mathring{H}_{1}\mathring{H}_{2}\mathring{H}_{3} \rangle &= B^{3} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \langle U(x_{1})U^{2}(x_{2})U^{3}(x_{3}) \rangle \times \\ &\times x_{1}^{-1-2/n} x_{2}^{-1-2/n} x_{3}^{-1-2/n} dx_{1} dx_{2} dx_{3} = (3n/2)B^{2}IK_{1}(n) + 6B^{3}IK_{3}(n), \\ \langle \mathring{H}_{1}^{3}\mathring{H}_{3} \rangle &= B^{4} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \langle U(x_{1})U(x_{2})U(x_{3})U^{3}(x_{4}) \rangle \times \\ &\times x_{1}^{-1-2/n} x_{2}^{-1-2/n} x_{3}^{-1-2/n} x_{4}^{-1-2/n} dx_{1} dx_{2} dx_{3} dx_{4} = 9B^{4}(IK_{1}(n))^{2}, \\ \langle \mathring{H}_{1}^{4}\mathring{H}_{2} \rangle &= B^{5} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \langle U(x_{1})U(x_{2})U(x_{3})U(x_{4})U^{2}(x_{5}) \rangle \times \\ &\times x_{1}^{-1-2/n} x_{2}^{-1-2/n} x_{3}^{-1-2/n} x_{4}^{-1-2/n} x_{5}^{-1-2/n} dx_{1} dx_{2} dx_{3} dx_{4} dx_{5} = \\ &= (3n/2)B^{4}(IK_{1}(n))^{2} + 6B^{5}IK_{1}(n)IK_{3}(n), \end{split}$$

где

$$IK_{1}(n) = \int_{a}^{b} \int_{a}^{b} K(x_{2} - x_{1})x_{1}^{-1-2/n}x_{2}^{-1-2/n} dx_{1} dx_{2};$$
$$IK_{2}(n) = \int_{a}^{b} \int_{a}^{b} K^{2}(x_{2} - x_{1})x_{1}^{-1-2/n}x_{2}^{-1-2/n} dx_{1} dx_{2};$$
$$\int_{a}^{b} \int_{a}^{b} \int_{a}^{b} dx_{1} dx_{2};$$

$$IK_{3}(n) = \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} K(x_{2} - x_{1})K(x_{3} - x_{2})x_{1}^{-1 - 2/n}x_{2}^{-1 - 2/n}x_{3}^{-1 - 2/n}dx_{1}dx_{2}dx_{3};$$

$$IK_4(n) = \int_a^b \int_a^b \int_a^b \int_a^b K(x_2 - x_1)K(x_3 - x_2)K(x_4 - x_3) \times x_1^{-1-2/n} x_2^{-1-2/n} x_3^{-1-2/n} x_4^{-1-2/n} dx_1 dx_2 dx_3 dx_4$$

3. Как следует из вышеприведенных формул, для вычисления дисперсий необходимо иметь зависимость для корреляционной функции.

Статистическая обработка опытных данных показывает, что корреляционные функции механических характеристик являются знакопеременными затухающими функциями [13, 14] и их можно аппроксимировать выражением

$$K(\rho) = e^{-\gamma|\rho|} (\cos\left(\beta\rho\right) + (\gamma/\beta)\sin\beta|\rho|), \qquad \rho = x_2 - x_1, \quad \gamma > 0, \tag{24}$$

где γ,β — постоянные величины, определяемые по опытным данным из условий наилучшей аппроксимации.

Рис. 1. Зависимости дисперсий приведенных скоростей деформаций от rдля различных n при $\alpha=0,3$

Рис. 2. Дисперсии приведенных скоростей деформаций в первом (сплошные линии), втором (пунктирные линии) и третьем (штриховые линии) приближениях для различных α при n = 5

Далее вычисления моментов второго порядка проводились в предположении, что корреляционная функция случайного однородного и одномерного поля неоднородностей U(r)имеет вид (24) со следующими численными значениями параметров: $\gamma = 10, \beta = 20$.

Целью дальнейших исследований являлся анализ влияния второго и третьего приближений, а также значений показателя нелинейности установившейся ползучести n и коэффициента вариации α на дисперсии скоростей деформаций $\dot{\varepsilon}_r$ и $\dot{\varepsilon}_{\varphi}$.

Численные расчеты, выполненные для толстостенной трубы с внутренним и наружным радиусами соответственно a = 1, b = 2, показали, что дисперсии приведенных скоростей деформаций $D[\dot{\varepsilon}_r/(cq^n)]$ и $D[\dot{\varepsilon}_{\varphi}/(cq^n)]$ с ростом n увеличиваются, причем наибольшие значения дисперсий наблюдаются вблизи внутренней поверхности трубы, а наименьшие — в окрестности наружной поверхности трубы. Данное утверждение иллюстрируется графиком дисперсий как функций радиуса r (рис. 1). На рис. 2 представлен график, показывающий различия дисперсий, вычисленных в первом (сплошные линии), втором (пунктирные линии) и третьем (штриховые линии) приближениях. В правом верхнем углу на рис. 2 изображен срез представленного на рис. 1 графика при фиксированном r = 1,5 и $\alpha = 0,3$, показывающий зависимость дисперсий от показателя нелинейности n, с дополнением его графиками дисперсий, вычисленных во втором и третьем приближениях.

В таблице представлены численные значения дисперсий приведенных скоростей деформаций в зависимости от n и α при r = 1,5. В столбце D1 приведены значения, вычисленные с учетом только первого члена разложения приближенного решения, в столбце D2 с учетом двух первых членов, в столбце D3 — с учетом трех первых членов.

Из приведенных на рис. 1 и 2 графиков и таблицы видно, что для слабонеоднородных материалов ($\alpha = 0,1 \div 0,2$) значения дисперсий скоростей деформаций во втором и третьем приближениях различаются незначительно. Для материалов с большой степенью неоднородности ($\alpha = 0,4 \div 0,5$) значения дисперсий скоростей деформаций, вычисленные

в первом (D	1), втором (D2	2) и третьем (D3)	приближениях при	различных n и $lpha$
α	n	D1	D2	D3
0,1	1	0,0006	0,0006	0,0006
	3	0,0013	0,0013	0,0013
	5	0,0030	0,0031	0,0031
	7	0,0074	0,0076	0,0076
	9	0,0179	0,0184	0,0185
	11	0,0437	0,0447	0,0451
0,2	1	0,0023	0,0028	0,0029
	3	0,0050	0,0057	0,0059
	5	0,0121	0,0135	0,0140
	7	0,0294	0,0325	0,0337
	9	0,0717	0,0788	0,0816
	11	$0,\!1747$	0,1914	0,1980
0,3	1	0,0051	0,0079	0,0085
	3	0,0113	0,0147	0,0159
	5	0,0272	0,0342	0,0367
	7	0,0663	0,0818	0,0877
	9	0,1613	0,1973	0,2114
	11	0,3930	0,4777	0,5115
0,4	1	0,0092	0,0178	0,0199
	3	0,0200	0,0309	0,0346
	5	0,0484	0,0704	0,0786
	7	$0,\!1178$	0,1668	0,1859
	9	0,2868	0,4004	0,4459
	11	$0,\!6987$	0,9664	1,0748
0,5	1	0,0141	0,0355	0,0408
	3	0,0313	0,0578	0,0671
	5	0,0757	0,1293	0,1497
	7	0,1841	0,3037	0,3513
	9	$0,\!4482$	0,7254	0,8383
	11	1,0918	1,7454	2,0154

Дисперсии приведенных скоростей деформаций при (D1), втором (D2) и третьем (D3) приближениях при различных

по третьему приближению, могут превосходить соответствующие значения, вычисленные по второму приближению, в полтора раза, а вычисленные по первому приближению в два раза. Поэтому в данном случае неучет членов третьего порядка малости может привести к необоснованному завышению показателей прочности и надежности толстостенной трубы.

4. Работоспособность многих элементов конструкций оценивается по параметрическим (деформационным) критериям отказа. Очевидно, что оценка надежности элементов конструкций по детерминированным моделям является первым (и в ряде случаев недостаточным) приближением и не учитывает естественный разброс механических характеристик и выходных параметров. Полученные выше стохастические оценки для деформаций ползучести и перемещений позволяют решить задачу о надежности толстостенной трубы по деформационному критерию отказа в статистической постановке.

Рассмотрим задачу оценки надежности толстостенной трубы, когда срок службы определяется моментом достижения перемещением u(t) некоторой заданной величины u_* .

Пусть условием безотказной работы трубы является выполнение соотношения

Рис. 3. Статистическая оценка перемещения на внутреннем диаметре для толстостенной трубы из стали 12ХМФ (T = 590 °C) с внутренним и наружным радиусами a = 14 мм и b = 16,68 мм при внутреннем давлении q = 28 МПа

где u_* — заданная детерминированная величина. Тогда функция надежности P(t), описывающая вероятность безотказной работы на отрезке [0, t], равна вероятности пребывания случайной функции u(t) в допустимой области $(0, u_*)$ на этом отрезке времени [1]:

$$P(t) = P\{u(\tau) \in (0, u_*), \ \tau \in [0, t]\}.$$
(25)

В связи с тем что перемещение при ползучести является возрастающей функцией, функция u(t), покинув в некоторый момент времени область $(0, u_*)$, затем в эту область возвратиться не может. Поэтому для вероятности безотказной работы P(t) на отрезке времени [0, t] имеет место более простая формула [1]

$$P(t) = P\{u(t) \in (0, u_*)\}.$$
(26)

В отличие от общего случая (25), когда вычисление случайной функции требует рассмотрения выбросов случайного процесса, здесь достаточно вычислить вероятность нахождения случайной функции u(t) в заданной области в рассматриваемый момент времени, при этом используются выражения (21) и (22) для основных характеристик функции перемещения u(t).

Для иллюстрации метода оценки надежности рассмотрим конкретный пример ползучести толстостенной трубы из стали 12ХМФ (T = 590 °C) с постоянными материала $c = 3,03 \cdot 10^{-14}$, n = 7,1, внутренним и наружным радиусами a = 14 мм и b = 16,68 мм соответственно и степенью неоднородности материала $\alpha = 0,3$, находящейся под действием внутреннего давления q = 28 МПа [15]. В качестве параметра, определяющего ресурс трубы, используется перемещение на внутреннем радиусе, критическое значение которого $u_* = 1$ мм.

Результаты расчетов дают следующие основные характеристики для случайных перемещений на внутреннем диаметре: математическое ожидание $M_u = \langle u(t) \rangle = 3,52 \cdot 10^{-5} t;$ дисперсия и среднее квадратическое отклонение для первого приближения $D_u(t) = 3,78 \cdot 10^{-12} t^2$, $s_u(t) = 1,946 \cdot 10^{-6} t;$ для третьего приближения $D_u(t) = 7,82 \cdot 10^{-12} t^2$, $s_u(t) = 2,796 \cdot 10^{-6} t \ (s_u(t) = \sqrt{D_u(t)}).$

В качестве примера на рис. З показаны расчетные значения математического ожидания для перемещения на внутреннем диаметре (сплошная жирная линия) и интервалы $u(t) \pm 3s_u(t)$ для первого (сплошные тонкие линии) и третьего (штриховые линии) приближений.

Рис. 4. Функция надежности P(t) для толстостенной трубы из стали 12ХМФ (T = 590 °C) с внутренним и наружным радиусами a = 14 мм и b = 16,68 мм при внутреннем давлении q = 28 МПа, $u_* = 1$ мм

Результаты расчетов показали, что для заданного уровня $u_* = 1$ мм математическое ожидание для перемещения u(t) достигается за 28431 ч, а его трехсигмовая полоса для первого приближения имеет величину 24383 ÷ 34091 ч, для третьего — 22956 ÷ 37337 ч. Как видно из приведенного примера, учет третьего приближения дает существенные уточнения при оценке надежности.

Согласно формуле (26) для вероятности безотказной работы имеем

$$P(t) = \frac{1}{\sqrt{2\pi} s_u(t)} \int_0^{u_*} e^{-(x - \langle u(t) \rangle)^2 / (2s_u^2(t))} dx$$

или

$$P(t) = \Phi\left[\frac{u_* - \langle u(t) \rangle}{s_u(t)}\right] + \Phi\left[\frac{\langle u(t) \rangle}{s_u(t)}\right],$$

где $\Phi(x)$ — функция Лапласа:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-z^{2}/2} dz.$$

Вероятность P(t) можно использовать при определении ресурса толстостенной трубы. Назначенный ресурс T_* определяют так, чтобы вероятность обеспечения T_* была равна заданному значению p_* вероятности безотказной работы. При этом вероятность p_* выбирают достаточно близкой к единице.

График изменения во времени вероятности безотказной работы рассматриваемой трубы для заданного значения $u_* = 1$ мм представлен на рис. 4. Из него, в частности, следует, что при заданном значении $u_* = 1$ мм ресурс для рассматриваемой трубы с вероятностью $p_* = 0.95$ составляет $t = 25\,143$ ч.

Таким образом, предлагаемый метод приближенного аналитического решения стохастической краевой задачи в условиях нелинейной установившейся ползучести позволяет уточнить существующие модели и эффективно решать проблему оценок надежности цилиндрических элементов конструкций.

ЛИТЕРАТУРА

- 1. Болотин В. В. Прогнозирование ресурсов машин и конструкций. М.: Машиностроение, 1984.
- 2. **Ломакин В. А.** Статистические задачи механики твердых деформируемых тел. М.: Наука, 1970.
- 3. Работнов Ю. Н. Ползучесть элементов конструкций. М.: Наука, 1966.
- 4. Бадаев А. Н. К вопросу об определении функции распределения параметров уравнения состояния ползучести // Пробл. прочности. 1984. № 12. С. 22–26.
- 5. Радченко В. П., Дудкин С. А., Тимофеев М. И. Экспериментальное исследование и анализ полей неупругих микро- и макронеоднородностей сплава АД-1 // Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. Вып. 16. Самара: Самар. гос. техн. ун-т, 2002. С. 111–117.
- 6. Попов Н. Н., Самарин Ю. П. Исследование полей напряжений вблизи границы стохастически неоднородной полуплоскости при ползучести // ПМТФ. 1988. № 1. С. 159–164.
- Кузнецов В. А. Ползучесть стохастически неоднородных сред в условиях плоского напряженного состояния // Математическая физика: Сб. науч. тр. Куйбышев: Куйбышев. политехн. ин-т, 1977. С. 69–74.
- 8. Попов Н. Н. Нелинейная стохастическая задача ползучести толстостенной сферической оболочки // Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. Вып. 9. Самара: Самар. гос. техн. ун-т, 2000. С. 186–190.
- 9. Попов Н. Н., Самарин Ю. П. Пространственная задача стационарной ползучести стохастически неоднородной среды // ПМТФ. 1985. № 2. С. 150–155.
- 10. Кунташев П. А., Немировский Ю. В. О сходимости метода возмущений в задачах теории упругости // Изв. АН СССР. Механика твердых тел. 1985. № 3. С. 75–78.
- 11. Качанов Л. М. Теория ползучести. М.: Физматгиз, 1960.
- 12. Свешников А. А. Прикладные методы теории случайных функций. М.: Наука, 1968.
- 13. Кукса Л. В., Лебедев А. А., Ковальчук Б. И. О законах распределения микродеформаций в двухфазных поликристаллических сплавах при простом и сложном нагружениях // Пробл. прочности. 1986. № 1. С. 7–11.
- 14. Богачев И. И., Вайнштейн А. А., Волков С. Д. Статистическое металловедение. М.: Металлургия, 1984.
- 15. **Радченко В. П., Еремин Ю. А.** Реологическое деформирование и разрушение материалов и элементов конструкций. М.: Машиностроение-1, 2004.

Поступила в редакцию 22/III 2005 г.