СИБИРСКОЕ ОТДЕЛЕНИЕ российской академии наук

НАУЧНЫЙ ЖУРНАЛ ГЕОЛОГИЯ И ГЕОФИЗИКА

Геология и геофизика, 2012, т. 53, № 1, с. 67—81

ПЕТРОЛОГИЯ, ГЕОХИМИЯ И МИНЕРАЛОГИЯ

УДК 549.07

МОДЕЛИРОВАНИЕ ГЛУБИННЫХ ВЫСОКОГЛИНОЗЕМИСТЫХ ПАРАГЕНЕЗИСОВ НА ОСНОВЕ ПОЛЕЙ УСТОЙЧИВОСТИ КОРУНД-, ШПИНЕЛЬНОРМАТИВНЫХ АССОЦИАЦИЙ СИСТЕМЫ CaO—MgO—Al₂O₃—SiO₂

Н.В. Сурков, Ю.Г. Гартвич

Институт геологии и минералогии им. В.С. Соболева СО РАН, 630090, Новосибирск, просп. Академика Коптюга, 3, Россия

В рамках разработки физико-химических моделей происхождения кристаллических горных пород проведены экспериментальные исследования области высокоглиноземистых составов системы CaO—MgO—Al₂O₃—SiO₂ при давлениях от 10 до 30 кбар и в интервале температур 1250—1535 °C. В результате установлены фазовые взаимоотношения между An, Sp, Cpx, Cor, Ga и L, определен наклон лучей моновариантных реакций An + Sp = Cpx + Cor + (Ga), L = Cpx + Ga + Cor + Sp, положение нонвариантной точки (An, Sp, Cpx, Cor, Ga, L) и составы фаз, участвующих в этих реакциях.

На основе топологического анализа исследованного участка системы CaO—MgO—Al₂O₃—SiO₂ приведено необходимое и достаточное обоснование положения о том, что реакция «эклогитизации» должна иметь вид: Opx + An + Sp = Cpx + Ga. Прослежена непрерывная серия эвтектических моновариантных равновесий: L = Cpx + Opx + Fo + An, L = Cpx + Opx + An + Sp, L = Cpx + (Ga) + An + Sp и L = Cpx + Cor + (Ga) + An, имеющая фундаментальный характер. Изменение состава расплава в этой серии эвтектических реакций в зависимости от давления должно наследоваться в природных условиях как наиболее вероятный путь эволюции магм. Сопоставление областей составов, в которых реализуется установленная в работе серия эвтектических реакций, с составами пород магматических формаций показывает, что эта эвтектическая серия наиболее близка к породам щелочноземельной серии. В качестве парагенетического признака отмечается, что минералогические составы кумулятов и фенокристов, встречаемых в эффузивных и дайковых разновидностях пород этой серии, соответствуют уникальным наборам субсолидусных ассоциаций фаз и отдельным субсолидусным фазам, кристаллизующихся в этой фундаментальной серии эвтектик.

Фазовая диаграмма, щелочноземельная серия пород, моновариантные реакции, нонвариантное равновесие, реакция «эклогитизации», эвтектика, эволюции магм.

MODELING OF DEEP-SEATED HIGH-ALUMINA PARAGENESES ON THE BASIS OF THE STABILITY FIELDS OF CORUNDUM- AND SPINEL-NORMATIVE ASSEMBLAGES OF THE SYSTEM CaO–MgO–Al₂O₃–SiO₂

N.V. Surkov and Yu.G. Gartvich

To elaborate physicochemical models for the origin of crystalline rocks, experimental studies of the field of high-alumina assemblages of the system CaO–MgO–Al₂O₃–SiO₂ were carried out at 10–30 kbar and 1250–1535 °C. We have determined the phase relations between the melt (L) and An, Sp, Cpx, Cor, and Ga, the slope of the rays of the monovariant reactions An + Sp = Cpx + Cor (+ Ga) and L = Cpx + Ga + Cor + Sp, the position of the nonvariant point (An, Sp, Cpx, Cor, Ga, L), and the compositions of phases participating in these reactions.

Based on a topological analysis of the studied site of the system $CaO-MgO-Al_2O_3-SiO_2$, we have substantiated that "eclogitization" must follow the reaction Opx + An + Sp = Cpx + Ga. A fundamental continuous series of eutectic monovariant equilibria was observed: L = Cpx + Opx + Fo + An, L = Cpx + Opx + An + Sp, L = Cpx (+ Ga) + An + Sp, and L = Cpx + Cor (+ Ga) + An. A change in the melt composition in this series of eutectic reactions depending on pressure must reflect the most likely magma genesis trend in nature. Composition fields in which the above series of reactions is observed with the composition fields of the rocks of magmatic formations showed that this series is most similar to the alkali-earth series of rocks. The mineralogical compositions of cumulates and phenocrysts found in the effusive and dike varieties of these rocks correspond to unique sets of subsolidus phase associations and individual subsolidus phases crystallizing in this fundamental eutectic series.

Phase diagram, alkali-earth series of rocks, monovariant reactions, nonvariant equilibrium, "eclogitization" reaction, eutectic, magma genesis

введение

Экспериментальные исследования являются основным методом для решения вопросов генезиса глубинных пород и расплавов. Наиболее популярной моделью для этих целей является фазовая диаграмма системы CaO—MgO—Al₂O₃—SiO₂. Несмотря на некоторую упрощенность и кажущуюся абстрактность этой системы, с ее помощью были решены главные вопросы изменения минералогического состава горных пород в глубинных слоях земной коры и верхней мантии. Для этого были изучены наиболее «петрологически интересные» участки этой системы. Однако на сегодняшний день осталось много участков фазовой диаграммы этой системы, имеющих химический состав, далекий от большинства распространенных природных парагенезисов, хотя исследование этих областей составов дает важную информацию, позволяющую объяснять генезис и интерпретировать происхождение геологических объектов. Одним из таких малоисследованных участков системы СаО—MgO—Al₂O₃—SiO₂ является корунднормативная область составов, изучению которой посвящена данная работа.

В тексте, таблицах и на рисунках использованы сокращения для названий минералов в традиционной, наиболее читаемой форме: Срх — клинопироксен (твердые растворы диопсидового ряда), Орх ортопироксен (твердые растворы энстатитового ряда), Ga — гранат (твердые растворы ряда пироп гроссуляр), Fo — форстерит, An — анортит, Sp — шпинель (MgAl₂O₄), Ky — кианит, Cor — корунд, Q — кварц, Pyr — пироп (Mg₃Al₃Si₃O₁₂), Gross — гроссуляр (Ca₃Al₂Si₃O₁₂).

ОБЩАЯ ХАРАКТЕРИСТИКА ФАЗОВОЙ ДИАГРАММЫ СИСТЕМЫ СаО-MgO-Al₂O₃-SiO₂

Ключевым моментом в строении субсолидуса системы CaO—MgO—Al₂O₃—SiO₂ являются две нонвариантные точки (Cpx, Opx, Ga, Fo, An, Sp) и (Cpx, Opx, Ga, Q, An, Ky) [Kushiro, Yoder, 1966; Hensen, 1981; Сурков, 1995].

Реакции, лучи которых выходят из этих нонвариантных точек, контролируют устойчивость и порядок смены парагенезисов при изменении P-T условий соответственно в форстерит- и кварцнормативных областях составов. Эти области составов представляют собой как бы две независимые подсистемы. В области высоких давлений (свыше 30—36 кбар) они практически не связаны друг с другом, что определяется наличием так называемого «эклогитового барьера» и вызвано образованием полной серии твердых растворов пироп—гроссуляр. В области низких давлений строение системы CaO—MgO— Al_2O_3 —SiO₂ усложняется, здесь устойчив ряд коннод, переходящих из кварцнормативной области составов в форстеритнормативную, особенно в области ликвидуса. Характерной особенностью этих коннод является то, что их все можно отнести к областям состава с высоким содержанием глинозема. В связи с этим особый интерес для изучения строения системы CaO—MgO— Al_2O_3 —SiO₂ представляет исследование фазовых взаимоотношений в области составов с высоким содержанием глинозема.

Из анализа экспериментального материала по плавлению системы CaO—MgO—Al₂O₃—SiO₂ известно, что при атмосферном давлении [Osborn, Tait, 1952; Hytonen, Schairer, 1960; 1961] на ликвидусе существует коннода An-Sp, а при давлениях 15—20 кбар и выше — коннода Cpx-Cor [Presnall et al., 1978]. Отсюда следует, что в области высокоглиноземистых составов при высоких давлениях существует моновариантная реакция типа An + Sp = Cpx + Cor или An + Sp = Cpx + Cor + Ga, которая контролирует взаимоотношения фаз в солидусе и ликвидусе во всей области составов, обогащенных глиноземом.

Поэтому была поставлена задача изучения взаимоотношений между фазами An, Sp, Cpx, Cor, Ga и L для определения положения нонвариантной точки (An, Sp, Cpx, Cor, Ga, L), наклона лучей моновариантных реакций, а также состава фаз, участвующих в этих реакциях.

МЕТОДИКА ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

Экспериментальная часть работы выполнена на аппарате высокого давления типа «поршень—цилиндр» [Годовиков и др., 1971] по методике, тождественной ранее опубликованной [Сурков и др., 2007]. В качестве нагревательного устройства использована ячейка на основе хлорида натрия [Сурков, 1992].

Давление определяли по усилию нагрузки за вычетом поправки на трение, которую определяли по разнице усилия нагрузки и расчетного усилия, необходимого для фазового перехода Bi_I-Bi_{III} (25.4 кбар) при комнатной температуре. Для калибровки висмутовую проволоку диаметром 0.2 мм и длиной 3— 5 мм в таблетке из хлористого серебра помещали непосредственно на поршень. Точность поддержания и измерения давления специально нами не оценивалась, но, по оценкам других исследователей [Mirvald et al., 1975], на «ячейке низкого трения» составляет около ±0.3 кбар. Для определения и регулировки температуры использовали платинородиевую термопару PtRd6-PtRd30. Управление температурой производили при помощи регулятора температуры BPT-3. Точность поддержания температуры соответствовала ±1 °C. Влияние давления на ЭДС термопары не учитывали. Точность измерения температуры по этой методике оценивается не хуже ±10 °C [Boyd, England, 1960].

Исходные вещества приготовлены ве- таблица 1. совым методом из прокаленных (1100 °C; 5-6 ч) оксидов марок ОСЧ (особо чистый). Оксиды прокаливали в платиновых тиглях, навеску приготавливали сразу же по остывании платинового тигля до комнатной температуры в эксикаторе над Р₂О₅. Смесь оксидов прокаливали при температурах 1300-1700 °С на 50-100 °С ниже температуры, соответствующей температуре плавления, и через каждые 8-10 ч растирали в ступке из твердого сплава. Прокаливание производили до полного исчезновения исходных оксидов. Этим способом были приготовлены смеси, отвечающие по стехиометрии MgAl₂O₄, CaAl₂Si₂O₈, Mg₃Al₃Si₃O₁₂ и Ca₃Al₂Si₃O₁₂, корунд получен из гидроокислов алюминия прокаливанием при 1200—1300 °C. Из этих веществ весовым методом были приготовлены рабочие смеси, часть из которых впос-

блица 1. Характеристика исходных составов

Номер со- става	Исходный со- став, мол. %	Исходные реактивы	Условия обработки
S-97	Pyr ₅₀ Gross ₅₀	Оксиды марок ОСЧ	Расплавлен в прозрач- ное стекло при 1650— 1700 °С, 0.5 ч.
S-61	$Pyr_{60}Gross_{40}$	»	»
S-93	Pyr ₇₀ Gross ₃₀	»	»
S-89	An ₅₀ Sp ₅₀	»	Механическая смесь: MgAl ₂ O ₄ и анортит
S-90	An _{66.7} Sp _{33.3}	»	»
S-91	An _{33.3} Sp _{67.7}	»	»
S-89a	$An_{50}Sp_{50}$	»	Расплавлен в прозрач- ное стекло при 1650— 1700 °С, 0.5 ч.
S-90a	An _{66.7} Sp _{33.3}	»	»
S-91a	An _{33.3} Sp _{66.7}	»	»

ледствии была расплавлена в прозрачное стекло в электропечи с нагревателями из силицида молибдена при температурах 1600—1700 °С в платиновом тигле в атмосферных условиях. Характеристики этих смесей и условия их обработки проведены в табл. 1. Исходные вещества помещали в платиновую ампулу и просушивали при 500—600 °С в течение 7—8 ч, после чего ампулу герметизировали электросваркой.

В предварительных исследованиях были использованы исходные вещества с разным набором фаз (стекла, фазы субсолидуса: шпинель, анортит и т.д.). В результате было установлено, что равновесие в исследуемых смесях достигается достаточно быстро, выдержки 3—8 ч вполне достаточно для получения результатов, неразличимых с результатами, получаемыми в опытах, когда используются стекла. Продолжительность экспериментов, выбранная при исследовании, была заведомо в несколько раз большей, чем требуется для удовлетворительного приближения к состоянию равновесия. В связи с этим не было необходимости использовать метод моновариантной смеси. Для гарантированного получения максимально крупных зерен (что значительно облегчает анализ состава фаз на электронном микроанализаторе), предпочтение было отдано исходным смесям, состоящим из гомогенного стекла. Следует заметить, что в экспериментах, в которых равновесие не достигается и сохраняются остатки исходных или промежуточных фаз, размер зерен синтезированных фаз недостаточен для анализа их состава с помощью электронного микроанализатора.

После опыта полученный образец извлекали из ампулы, делали поперечный скол и из него изготавливали двусторонне полированный шлиф, с ориентировкой вдоль вертикальной оси образца. Остальную часть образца использовали для рентгенофазового анализа. Рентгеновскую съемку образцов проводили на дифрактометре «ДРОН-3».

Анализ фазовых взаимоотношений производили изучением шлифа на поляризационном петрографическом микроскопе ПОЛАМ Л-213. Только петрографическое изучение шлифа позволяет выявить правильные взаимоотношения фаз. Жидкость часто не закаливается в стекло, особенно в тех случаях, когда температура лишь ненамного превышает температуру плавления. Диагностика плавления становится возможной только по характерным закалочным структурам, образующимся при девитрификации стекла. В исследованной области составов преобладающей закалочной фазой является клинопироксен.

Анализ состава фаз проводили на электронном микроанализаторе Camebax-Micro. Основная трудность этого анализа состоит в том, что даже при появлении жидкости размер зерен некоторых фаз редко превышает 10 мкм (например, шпинель). Увеличение продолжительности экспериментов не приводит к заметному росту зерен. В субсолидусе наибольшая величина зерна (до 30 мкм) получается при использовании стекол в качестве исходных веществ. Поэтому в большинстве экспериментов было отдано предпочтение составам, которые были предварительно расплавлены и закалены в виде стекла.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Из имеющихся сведений по моновариантному равновесию An + Sp = Cpx + Cor нельзя сделать каких-либо выводов о наклоне луча этой реакции, а также о ее виде. Возможно, в самом общем случае, эту реакцию следует представлять в виде An + Sp = Cpx + (Ga) + Cor. Однако объем составов, занимаемый ассоциацией (Cpx + Ga + Cor), очень узкий, и, скорее всего, эта реакция должна быть вырожденной Таблица 2.

Результаты экспериментов по исследованию моновариантного равновесия An + Sp = Cpx + Cor + (Ga)

Номер опыта	Номер со- става	Исходный состав, мол. %	Давление, кбар	Температура, °С	Время, ч	Обнаруженные фазы
P218	S89	$An_{50}Sp_{50}$	20	1358	10	Cpx, Cor, Sp
P219	S90	An _{66.7} Sp _{33.3}	20	1358	10	»
P220	S91	An _{33.3} Sp _{66.7}	20	1358	10	»
P228	S89	$An_{50}Sp_{50}$	18	1306	10	»
P229	S90	An _{66.7} Sp _{33.3}	18	1306	10	Cpx, Cor, An, Sp
P230	S91	An _{33.3} Sp _{66.7}	18	1306	10	Cpx, Cor, Sp
P243	S90a	An _{66.7} Sp _{33.3}	15.3	1389	8.5	An, Sp, Cpx, Cor
P244	S91a	An _{33.3} Sp _{66.7}	15.3	1389	8.5	»
P245	S89a	An ₅₀ Sp ₅₀	15.3	1389	8.5	L, Cor, Sp
P224	S91a	An _{33.3} Sp _{66.7}	15.3	1356	10	Cpx, Cor, Sp, (An)
P225	S89	An ₅₀ Sp ₅₀	15.3	1306	10	»
P226	S90	An _{66.7} Sp _{33.3}	15.3	1306	10	»
P227	S91	An _{33.3} Sp _{66.7}	15.3	1306	10	Cpx, Cor, Sp
P240	S89a	$An_{50}Sp_{50}$	14	1333	10	Cor, An, Sp
P241	S90a	An _{66.7} Sp _{33.3}	14	1333	10	»
P242	S91a	An _{33.3} Sp _{66.7}	14	1333	10	»
P231	S89	$An_{50}Sp_{50}$	14	1307	10	An, Sp, Cpx, Cor
P232	S90	An _{66.7} Sp _{33.3}	14	1307	10	»
P233	S91	An _{33.3} Sp _{66.7}	14	1307	10	»
P234	S89a	$An_{50}Sp_{50}$	12	1303	8	»
P235	S90a	An _{66.7} Sp _{33.3}	12	1303	8	An, Sp, Cor
P236	S91a	An _{33.3} Sp _{66.7}	12	1303	8	»
P237	S89a	$An_{50}Sp_{50}$	10	1306	9,2	»
P238	S90a	An _{66.7} Sp _{33.3}	10	1306	9,2	»
P239	S91a	An _{33.3} Sp _{66.7}	10	1306	9,2	»
P246	S90a	An _{66.7} Sp _{33.3}	18	1358	9	Cpx, Cor, An, Sp
P247	S91a	An _{33.3} Sp _{66.7}	18	1358	9	Cpx, Cor, Sp, An
P248	S89a	$An_{50}Sp_{50}$	18	1358	9	Cor, Cpx, Sp
P249	S89a	$An_{50}Sp_{50}$	18	1363	8	Cpx, Cor, An, Sp
P250	S90a	An _{66.7} Sp _{33.3}	18	1363	8	Cpx, Cor, An
P251	S91a	An _{33.3} Sp _{66.7}	18	1363	8	Cor, Sp, Cpx
P252	S89a	$An_{50}Sp_{50}$	18	1409	9	L, Cor, Sp
P253	S90a	An _{66.7} Sp _{33.3}	18	1409	9	»
P254	S91a	An _{33.3} Sp _{66.7}	18	1409	9	»
P255	S89a	$An_{50}Sp_{50}$	20	1409	9	L, Cor, Sp, Cpx
P256	S90a	An _{66.7} Sp _{33.3}	20	1409	9	L, Cor, Cpx
P257	S91a	An _{33.3} Sp _{66.7}	20	1409	9	L, Cor, Sp
P258	S89a	$An_{50}Sp_{50}$	20	1392	9.2	Cpx, Cor, An, Sp
P259	S90a	An _{66.7} Sp _{33.3}	20	1392	9.2	Cor, Cpx
P260	S91a	An _{33.3} Sp _{66.7}	20	1392	9.2	Cpx, Cor, Sp
P261	S89a	$An_{50}Sp_{50}$	22	1393	9	»
P262	S90a	An _{66.7} Sp _{33.3}	22	1393	9	Cpx, Cor
P263	S91a	An _{33.3} Sp _{66.7}	22	1393	9	Cpx, Cor, Sp

Рис. 1. Результаты экспериментальных исследований моновариантных реакций Sp + An = Cpx ++ (Ga) + Cor, Sp + L = Cpx + (Ga) ++ Cor и Cpx + Ga + Cor + An = L. *T*, °C 1800-

I—An + Sp, 2—Cpx + Cor, 3—L + Cor + Sp,
4 — L + Cpx + Cor, 5 — L + Crystal, 6 — Сpx + Ga + Cor, 7 — температура плавления в магнезиальной части сечения пироп гроссуляр при 30 кбар.

Cpx+Cor+An+(Ga) L+Sp 1600-Cpx+Cor+(Ga) Cor+L An+Sr L+Ga Opx+An+Sp 1400-Cpx+OpxO+Sp+An An+Sp Cpx+(Ga)+An+Sp Cpx+Cor+(Ga) 1200 1000 10 15 20 25 30 5 *Р*, кбар 0 + 2 ۵ 3 **♦** 4 \Diamond Ð I. 5 17

и иметь вид An + Sp = Cpx + Cor. Экспериментальная проверка, является ли эта реакция вырожденной или нет, не даст достоверного и однозначного ответа. Проблема заключается в технической сложности диагностики при незначительном содержании фаз в продуктах

опыта, в данном случае это относится к гранату. Однако для решения поставленной задачи этот вопрос не имеет принципиального значения.

Для исследования были использованы смеси трех составов в сечении анортит—шпинель (An-Sp). Результаты экспериментов представлены в табл. 2 и на рис. 1. В области давлений, при которых устойчива ассоциация анортита и шпинели, на рентгенограмме продуктов опыта всегда присутствует небольшое количество корунда, который является новообразованной фазой, и его появление может быть связано только с отклонением в стехиометрии анортита или шпинели. Анализ рентгеновских характеристик этих фаз и анализы их состава с помощью микрозонда не выявили достоверных отклонений от стехиометрии. По-видимому, масштаб этого явления весьма мал и отклонения в составе и рентгеновских характеристик анализа.

Реакция An + Sp = Cpx + Cor прослежена нами в интервале давлений 10—20 кбар и температур 1300—1390 °C. Луч реакции имеет положительный наклон и пересекается с лучом реакции L = Cpx + + (Ga) + An + Sp, выходящим из нонвариантной точки (Cpx, Ga, Opx, An, Sp, L) [Сурков, 1995], образуя

Рис. 2. Фазовый объем нонвариантного равновесия (Sp, An, Cpx, Ga, Cor, L).

a — вариант нонвариантного равновесия (Sp, An, Cpx, Ga, Cor, L), когда моновариантная реакция Sp + An = Cpx + Ga + Cor не является вырожденной. δ — вариант нонвариантного равновесия (Sp, An, Cpx, (Ga), Cor, L), когда моновариантная реакция Sp + An = Cpx + (Ga) + Cor является вырожденной.

рдицорт			2 cherren		ין כשיש ומכווו					hundadunu							
Номер	Фаза	2	CaO	MgO	Al_2O_3	SiO_2	Сумма	CaO	MgO	Al_2O_3	SiO_2	Сумма	Са	Mg	Al	Si	Сумма
OIIBITA					Mac. %					мол. %					форм. ед.		
-	2	æ	4	5	9	7	~	6	10	11	12	13	14	15	16	17	18
P218	Cpx	1	16.07	9.4	39.17	37.5	100.7	18.75	15.26	25.14	40.84	100	0.5888	0.4792	1.5787	1.282	3.9287
P218	Sp	4	0.046	26.89	69.33	0.11	96.33	0.061	49.43	50.38	0.133	100	0.0012	0.9842	2.0062	0.0026	2.9942
P219	Cpx	2	23.44	9.94	22.94	43.4	99.84	25.93	15.3	13.95	44.82	100	0.9006	0.5314	0.9693	1.557	3.9583
P228	Sp	1	0.047	27.02	69.54	0.28	96.9	0.062	49.37	50.22	0.344	100	0.0012	0.9835	2.001	0.0069	2.9926
P228	Срх	4	22.23	10.96	22.75	43.6	9.66	24.51	16.82	13.8	44.86	100	0.8529	0.5854	0.9598	1.561	3.9591
P229	An	1	17.87	0.278	35.54	45.5	99.44	22.27	0.482	24.36	52.89	100	0.8837	0.0191	1.9333	2.0986	4.9347
P229	Срх	1	19.55	9.24	31.65	39	99.47	22.68	14.91	20.19	42.22	100	0.7451	0.49	1.3269	1.3873	3.9493
P230	Sp	1	0.029	27.99	69.11	0.15	97.29	0.038	50.5	49.28	0.183	100	0.0008	1.0163	1.9838	0.0037	3.0044
P243	An	1	19.57	0.3	35.71	43.7	99.24	24.34	0.519	24.43	50.7	100	0.9759	0.0208	1.9588	2.0325	4.9881
P244	\$	2	19.5	0.335	35.17	43.8	98.81	24.31	0.581	24.12	50.99	100	0.9764	0.0233	1.9368	2.0476	4.984
P245	Γ	б	17.59	5.247	26.61	43.8	93.24	21.88	9.079	18.2	50.84	100	0.701	0.2909	1.1665	1.6292	3.7876
P224	Cpx	4	21.18	10.72	27.27	39.8	99.04	24	16.9	17	42.09	100	0.8178	0.576	1.1585	1.4343	3.9865
P225	An	1	19.87	0.293	34.36	43	97.65	25.05	0.514	23.83	50.61	100	1.0108	0.0207	1.9228	2.0421	4.9965
P226	Срх	1	17.77	11.78	32.65	35.2	97.43	20.92	19.29	21.14	38.66	100	0.6936	0.6398	1.4018	1.282	4.0171
P226	An	1	19.37	0.397	34.85	44.4	99.19	24.05	0.686	23.8	51.47	100	0.9664	0.0276	1.9127	2.0685	4.9752
P227	Срх	б	22.7	11.48	21.79	43.6	99.63	24.86	17.5	13.13	44.52	100	0.8735	0.6147	0.9223	1.5642	3.9747
P240	An	1	19.12	0.374	33.97	43.8	97.45	24.14	0.657	23.59	51.61	100	0.9715	0.0264	1.8986	2.0771	4.9736
P241	\$	1	19.25	0.314	34.41	43.9	98.02	24.19	0.549	23.79	51.47	100	0.9724	0.0221	1.912	2.0688	4.9752
P242	Sp	1	0.042	27.85	68.84	0.16	96.89	0.055	50.45	49.3	0.194	100	0.0011	1.0152	1.9839	0.0039	3.0041
P233	Cpx	1	16.99	11.71	32.97	36.3	98.05	19.91	19.1	21.25	39.73	100	0.6556	0.6288	1.3995	1.3081	3.9921
P234	\$	б	24.17	11.09	19.84	45.6	100.8	25.96	16.57	11.72	45.74	100	0.9207	0.5878	0.8313	1.6223	3.9621
P236	An	1	19.07	0.184	34.46	43.1	96.88	24.3	0.326	24.15	51.22	100	0.9743	0.0131	1.9367	2.0538	4.9779
P237	\$	1	19.81	0.171	34.93	42.8	97.8	25.03	0.301	24.27	50.4	100	1.0063	0.0121	1.9519	2.0269	4.9972
P238	\$	1	18.5	0.468	39.08	41.5	99.64	23.29	0.82	27.07	48.82	100	0.9183	0.0323	2.1337	1.9244	5.0087
P239	\$	1	19.8	0.382	34.73	44.6	99.68	24.44	0.656	23.58	51.33	100	0.9851	0.0264	1.9007	2.0687	4.9809
P247	Cpx	ю	22.98	11.12	22.63	42.8	99.58	25.29	17.02	13.7	43.99	100	0.8853	0.596	0.959	1.5401	3.9804
P248	Cor	1	0	0.009	100.2	0.01	100.2	0	0.023	79.99	0.008	100	0	0.0005	3.9995	0.0002	4.0001
P249	Cpx	1	17.72	8.68	41.61	34.4	102.4	20.89	14.24	26.98	37.89	100	0.6534	0.4453	1.6877	1.1849	3.9713

DARHOBECUS An + Sn = Cnx + Cor + (Ga) MOHORSDUSHTHOFO Успелненные анализы фаз из экспериментов по исследованию

Таблица 3.

	-				-	-	:	-	-	-		-			-		
P249	An	1	19.48	0.223	35.47	44	99.19	24.23	0.386	24.27	51.11	100	0.971	0.0155	1.9449	2.048	4.9795
P250	Cpx	3	21.81	10.56	24.29	42.3	98.96	24.41	16.45	14.95	44.19	100	0.8412	0.567	1.0306	1.5229	3.9618
P251	\$	4	22.36	10.6	24.08	42	99.02	24.97	16.48	14.79	43.76	100	0.8644	0.5703	1.0241	1.5145	3.9734
P252	Sp		0.066	26.02	72.14	0.19	98.41	0.087	47.56	52.12	0.231	100	0.0017	0.9304	2.0393	0.0045	2.9759
P252	Cor		0.055	0.237	98.49	0.36	99.14	0.1	0.601	98.7	0.604	100	0.001	0.006	1.9872	0.0061	2.0003
P252	Γ	9	20.31	7.883	28.07	44.7	100.9	22.98	12.41	17.46	47.15	100	0.7572	0.4089	1.1509	1.5538	3.8708
P253	Cor	-	0.095	0.221	99.94	0.33	100.6	0.171	0.552	98.72	0.56	100	0.0017	0.0056	1.9876	0.0056	2.0005
P253	Γ	-	19.82	7.59	29.95	43	100.4	22.78	12.14	18.93	46.14	100	0.7429	0.3958	1.2348	1.5046	3.878
P254	\$	3	20.79	6.8	27.78	44.6	99.93	23.86	10.86	17.54	47.74	100	0.7832	0.3564	1.1513	1.5667	3.8576
P255	\$	3	19.57	8.38	25.39	48.4	101.7	21.67	12.91	15.46	49.97	100	0.7186	0.4282	1.0256	1.6574	3.8298
P256	\$	5	21.72	8.564	26.39	43.6	100.3	24.43	13.41	16.33	45.83	100	0.8213	0.4507	1.0978	1.5407	3.9104
P257	\$	2	20.98	7.59	26.16	45.8	100.5	23.67	11.91	16.23	48.18	100	0.7861	0.3957	1.0783	1.6004	3.8605
P258	Sp	-	0.003	27.02	71.73	0.2	98.96	0.004	48.68	51.08	0.239	100	0	0.962	2.019	0.0047	2.9858
P258	Cpx	4	22.62	10.66	23.46	42.9	99.66	25.02	16.41	14.27	44.31	100	0.8685	0.5695	0.9905	1.5381	3.9666
P259	Cor	-	0.029	0.061	100.5	0.1	100.7	0.052	0.153	99.62	0.173	100	0.0005	0.0015	1.9963	0.0017	2.0001
P259	Cpx	б	22.13	8.99	26.08	42.8	100	24.87	14.06	16.12	44.95	100	0.8422	0.4761	1.0919	1.5219	3.9321
P260	Sp	-	0.048	27.49	71.29	0.37	99.2	0.062	49.13	50.36	0.444	100	0.0012	0.9769	2.0028	0.0088	2.9898
P260	Cpx	3	21.61	11.05	26.16	41.2	66.66	24.06	17.12	16.02	42.8	100	0.8257	0.5876	1.0996	1.4687	3.9815
P261	\$	ю	21.24	11.92	22.54	44.1	99.8	23.24	18.15	13.56	45.05	100	0.8099	0.6325	0.9453	1.5698	3.9575
P262	\$	4	22.73	9.023	25.51	42.8	100.1	25.46	14.06	15.72	44.76	100	0.8671	0.4789	1.0703	1.5243	3.9406
P263	\$		12.65	15.51	40.72	29.7	98.53	15.01	25.6	26.57	32.83	100	0.4842	0.826	1.7144	1.0592	4.0837

Примечание. N — число анализов в точке.

Таблица 4. Результаты экспериментов по исследованию моновариантного равновесия L+Sp = Cpx + Cor + (Ga)

Номер опыта	Номер со- става	Исходный состав, мол. %	Давление, кбар	Температура, °С	Время, ч	Обнаруженные фазы
P264	S-61	Pyr ₆₀ Gross ₄₀	24.7	1475	8.25	Cpx + Ga
P265	S-93	Pyr ₇₀ Gross ₃₀	24.7	1475	8.25	Cpx + Ga + Cor
P266	S-97	Pyr ₅₀ Gross ₅₀	24.7	1475	8.25	Cpx + Sp
P267	S-61	Pyr ₆₀ Gross ₄₀	24.7	1500	5	Cpx + Ga + Cor
P268	S-93	Pyr ₇₀ Gross ₃₀	24.7	1500	5	»
P269	S-97	Pyr ₅₀ Gross ₅₀	24.7	1500	5	Cpx + Ga
P270	S-61	Pyr ₆₀ Gross ₄₀	24.7	1525	5	L + Cpx + Sp
P271	S-93	Pyr ₇₀ Gross ₃₀	24.7	1525	5	L + Cpx + Sp + Cor
P272	S-97	Pyr ₅₀ Gross ₅₀	24.7	1525	5	L + Cpx + Sp
P273	S-61	Pyr ₆₀ Gross ₄₀	28	1525	5	Ga + Cpx
P274	S-93	Pyr ₇₀ Gross ₃₀	28	1525	5	Cpx + Ga + Sp + Cor
P275	S-97	Pyr ₅₀ Gross ₅₀	28	1525	5	L + Cpx
P276	S-61	Pyr ₆₀ Gross ₄₀	21.7	1535	4.5	L + Cpx + Ga
P277	S-93	Pyr ₇₀ Gross ₃₀	21.7	1535	4.5	»
P278	S-97	Pyr ₅₀ Gross ₅₀	21.7	1535	4.5	L + Cpx

сингулярную нонвариантную точку (An, Sp, Cpx, Cor, L) (см. рис. 2), которая расположена при 20 кбар и 1400 °C. Из этой точки в сторону высоких давлений выходят лучи реакций L = Cpx + (Ga) + An + Cor u L + Sp = Cpx + (Ga) + Cor.

Реакция L = Cpx + (Ga) + An + Сог прослежена нами в интервале давлений 18—20 кбар и температур 1350—1400 °С. Луч этой реакции имеет близкий к горизонтальному положительный наклон. Составы жидкости и других фаз, полученные в опытах, приведены в табл. 3. Сопоставление состава жидкости и химического состава объема, в котором протекает эта реакция, показывает, что жидкость смещена в сторону анортита от плоскости Cpx-Ky-Cor.

Второй реакцией плавления, изученной в данном исследовании, является реакция L + Sp = Cpx + + (Ga) + Cor. Она изучена нами при давлениях 20—28 кбар и температурах 1390—1450 °C при помощи смесей, составы которых расположены в сечении пироп—гроссуляр (табл. 4). В проведенных экспериментах жидкость не закаливается в стекло. Вместо стекла получается фаза, которую интерпретировали как «закалочный клинопироксен». Закалочный клинопироксен образует в шлифе характерные структуры типа «петушиный хвост» или «мороз на стекле», по которым он легко диагностируется под микроскопом. На дифрактограмме он дает обычную для клинопироксена картину. Анализы, полученные с помощью микрозонда, показывают незакономерные и иногда значительные вариации состава от точки к точке. Это не позволило определить состав жидкости по составу закалочной фазы, хотя можно уверенно предположить, что состав жидкости находится в непосредственной близости от плоскости энстатит волластанит—корунд. Составы проанализированных фаз приведены в табл. 5.

При низких давлениях клинопироксен имеет состав с более низким содержанием глинозема, нежели сечение пироп—гроссуляр. При повышении давления до 30 кбар область составов, занимаемая твердыми растворами клинопироксенов, увеличивается, и клинопироксен, участвующий в реакции L + Sp = = Cpx + (Ga) + Cor, становится более глиноземистым нежели твердые растворы гранатов серии пироп гроссуляр. Это подтверждается тем, что в сечении пироп—гроссуляр в магнезиальной части на ликвидусе отсутствует корунд [Сурков, Гартвич, 2000].

Таким образом, в результате экспериментального исследования установлено положение лучей моновариантных реакций L = An + (Ga) + Cpx + Cor, An + Sp = Cpx + Cor + (Ga) и L + Sp = Cpx + (Ga) + + Cor и определено положение нонвариантной точки (Cpx, Cor, Ga, An, Sp, L), которая расположена в области давления 20 кбар и температуры 1400 °C.

ТОПОЛОГИЧЕСКИЙ АНАЛИЗ МОНОВАРИАНТНЫХ РАВНОВЕСИЙ ЧАСТИ МОДЕЛЬНОЙ СИСТЕМЫ СаО—МgO—Al₂O₃—SiO₂ И ТРЕНД МАГМАТИЧЕСКОЙ ЭВОЛЮЦИИ РАСПЛАВОВ

На первый взгляд полученные результаты носят несколько абстрактный и теоретический характер по отношению к проблемам, исследуемым в геологии. Однако сопоставление этих результатов с другими данными, полученными ранее [Сурков, 1995], позволяет прояснить два конкретных и принципиально важных для глубинной петрологии вопроса:

- однозначно ответить на вопрос, какой вид имеет реакция эклогитизации,

- описать тренд эволюции магм щелочноземельной серии.

Таблица	5.		Усредне	нные ана	ллизы фаз	на экспе	отнамида	ов по иссле	едованию	моновариз	антного ра	вновеси	я L + Sp =	= Cpx + Cc	or + (Ga)		
Номер	Ψ	Число	CaO	MgO	Al_2O_3	SiO_2	Сумма	CaO	MgO	Al_2O_3	SiO_2	Сумма	Са	Mg	Al	Si	Сумма
OIIbITa	¥434	анализов			мас. %					мол. %					форм. ед.		
1	2	3	4	5	6	7	~	6	10	11	12	13	14	15	16	17	18
P264	Ga	4	11.45	21.06	24.1	43.02	99.63	12.1713	31.1153	14.0739	42.6395	100	0.8553	2.1862	1.9777	2.996	8.0152
P264	Cpx	8	20.0	14.46	21.0	43.86	99.33	21.6051	21.7114	12.4971	44.1864	100	0.7664	0.7702	0.8851	1.5679	3.9895
P265	Ga	3	9.277	23.07	24.89	43.25	100.5	9.72049	33.636	14.3448	42.2987	100	0.6822	2.3606	2.0134	2.9685	8.0247
P265	Cpx	3	20.54	15.42	18.73	44.95	99.64	21.7959	22.7558	10.9361	44.5122	100	0.786	0.8206	0.7886	1.6053	4.0004
P266	Sp	1	0.428	27.44	69.71	1.85	99.43	0.544	48.5285	48.7328	2.19467	100	0.0109	0.9722	1.9526	0.044	2.9797
P266	Cpx	5	20.89	14.13	20.28	44.5	99.81	22.3993	21.0859	11.9783	44.5365	100	0.7982	0.7511	0.8519	1.5865	3.9876
P267	Ga	2	8.83	23.22	24.77	43.21	100.0	9.28628	33.9778	14.3275	42.4084	100	0.6514	2.3835	2.0101	2.9749	8.02
P267	Cpx	1	18.86	15.09	19.44	45.21	98.6	20.3354	22.6389	11.5286	45.4971	100	0.7239	0.8059	0.8208	1.6196	3.9701
P267	Cpx	5	20.62	14.28	19.86	44.41	99.17	22.21	21.3893	11.7656	44.6351	100	0.7924	0.7632	0.8395	1.5926	3.9877
P268	Ga	5	9.222	23.0	24.53	43.36	100.1	9.69056	33.6192	14.1751	42.5151	100	0.6806	2.3612	1.991	2.9859	8.0186
P268	Cpx	3	18.49	17.74	16.04	47.17	99.43	19.2586	25.7025	9.18919	45.8497	100	0.7036	0.9391	0.6714	1.6751	3.9892
P269	Sp	1	0.252	28.0	69.67	1.53	99.45	0.31915	49.3417	48.5306	1.80855	100	0.0064	0.9924	1.9523	0.0364	2.9875
P269	Cpx	4	19.13	14.33	21.26	45.26	99.97	20.5739	21.4016	12.5922	45.4323	100	0.7234	0.7543	0.8843	1.5979	3.9599
P269	Cpx	2	21.53	14.79	17.59	46.12	100.0	22.7039	21.7013	10.2021	45.3927	100	0.8216	0.7854	0.7384	1.6427	3.9881
P269	Cpx	5	22.14	12.92	20.6	43.5	99.16	24.0565	19.5204	12.31	44.1131	100	0.8554	0.6942	0.8754	1.5686	3.9937
P270	Sp	1	0.389	27.77	70.05	2.26	100.5	0.48829	48.5019	48.362	2.64774	100	0.0098	0.9731	1.9406	0.0531	2.9766
P270	Gl	4	17.11	16.32	20.57	47.28	101.3	17.9565	23.8394	11.8775	46.3266	100	0.6335	0.841	0.838	1.6343	3.9467
P270	xCpx	1	17.16	16.47	20.0	45.76	99.39	18.2969	24.4349	11.729	45.5392	100	0.6496	0.8675	0.8328	1.6168	3.9668
P270	Cpx	3	17.56	16.11	19.86	45.63	99.16	18.7869	23.9716	11.6874	45.5541	100	0.6673	0.8516	0.8301	1.618	3.967
P271	Sp	1	0.087	28.41	70.16	0.446	99.1	0.11066	50.2787	49.0812	0.52946	100	0.0022	1.0122	1.9762	0.0107	3.0013
P271	GI	3	12.9	19.51	20.02	48.17	100.6	13.4397	28.2659	11.4707	46.8237	100	0.475	0.9994	0.8107	1.6548	3.9399
P271	xCpx	2	13.18	19.39	20.12	46.72	99.4	13.9001	28.4461	11.6708	45.9829	100	0.4925	1.008	0.8271	1.6294	3.957
P271	Cpx	3	13.64	20.09	18.47	47.66	99.85	14.1701	29.0538	10.5544	46.2216	100	0.5081	1.0418	0.7569	1.6574	3.9642
P272	Gl	5	20.63	13.8	21.42	44.41	100.3	22.1676	20.6292	12.6594	44.5438	100	0.783	0.7287	0.8943	1.5734	3.9794
P273	Ga	3	12.07	20.08	23.97	43.18	99.3	12.91	29.884	14.1023	43.1037	100	0.9044	2.0934	1.9757	3.0193	7.9928
P273	Срх	4	22.03	12.69	20.88	43.6	99.2	23.9861	19.2116	12.5002	44.3021	100	0.85	0.6809	0.8859	1.5701	3.987
P274	Sp	1	2.36	25.42	63.27	8.65	99.7	2.92797	43.8819	43.1738	10.0163	100	0.0596	0.8939	1.7589	0.204	2.9165
P274	Ga	4	10.47	22.05	24.25	43.3	100.1	11.0336	32.3271	14.0543	42.585	100	0.7758	2.2726	1.976	2.9938	8.0182
P274	Cpx	4	21.43	14.52	17.96	45.39	99.3	22.8319	21.5167	10.5211	45.1303	100	0.8244	0.777	0.7597	1.6295	3.9906
P275	Cpx	1	21.28	11.93	21.71	44.29	99.21	23.3442	18.2097	13.0989	45.3473	100	0.8165	0.6369	0.9163	1.5861	3.9558
P276	Sp	1	0.38	27.64	69.67	1.18	98.87	0.48557	49.1427	48.9644	1.4073	100	0.0146	1.4792	2.9476	0.0424	4.4838

75

табл. 5	18	8.0013	3.8739	3.8815	3.9875	4.5022	8.031	3.9684	3.9503
ончание	17	3.0094	1.6725	1.6672	1.6373	0.0151	2.9771	1.6354	1.5998
OK	16	1.9785	0.9071	0.9027	0.7503	2.9653	1.9839	0.7924	0.8997
	15	2.3086	0.7122	0.7119	0.8297	1.5183	2.4425	0.9458	0.7304
	14	0.7047	0.5821	0.5997	0.7703	0.0035	0.6274	0.5949	0.7203
	13	100	100	100	100	100	100	100	100
	12	42.9182	48.8979	48.6033	45.3253	0.50022	42.2941	45.7812	45.7073
	11	14.108	13.2607	13.1581	10.3851	49.1009	14.0923	11.0915	12.8536
	10	32.9239	20.8233	20.7548	22.9668	50.2828	34.6999	26.475	20.8621
	6	10.0499	17.0182	17.4837	21.3228	0.11612	8.91373	16.6524	20.5769
	8	90.06	99.89	98.03	98.84	98.79	99.69	99.93	100.1
	7	43.24	48.24	47.09	45.6	0.42	43.11	46.73	45.41
	9	24.12	22.2	21.64	17.73	69.96	24.38	19.21	21.67
	5	22.25	13.78	13.49	15.5	28.32	23.73	18.13	13.91
	4	9.45	15.67	15.81	20.02	0.091	8.48	15.86	19.08
	3	2	1	2	4	1	2	3	3
	2	Ga	Cpx	xCpx	Gl	Sp	Ga	Cpx	Cpx
	1	P276	P276	P276	P276	P277	P277	P277	P278

Примечание. хСрх — закалочная фаза (клинопироксен)

Реакция эклогитизации (рис. 3) впервые была экспериментально установлена Куширо и Йодером [Kushiro, Yoder, 1966] в модельной системе CaO—MgO—Al₂O₃—SiO₂ и впоследствии воспроизведена с использованием «реальных» составов (т.е. материала из природных образцов) в работах Грина и Рингвуда [Green, Ringwood, 1967а,б], Ито и Кеннеди [Ito, Kennedy, 1971]. Во всех этих работах она трактовалась как реакция появления «первого» (по давлению) граната существенно пиропового состава. Границы устойчивости чистого пиропа были впервые исследованы Ф. Бойдом [Boyd, England, 1959] и полностью описаны А.М. Дорошевым [Дорошев, Малиновский, 1974, 1975]. Поле его устойчивости расположено при значительно более высоких давлениях.

Поэтому, ссылаясь на результаты указанных выше работ, реакцию образования магнезиального граната часто записывали как Ga = Cpx + Opx + An + Sp [Дубровский, 1998].

Такая трактовка подразумевает, что состав граната в дивариантной ассоциации (Cpx + Opx + Ga) должен быть более кальциевым, чем состав Руг 83.33 мол. % и Gross 16.67 мол. %. Эта точка составов соответствует пересечению плоскости энстатит— шпинель—анортит и сечения пироп—гроссуляр (Ca₃Al₂Si₃O₁₂ + $+ 5Mg_3Al_2Si_3O_{12} = 3MgAl_2O_4 + 3CaAl_2Si_2O_8 + 6Mg_2Si_2O_6$).

Другой вариант этого моновариантного равновесия (Срх + Ga = Opx + An + Sp) был предложен А. Томпсоном [Thompson, 1979] и использован в наших работах [Сурков, 1995; Сурков, Кузнецов, 1996]. Этот вариант (см. рис. 3) соответствует появлению конноды гранат—клинопироксен в этой реакции, при этом гранат имеет заметно более магнезиальный состав, нежели в предыдущем случае.

Экспериментальные исследования твердых растворов фаз, сосуществующих в ассоциации (Ga + Cpx + Opx), показывают [Сурков, Кузнецов, 1996], что в ней состав граната всегда имеет некоторый избыток пироповой составляющей и находится в магнезиальной области составов от плоскости энстатит—шпинель—анортит. Однако значительные твердые растворы энстатита как в сторону диопсида (до 10 мол. %), так и в сторону корунда (практически до состава пиропа 25 мол. % Al_2O_3), не позволяют сделать однозначный вывод о характере обсуждаемой реакции.

В области низких давлений, от атмосферного до давления, соответствующего нонвариантному равновесию (Ga, Cpx, Opx, An, Sp, L), строение ликвидуса фазовой диаграммы системы CaO—MgO—Al₂O₃—SiO₂ одинаково как для варианта с реакцией эклогитизации при ее виде (Ga = Cpx + Opx + An + Sp), так и при виде (Cpx + Ga = Opx + An + Sp).

При более высоких давлениях для согласования топологии системы с нонвариантным равновесием (Ga, Cpx, Opx, Fo, Sp, L) вариант с реакцией эклогитизации вида (Ga = Cpx + Opx + An + + Sp) требует предположения о существовании нескольких сингулярных равновесий в области плавления, и в этом варианте полностью отсутствует возможность топологического согласования с лучами, выходящими из нонвариантного равновесия (Cpx, Cor, Ga, An, Sp, L) (рис. 4), существование которого установлено в нашей работе. На этом основании следует заключить, что реакцию эклогитизации следует записывать исключительно как (Cpx + Ga = Opx + An + Sp), и состав граната, участвующего в ней, более магнезиальный, нежели точка пересечения плоскости ортопироксен—плагиоклаз—шпинель с сечением пироп—гроссуляр.

Рис. 3. Фазовый объем нонвариантного равновесия (Срх, Ga, Opx, Sp, An, L).

Полученные в этой работе экспериментальные результаты позволили не только доказать существование нонвариантного равновесия (Cpx, Cor, Ga, An, Sp, L) и окончательно определить вид реакции «эклогитизации» (Cpx + Ga = Opx + An + Sp), но и позволяют провести анализ ликвидусных соотношений в исследованной части системы CaO—MgO—Al₂O₃—SiO₂.

Так, из точки нонвариантного равновесия (Cpx, Cor, Ga, An, Sp, L) в сторону низких давлений направлен луч моновариантной реакции L = Cpx + (Ga) + An + Sp, а из точки нонвариантного равновесия (Cpx, Opx, Ga, An, Sp, L) в сторону высоких давлений выходит луч этой же реакции. Таким образом, на этом участке фазовой диаграммы системы прослеживается непрерывная серия эвтектических моновариантных равновесий L = Cpx + Opx + Fo + An (от 1 атм до 8 кбар); L = Cpx + Opx + An + Sp (от 8 кбар до 16 кбар); L = Cpx + (Ga) + An + Sp (от 16 кбар до 20 кбар); L = Cpx + Cor + (Ga) + An (от 20 кбар и выше) (рис. 5).

Такая серия эвтектик имеет особое значение для понимания путей эволюции магматических расплавов. Базовые вопросы этого процесса в зависимости от химического состава магматического расплава и динамики развития магматического очага рассмотрены в работе [Сурков, Зинчук, 2001].

В этой серии эвтектик для давлений от атмосферного до 8—9 кбар (нонвариантное равновесие (An, Fo, Opx, Cpx, Sp, L)) в области температур между солидусом и ликвидусом, в зависимости от химического состава кристаллизуются ассоциации типа: An + Fo, An + Opx, An + Cpx, Fo + Opx, Fo + Cpx, Opx + Cpx, An + Fo + Opx, An + Fo + Cpx, An + Opx + Cpx, Fo + Opx + Cpx, An + Fo + Opx + Cpx и отдельные фазы An, Fo, Opx, Cpx.

Рис. 4. Схема топологии моновариантных реакций, исходящих из точек нонвариантных равновесий (Cpx, Ga, Opx, Sp, An, L) и (Sp, An, Cpx, (Ga), Cor, L).

Рис. 5. Топология нон- и моновариантных равновесий в форстеритнормативной и корунднормативной частях системы CaO—MgO—Al₂O₃—SiO₂.

Штриховыми линиями выделены эвтектические моновариантные равновесия.

При давлениях выше от нонвариантного равновесия (An, Fo, Opx, Cpx, Sp, L) (8—9 кбар) и до давлений 15—16 кбар (нонвариантное равновесие (Ga, Opx, Cpx, An, Sp, L) кристаллизуются ассоциации: An + Opx, An + Cpx, An + Opx, An + Sp, Opx + Cpx, Cpx + Sp, An + Opx + Cpx, An + Opx + Sp, Opx + Cpx + Sp, An + Opx + Cpx + Sp и фазы An, Opx, Cpx, Sp.

При давлениях выше от нонвариантного равновесия (Ga, Opx, Cpx, An, Sp, L) (15—16 кбар) и до давлений приблизительно 20 кбар (нонвариантное равновесие (An, Ga, Cor, Cpx, Sp, L) кристаллизуются ассоциации: An + Ga, An + Cpx, An + Sp, Ga + Cpx, Cpx + Sp, Ga + Sp, An + Ga + Cpx, An + Ga + Sp, An + Cpx + Sp, Ga + Cpx + Sp и An + Ga + Cpx + Sp и фазы An, Ga, Cpx, Sp.

При давлениях выше от нонвариантного равновесия (An, Ga, Cor, Cpx, Sp, L) (20 кбар) кристаллизуются ассоциации: An + Ga, An + Cor, An + Cpx, Ga + Cor, Ga + Cpx, Cor + Cpx, An + Ga + Cor, An + Ga + Cpx, An + Cor + Cpx, Ga + Cor + Cpx, An + Ga + Cor + Cpx и фазы An, Ga, Cor, Cpx.

Все эти ассоциации широко представлены в эффузивных и дайковых сериях пород щелочноземельной серии в виде парагенезисов из ксенолитов или в качестве минералов, формирующих мегакристы.

Следует отметить, что состав расплава на этой серии эвтектик существенно меняется с повышением давления в сторону кальциевых и глиноземистых составов, т.е. от типичных габброидных (базальтовых) до кальций-глиноземистых, анортозитовых составов.

Очевидно, что при подъеме к поверхности природные магмы постепенно переходят в области литосферы, обладающие более низкой температурой. Если не происходит катастрофического, т.е. быстрого прорыва магматического расплава к поверхности, то в промежуточных очагах и магмопроводящих каналах происходит постоянная кристаллизация субликвидусных фаз. В результате оседания кристаллов или, в редких случаях, всплывания (анортит в интервале давлений 10—30 кбар) происходит их отделение от магмы. Состав остаточного расплава в этом процессе меняется в сторону эвтектического, т.е. расплава с минимальной температурой плавления. Поэтому при плавном подъеме магматического расплава в условиях, когда кристаллы и расплав находятся в состоянии, близком к термодинамическому равновесию, состав расплава приближается к эвтектическому. Поэтому эволюция магматического расплава в условиях понижающихся значений давления и температуры последовательно протекает приблизительно по составам тех расплавов, которые существуют в этих эвтектиках. Серия последовательных эвтектик составляет тренд кристаллизации, что приводит к формированию соответствующего ей набора горных пород, проявленного в природе в виде магматических серий.

Дополнительные компоненты входят в вышеперечисленные фазы в качестве изоморфных составляющих. В зависимости от содержания оксидов железа и хрома, шпинель в горных породах представлена магнезиошпинелью, хромитом. Наличие щелочей изменяет состав плагиоклаза и клинопироксена в сторону щелочных разновидностей и т. д.

Такие компоненты, как вода и двуокись углерода, не играют главенствующей роли в генезисе пород щелочноземельной серии.

Серьезное влияние на эволюцию магматических расплавов «летучие» компоненты могут оказать, если их содержание достаточно для образования предельно насыщенных этими компонентами расплавов, т.е. эвтектик. Согласно данным экспериментальных исследований [Eggler, Rosenhauer, 1978; Bohlen et al., 1982; Perchuk, Kushiro, 1985], содержание воды и углекислоты в эвтектических расплавах силикат-летучий компонент весьма значительно: например, воды содержится в расплаве диопсида до 30 мас. %, а двуокиси углерода — до 2.5 мас. %. Такое количество «летучих» компонентов в магматическом расплаве при его раскристаллизации должно вызывать значительные вторичные изменения вмещающих пород и самих магматических пород. Процесс застывания магматического тела проходил бы стадию массовой амфиболизации, карбонатизации, серицитизации и серпентинизации и т.п. Для полного превращения всего магматического тела в мономинеральный амфиболит хватит 2—3 % воды. Согласно известным экспериментальным данным, такое количество водного компонента в расплаве лишь незначительно (на 10—20 °C) понизит температуры плавления и практически не окажет влияния на солидусные фазовые взаимоотношения. Кроме того, при значительном содержании летучих компонентов (более 2—3 мас. %), в области давлений около 2—5 кбар происходит их отделение от расплава в виде газовой фазы, а алюмосиликатная часть магмы застывает, т.е. высокие содержания летучих компонентов в магме исключают эффузивный магматизм. Именно поэтому легколетучие компоненты не могут иметь определяющего значения при генерации магм, порождающих серии горных пород, в которых представлены эффузивные разновидности. Исходная генерация и дальнейшая эволюция магм щелочноземельной серии происходят без значительного влияния легколетучих компонентов и близки к «сухой» модели. В связи с этим модель на основе системы CaO-MgO-Al₂O₃-SiO₂ может считаться достаточно адекватной при рассмотрении происхождения пород щелочноземельной серии.

Следует еще раз отметить, что перечисленные выше ассоциации субсолидуса модельной системы характерны для пород именно щелочноземельной серии. Они слагают основную массу массивов, встречаются в виде ксенолитов среди пород дайковой фации и в эффузивах. Минералы субсолидуса характерны в качестве мегакристов в потоках базальтов.

Выделения мегакристов следует выделить особо. Мегакристы оливина, плагиоклаза, шпинелоидов, пироксенов, граната и корунда [Ходанович и др., 1984; Геншафт, 1987; Геншафт, Салтыковский, 1990; Smirnov, 2006] можно обнаружить в значительной части эффузивов, сопровождающих породы щелочноземельной формации. Форма выделения, вид этих мегакристов и их состав контрастируют с базальтами, в которых их обнаруживают. Некоторые мегакристы окружены слабовыраженной оболочкой базальтового вещества. Это позволяет предполагать их ксеногенное происхождение по отношению к окружающим их базальтам. Однако исключительно совершенная структура и монокристалличность образцов не дают оснований считать эти мегакристы обломками вмещающих пород.

На основании результатов исследования части ликвидуса системы CaO—MgO—Al₂O₃—SiO₂, установленных в нашей работе, следует заключить, что мегакристы, встречаемые в породах, не являются ксенокристами, т.е. чуждыми минералами по отношению к выносящему их на поверхность расплаву, а непосредственно генетически связаны с этим расплавом. Мегакристы зарождаются и формируются в том же расплаве, который впоследствии выносит их на поверхность. Формирование этих мегакристов происходило в промежуточных очагах при температурах и давлениях, отличающихся от условий их транспортировки и окончательной закалки, а их сохранность связана с большим размером кристаллитов, который не позволил им полностью раствориться в расплаве при транспортировке к поверхности.

Наличие соответствующего набора минералов в виде мегакристов является парагенетическим признаком для щелочноземельного магматизма и наряду с ксенолитами позволяет использовать их для реконструкций особенностей динамики развития магматического процесса конкретного геологического объекта.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

На основании полученных результатов экспериментальных исследований и топологического анализа участка фазовой диаграммы системы CaO—MgO—Al₂O₃—SiO₂ окончательно установлен вид «реакции эклогитизации». Эта реакция представляет собой реакцию образования конноды клинопироксен—гранат и имеет вид Cpx + Ga = Opx + An + Sp.

Прослежена непрерывная серия эвтектических моновариантных равновесий L = Cpx + Opx + Fo + An (от 1 атм до 8 кбар); L = Cpx + Opx + An + Sp (от 8 кбар до 16 кбар); L = Cpx + (Ga) + An + Sp (от 16 до 20 кбар); L = Cpx + Cor + (Ga) + An (от 20 кбар и выше), имеющая фундаментальный характер. В

соответствии с этой серией эвтектических реакций прослеживается тренд кристаллизации магматических расплавов, сопоставимых с породами щелочноземельной серии.

Показано, что наборы субсолидусных фаз соответствуют минералогическому составу куммулятов и фенокристов, встречаемых в эффузивных и дайковых разновидностях пород щелочноземельной серии.

ЛИТЕРАТУРА

А.с. № 1762458 СССР. Ячейка устройства для создания высокой температуры при сверхвысоком давлении / Сурков Н.В. Опубл. в Б.И., 1992, т. 34, с. 213.

Геншафт Ю.С. Мегакристаллы высокого давления — проблемы петрологии // Глубинные ксенолиты и строение литосферы. М., Наука, 1987, с. 166—178.

Геншафт Ю.С., Салтыковский А.Я. Каталог включений глубинных пород и минералов в базальтах Монголии. М., Наука, 1990, 71 с.

Годовиков А.А., Смирнов С.А., Малиновский И.Ю., Ран Э.Н., Паньков М.С., Росинский Г.А., Токмин Б.П. Аппарат для создания давления до 40 кбар при температурах до 1700 °С // Приборы и техника эксперимента, 1971, № 6, с. 159—160.

Дорошев А.М., Малиновский И.Ю. Топологический анализ системы MgO—Al₂O₃—SiO₂ // Экспериментальные исследования по минералогии (1972—1973) / Под ред. А.А. Годовикова, В.С. Соболева, Б.А. Фурсенко. Новосибирск, ИГиГ СО АН СССР, 1974, с. 81—86.

Дорошев А.М., Малиновский И.Ю. Начало границы плавления пиропа // Экспериментальные исследования по минералогии (1974—1975) / Под ред. В.С. Соболева, А.А. Годовикова, И.Ю. Малиновского, Г.Ю. Шведенкова. Новосибирск, ИГиГ СО АН СССР, 1975, с. 101—103.

Дубровский М.И. Тренды дифференциации оливиннормативных магм нормальной щелочности и соответствующие им природные серии / Ред. А.Н. Виноградов. Апатиты, Изд-во Кольского научного центра РАН, 1998, 336 с.

Сурков Н.В. Экспериментальное исследование устойчивости и плавления дивариантных ассоциаций в форстеритнормативной части системы CaO—MgO—Al₂O₃—SiO₂ в связи с петрологией верхней мантии // Материалы по генетической и экспериментальной минералогии. Под ред. Н.В. Соболева. Новосибирск, Изд-во СО РАН, НИЦ ОИГГМ СО РАН, 1995, т. 11, вып. 832, с. 27—43.

Сурков Н.В., Кузнецов Г.Н. Экспериментальное исследование устойчивости твердых растворов клинопироксенов в ассоциации Cpx + Opx + Ga системы CaO—MgO—Al₂O₃—SiO₂ // Геология и геофизика, 1996, т. 37 (12), с. 18—25.

Сурков Н.В., Гартвич Ю.Г. Экспериментальное исследование фазовых равновесий в сечении пироп—гроссуляр при давлении 30 кбар // Петрология, 2000, т. 8, № 1, с. 95—107.

Сурков Н.В., Зинчук Н.Н. Устойчивость глубинных парагенезисов, процессы магмообразования и происхождение кимберлитов // Проблемы алмазной геологии и некоторые пути их решения. Воронеж, Воронеж. гос. ун-т, 2001, с. 101—135.

Сурков Н.В., Гартвич Ю.Г., Изох О.П. Устойчивость и фазовые взаимоотношения нестехиометричных клинопироксенов в сечении диопсид—«Са-молекула Эскола» при высоких давлениях // Геохимия, 2007, № 6, с. 632—642.

Ходанович П.Ю., Смирнова О.К., Асташков Г.Ф., Ащепков И.В., Юдин Б.Н., Пивень В.А. Геология и полезные ископаемые Джидинского рудного района // Джидинский рудный район (проблемы развития и освоения минеральных ресурсов). Новосибирск, Наука, 1984, с. 21—35.

Bohlen S.R., Boettcher A.L., Wall V.J. The system albite— H_2O — CO_2 : a model for melting and activities of water at high pressures // Amer. Miner., 1982, v. 67, No 5—6, p. 451—462.

Boyd F.R., England J.L. Pyrope // Year Book, Carnegie Inst. Wash., 1959, v. 58, p. 83-87.

Boyd F.R., England J.L. Apparatus for phase-equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750 °C // J. Geophys. Res., 1960, v. 65, № 2, p. 741—748.

Eggler D.H., Rosenhauer M. Carbon dioxide in silicate melts: II. Solubilities of CO_2 and H_2O in CaMg-Si₂O₆ (diopside) liquids and vapors at pressures to 40 kb // Amer. J. Sci., 1978, v. 278, No 1, p. 64–94.

Green D.H., Ringwood A.E. An experimental investigation of the gabbro to eclogite transformation and its petrological applications // Geochim. Cosmochim. Acta, 1967a, v. 31, № 5, p. 767–833.

Green D.H., Ringwood A.E. The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure // Earth Planet. Sci. Lett., 19676, v. 3, № 1, p. 151–160.

Hensen B.J. The transition from pyroxene granulite facies to garnet clinopyroxene granulite facies. Experiments in system CaO—MgO—Al₂O₃—SiO₂ // Contr. Miner. Petrol., 1981, v. 76, № 3, p. 234—243.

Hytonen K., Schairer J.F. The system enstatite—anorthite—diopside // Yearbook, Carnegie Inst. Wash., 1960, v. 59, p. 71—72.

Hytonen K., Schairer J.F. The plane enstatite-anorthite-diopside and its relation to basalts // Yearbook, Carnegie Inst. Wash., 1961, v. 60, p. 125—141.

Ito K., Kennedy G.C. An experimental study of the basalt-garnet granulite-eclogite transition // The structure and physical properties of the Earth's crust, Amer. Geophys. Union, Geophys. Monogaph 14. 1971, p. 303—314.

Kushiro I., Yoder H.S.Jr. Anortite-forsterite and anortite-enstatite reactions and their bearing on the basalt-eclogite transformation // J. Petrol., 1966, v. 7, № 3, p. 337—362.

Mirvald P.W., Getting I.C., Kennedy G.C. Low-friction cell for piston-cylinder high-pressure apparatus // J. Geophys. Res., 1975, v. 86, № 11, p. 1519—1525.

Osborn E.F., Tait D.B. The system diopside-forsterite-anorthite // Amer. J. Sci., 1952, Bowen vol., part 2, p. 413–433.

Perchuk L.L., Kushiro I. Experimental study of the system alkali basalt-water up to pressure 20 kbar in respect to estimation of H_2O content in the original magmas beneath island arcs // Geologicky Zbornik-Geologica Carpathica., 1985, v. 36, No 3, p. 359—368.

Presnall D.C., Dixon S.A., Dixon J.R., O'Donnell T.H., Benner N.L., Schrock R.L., Dycus D.W. Liquidus phase relations on join diopside-forsterite-anorthite from 1 atm to 20 kbar: their bearing on the generation and crystallization of basaltic magma // Contr. Miner. Petrol., 1978, v. 66, № 2, p. 203—220.

Smirnov S.Z., Izokh A.E., Kovyazin S.V., Mashkovtsev R.I., Hoa T.T., Phuong N. Thi, Kalinina V.V., Pospelova L.N. Inclusions in Dak Nong placer sapphires, central Viet Nam: conditions of corundum crystallization in the continental crust // J. Geol., 2006, Series B, N° 28, p. 58—70.

Thompson A.B. Metamorphism in a model mantle. 1. Predictions of *P-T-X* relations in CaO—Al₂O₃—MgO—SiO₂ // The mantle sample: inclusions in kimberlites and other volcanics. 1979, v. 2, p. 15—28.

Рекомендована к печати 1 марта 2011 г. В.С. Шацким

Поступила в редакцию 4 мая 2010 г., после доработки — 8 ноября 2010 г.