2013. Том 54, № 4

Июль – август

C. 615 – 622

УДК 538.915:(546.72-31+546.74-31)

ЭЛЕКТРОННО-ЭНЕРГЕТИЧЕСКАЯ СТРУКТУРА GaN ПРИ ЗАМЕЩЕНИИ АТОМОВ ГАЛЛИЯ АТОМАМИ ТИТАНА ИЛИ ЦИНКА

А.О. Литинский, С.И. Новиков, Д.С. Попов

Волгоградский государственный технический университет E-mail: novikov s@bk.ru

Статья поступила 10 октября 2011 г.

С доработки — 13 января 2012 г.

Расчетная схема на основе теории функционала плотности с полной оптимизацией геометрии, модифицированная на случай структур с трансляционной симметрией, применена к исследованию энергетического спектра электронов и магнитных характеристик гексагонального нитрида галлия и структур $Y_xGa_{1-x}N$ (Y: донорная (Ti) или акцепторная (Zn) примесь). Обсуждена зависимость от концентрации допантов релаксационных смещений внедренных атомов, положения уровня химического потенциала, границ энергетических зон, ширины валентных зон и энергий, отвечающих внутризонным максимумам плотности состояний.

Ключевые слова: энергетический спектр электронов, DFT-расчеты, гексагональный нитрид галлия, структуры Ti/GaN и Zn/GaN, разбавленные магнитные полупроводники.

введение

Полупроводниковые приборы на широкощелевых нитридах третьей группы по многим параметрам превосходят традиционные приборы на Si и GaAs [1]. По достигнутым характеристикам особенно отличаются приборы на нитриде галлия. Этот материал обладает высокой термической, химической и радиационной стойкостью, а также по сравнению с кремнием имеет более высокую электропроводность и теплопроводность [2-5]. Все это обуславливает применение GaN в качестве активных сред высокотемпературных транзисторов, пригодных для работы даже в крайне неблагоприятных условиях. Материалы на основе нитрида галлия используются также в полупроводниковых лазерах, работающих в коротковолновой области видимого диапазона [6—9], причем частота излучения зависит от концентрации допантов [10]. В [11] показано, что в качестве акцепторного допанта для GaN может выступать цинк, при этом соответствующие структуры Zn/GaN оказываются эффективными люминофорами. В данной работе кроме Zn/GaN изучены также структуры Ti/GaN для выяснения влияния на электронноэнергетические характеристики нитрида галлия введения ближайшего (по периодической системе) к атому галлия электронодонорного допанта (атома титана). Кроме того, структуры Zn/GaN и Ti/GaN интересны как разбавленные магнитные полупроводники (DMS — dilute magnetic semiconductors), применяемые в спинтронике (например, в спиновых светодиодах) [12]. Отметим, что системы типа Д/GaN и A/GaN (Д и A — донорные и акцепторные атомы, замещающие атом галлия в GaN) изучались в [12—16], причем в [12] в качестве атомов Д и А атомы Ті и Zn не рассматривались; в [13] в качестве атома A не рассматривался атом Zn, а в [14—16] в качестве атома Д не рассматривался атом Ті. Кроме того, рассмотренные в [13] структуры Ti/GaN и в [15] структуры Zn/GaN изучены лишь для одного значения концентра-

[©] Литинский А.О., Новиков С.И., Попов Д.С., 2013

А.О. ЛИТИНСКИЙ, С.И. НОВИКОВ, Д.С. ПОПОВ

Рис. 1. Элементарная ячейка $(Ga_2N_2)_{27}$ (*a*), полученная $(3\times3\times3)$ переносом примитивной ячейки Ga_2N_2 вдоль основных векторов трансляций $\mathbf{t}_x/3$, $\mathbf{t}_y/3$, $\mathbf{t}_z/3$, $(\angle(\mathbf{t}_x, \mathbf{t}_y) = \alpha = 120^\circ; \angle(\mathbf{t}_x, \mathbf{t}_z) = \beta =$ $= 90^\circ; \angle(\mathbf{t}_y, \mathbf{t}_z) = \gamma = 90^\circ)$; примитивная ячейка Ga_2N_2 (δ); зона Бриллюэна гексагональной решетки (ϵ)

ции допанта x = 0,0625 (один атом замещения, приходящийся на расширенную ячейку состава (Ga₂N₂)₈). Для целенаправленного подбора материалов для приборов спинтроники важное значение имеет знание зависимостей различных энергети-

ческих и магнитных характеристик структур Д/GaN и A/GaN от концентрации допантов. Получение и анализ этих зависимостей на примере структур Ti/GaN и Zn/GaN является целью настоящей работы.

МОДЕЛИРОВАНИЕ И СХЕМА РАСЧЕТА СТРУКТУР $Y_xGa_{1-x}N$ (Y = Ti; Zn)

Для расчета спектра одноэлектронных состояний $\varepsilon(k)$ нитрида галлия, а также Ti- и Znзамещенных структур на его основе применена расчетная схема с использованием функционала плотности (DFT), обобщенная на случай структур с трансляционной симметрией (программный пакет SIESTA [17, 18]). Кристаллическую структуру GaN (гексагональная решетка) моделировали циклической системой в форме равномерно расширенной (вдоль основных векторов трансляций) элементарной ячейки, на которую накладывали циклические граничные условия. Расчеты проведены с использованием расширенной ячейки состава [(Ga₂N₂)₂₇]₂₇, состоящей из (3×3×3) = 27 элементарных ячеек (ЭЯ) (внутри квадратных скобок) (рис. 1, *a*), каждая из которых содержит (3×3×3) = 27 примитивных ячеек (в круглых скобках) (см. рис. 1, *б*). Конкретные расчеты показали, что переход к расширенной ячейке больших размеров не приводит к существенному изменению рассчитываемых электронно-энергетических характеристик GaN.

Поскольку выбранная расширенная ячейка включает в себя $27 \times 27 = 729$ примитивных ячеек, столько же точек *k* содержит зона Бриллюэна соответствующей циклической системы. Эти точки совпадают с симметричными точками гексагональной зоны Бриллюэна (см. рис. 1, *в*), и по ним проводится суммирование при расчете электронной плотности $\rho(\mathbf{r}) = \sum_{n,k} |\phi_{n,k}|^2$, от ко-

торой зависит обменно-корреляционный потенциал ($\phi_{n,k}$ — волновая функция электрона (одноэлектронная орбиталь); *k* — волновой вектор; n — номер заполненной энергетической зоны).

В соответствии с теорией функционала плотности $\rho(\mathbf{k})$ однозначно определяет эффективный одноэлектронный потенциал, который содержит слагаемые, отвечающие энергии взаимодействия электрона с атомными остовами, кулоновскую часть взаимодействия с усредненным полем остальных электронов и обменно-корреляционный член $\upsilon_{xc} = \frac{\delta E_{xc}}{\delta \rho}$ (E_{xc} — обменно-

корреляционная энергия) [19]. Одноэлектронные орбитали ϕ_i находят самосогласованным решением уравнений Кона—Шэма

$$(\hat{T}_i + e \upsilon_{a \phi \phi}(\mathbf{r})) \varphi_i(\mathbf{r}) = \varepsilon_i \varphi_i(\mathbf{r})$$
(1)

 $(\hat{T} -$ оператор кинетической энергии *i*-го электрона; ε_i - энергия *i*-го электрона).

В данной работе использован обменно-корреляционный потенциал Беке—Ли—Янга— Парра [20, 21] и базис валентных двухэкспонентных псевдоорбиталей с включением поляризационных орбиталей, которые имеют то же самое главное квантовое число, что и валентные

616

орбитали (DZP-базис). Влияние остовных электронов учитывали введением эффективного остовного потенциала Труллье—Мартинсона—Клейнмана—Биландера [22, 23]. Численное интегрирование по пространственным координатам проводили с применением сетки интегрирования, отвечающей обрезанию в разложении ϕ_i по плоским волнам волн с энергией, превышающей 150 Ry.

Переход от идеальной структуры GaN к структурам $Y_x Ca_{1-x}N$ (Y = Ti; Zn) проводили замещением в ЭЯ *m* атомов Ga на *m* атомов Y, причем рассмотрены случаи *m* = 1, 3, 5, 7, 9 (им соответствуют концентрации допанта *x* = *m*/54). Замещаемые атомы Ga выбирали внутри ЭЯ так, чтобы расстояние между ними было наибольшим. Расчет проведен с полной оптимизацией геометрии рассматриваемых структур.

РЕЗУЛЬТАТЫ РАСЧЕТОВ И ИХ ОБСУЖДЕНИЕ

Для бездефектного GaN получены следующие постоянные решетки a = b = 3,33 Å $(a_{3\kappacn} = b_{3\kappacn} = 3,18$ Å), c = 5,43 Å $(c_{3\kappacn} = 5,18$ Å) (в соответствии с рис. 1 $a = b = t_x/3 = t_y/3$; $c = t_z/3$; t_x , t_y , t_z — векторы трансляции ЭЯ). Отметим, что в [24] величины a и b были получены (DFT-подход с обменно-корреляционным потенциалом Пердью, Бурке, Эрзерхофа [25]) также несколько завышенными по сравнению с экспериментальными данными, при этом отношение c/a получено таким же, как в настоящей работе и в соответствии с экспериментом ($c/a \approx 1,63$). Полученным значениям a, b и c отвечают длины связей $R(Ga-N) \approx 2,0$ Å (экспериментальное значение 1,95 Å). При переходе к Ті-замещенным структурам R(Ti-N) и R(Ga-N) с точностью до 0,05 Å остаются равными R(Ga-N) в незамещенной структуре. В случае же Zn-замещенных структур три связи Zn-N почти не изменяются, а четвертая связь Zn-N при малых концентрациях допанта удлиняется до $R(Zn-N) \approx 2,7$ Å (образуется искаженный вдоль этой связи тетраэдр, внутри которого расположен атом цинка). При больших концентрациях дефекта длины связей Zn-N выравниваются до величины $2,0\div2,2$ Å за счет того, что изменяются размеры примитивных ячеек (увеличиваются для ячеек с дефектом до 3,5 Å и уменьшаются для ячеек, не содержащих дефект, до 3,2 Å).

Расчеты показали, что для всех величин *m* наиболее выгодны (по минимуму полной энергии, приходящейся на одну элементарную ячейку) структуры с максимально возможным спином. Это означает, что для любого (ненулевого) параметра *x* (по крайней мере, из рассмотренных нами) структуры $Y_xGa_{1-x}N$ — магнитно активны, т.е. представляют собой разбавленные магнитные полупроводники. Отметим, что аналогичный результат получен в [13] для Ti/GaN и в [15] для Zn/GaN, но только для одного значения *x* = 0,0625. Магнитные моменты атомов (в единицах магнетона Бора) с ростом *m* (от 1 до 9) изменяются следующим образом: а) для Ti_xGa_{1-x}N от 1,10 до 1,06÷1,12 (Ti); от -0,001 до -0,03 (Ga); от -0,002 до -0,005 (N_(Ga)); от -0,04 до -0,08 (N_(Ti)); б) для Zn_xGa_{1-x}N от 0,01 до 0,04÷0,06 (Zn); от -0,02 до -0,01 (Ga); от 0,075 до 0,13 (N_(Ga)); от 0,04÷0,67 до 0,13÷0,60 (N_(Zn)). Отметим, что в Ti-замещенных структурах магнитные моменты локализованы преимущественно на атомах титана, а в Zn-замещенных структурах — на атомах азота, окружающих атомы цинка.

Рассчитанные дисперсионные кривые $\varepsilon(k)$ и соответствующие им плотности состояний $\eta(\varepsilon)$ для GaN и, в качестве примера, для одной из допированных структур — Y_{1/6}Ga_{5/6}N (Y = Ti; Zn) приведены на рис. 2. На рис. 3 представлена общая схема энергетического спектра электронов, в табл. 1—3 — энергетические характеристики одноэлектронных состояний для всех рассчитанных структур. Анализ этих результатов позволяет сделать следующие выводы.

Таблица 1

Энергетические характеристики (эВ) спектра одноэлектронных состояний бездефектной структуры гексагонального нитрида галлия

$(\varepsilon'_s)^{\alpha;\beta}$	$(\varepsilon''_s)^{\alpha;\beta}$	$\Delta \epsilon_s^{\alpha;\beta}$	$(\varepsilon'_p)^{\alpha;\beta}$	$(\varepsilon_p'')^{\alpha;\beta}$	$\Delta \varepsilon_p^{\alpha;\beta}$	$\Delta \epsilon_{sp}$	μα	μ_{β}	$\tilde{\epsilon}'_p$	$\tilde{\epsilon}''_p$	ε _c
-19,82	-17,30	2,52	-11,08	-4,90	6,18	6,22	-4,2215	-4,2215	-10,18	-6,18	-3,18

618

Рис. 2. Дисперсионные кривые $\epsilon(k)$, плотности состояний $\eta(\epsilon)$ (*1* — полная; *2* — вклад орбиталей атомов Y): *a* — GaN, *б* — Ti_{1/6}Ga_{5/6}N, *в* — Zn_{1/6}Ga_{5/6}N (пунктиром отмечено положение уровней химического потенциала α - и β -электронов)

Валентная зона бездефектного GaN состоит из двух подзон, преимущественный вклад в которые вносят 2s- и 2p-орбитали атомов азота. Нижняя 2s-подзона уже верхней 2p-подзоны более чем в 2 раза. Эти подзоны разделены энергетической щелью $\Delta \varepsilon_{sp}$, которая уже, чем ширина 2s-подзоны, но шире, чем ширина 2p-подзоны. В зону вакантных состояний преимущественный вклад вносят валентные орбитали атомов Ga. Энергетическая щель между верхней границей 2*p*-подзоны и нижней границей зоны вакантных состояний составляет $\approx 2,2$ эВ, что ниже экспериментального значения 3,4 эВ. Отметим, что в зонных расчетах с применением схемы теории функционала плотности характеристики валентных зон обычно получаются вполне удовлетворительными, а энергии вакантных орбиталей несколько заниженными [26]. В [27] рассчитана электронно-энергетическая структура гексагонального GaN методом локального когерентного потенциала с использованием кластерной версии МТ-приближения в рамках теории многократного рассеяния. Для ширины верхней валентной 2p_N-подзоны было получено значение $\simeq 7,1$ эВ. Примерно такое же значение получено в работе [24], в которой расчет GaN выполнен в рамках DFT-подхода с обменно-корреляционным потенциалом PBE [25]. В наших расчетах для $\Delta \varepsilon_n$ получена величина ~6,2 эВ. Что касается формы кривой $\eta(\varepsilon)$ для этой подзоны, то она хорошо совпадает с данными [24, 27] (имеются два максимума при $\varepsilon = \varepsilon'_p$ и $\varepsilon = \varepsilon''_p$ с такой же величиной отношения плотностей состояний $\eta(\varepsilon'_p)/\eta(\varepsilon''_p)$). Отметим также, что рас-

считанная нами зависимость мнимой части диэлектрической проницаемости ε_2 (характеризует поглощательную способность GaN) как функции энергии поглощенных фотонов (рис. 4) хорошо совпадает как с экспериментальной зависимостью $\varepsilon_2(\hbar\omega)$, так и с рассчитанными в [28] кривыми.

Рис. 3. Схема энергетического спектра электронов GaN, Ti/GaN и Zn/GaN

619

Таблица 2

Зависимость энергетических характеристик (эВ) спектра одноэлектронных состояний Ti_xGa_{1-x}N от концентрации х допанта

x	1/54	3/54	5/54	7/54	9/54
$(\varepsilon'_s)^{\alpha;\beta}$	-19,83	-19,84	-19,85	-19,85	-19,85
$(\varepsilon''_s)^{\alpha;\beta}$	-17,29	-17,29	-17,30	-17,34	-17,40
$\Delta \epsilon_s^{\alpha;\beta}$	2,54	2,56	2,55	2,51	2,45
$(\varepsilon'_p)^{\alpha;\beta}$	-11,09	-11,11	-11,13	-11,15	-11,17
$(\varepsilon''_p)^{\alpha;\beta}$	-4,94	-5,02	-5,11	-5,20	-5,30
$\Delta \varepsilon_p^{\alpha;\beta}$	6,15	6,09	6,02	5,95	5,87
$\Delta \epsilon_{sp}$	6,20	6,18	6,17	6,19	6,23
μ_{α}	-3,64	-2,86	-2,60	-2,84	-3,60
μ_{β}	-4,26	-4,34	-4,42	-4,49	-4,57
$\tilde{\epsilon}'_p$	-10,42	-10,75	-10,88	-10,81	-10,54
$\tilde{\epsilon}''_p$	-6,17	-6,17	-6,19	-6,23	-6,29
ϵ_c	-3,20	-3,26	-3,36	-3,48	-3,64

Для Ү-замещенных структур как для а-, так и для β-электронов (α- и β-электроны имеют противоположно направленные спины) нижняя граница є' 2s-подзоны почти не изменяется, за исключением Zn-замещенных структур с большой концентрацией атомов Zn (в этом случае ε'_{s} сдвигается в область больших энергий на ≈0,2 эВ (для α-электронов)

или на ~0,15 эВ (для β-электронов); верхняя граница ε["] 2s-подзоны как для α-, так и для β-электронов изменяется только при больших концентрациях допанта, причем в случае замещения атомами Ті (α- и β-поляризации) ε["] смещается в область более низких энергий (на $\simeq 0.1$ эВ), а в случае замещения атомами Zn — более высоких энергий на $\simeq 0.3$ эВ для α -поляризации, а для β -поляризации — в область более низких энергий на величину от $\simeq 0.01$ (при m = 1) до 0,1 эВ (при m = 5), и при дальнейшем росте концентрации возвращается к значению, характерному для бездефектной структуры; ширина 2s-подзоны в случае Тi-допанта уменьшается на $\approx 0.05-0.10$ эВ, а в случае Zn-допанта уменьшается на величину от ≈ 0.01 при m = 1(для α- и β-поляризации) до ≈0,1 при *m* = 5 (α-поляризация) и ≈0,15 эВ при *m* = 5 (β-поля-

ризация), а при дальнейшем росте концентрации Zn-допанта увеличивается на ≈0,1 (α-поляризация) или $\simeq 0.5$ эВ (β -поляризация).

Нижняя граница є'_p 2*p*-подзоны для Тідопанта смещается в область меньших энергий на величину от $\simeq 0.01$ (*m* = 1) до $\simeq 0.05$ эВ (*m* = 9),

Рис. 4. Зависимость мнимой части диэлектрической проницаемости ε_2 от энергии фотонов ($\hbar\omega$): рассчитанные в настоящей работе (1) и в [28] (2), экспериментальная кривая (3)

ε ₂ 6- 4- 2-	32/1
	5 10 15
	Энергия фотона, эВ

	1 аолица	3
Зависим	ость энергетических характеристик (эВ	3)
спектр	а одноэлектронных состояний Zn _x Ga _{1-x} N	ſ
	от концентрации х допанта	

1/54 2/54 5/54 7/54 0/54

\mathcal{A}	1/34	5/54	5/54	//34	9/34
$(\varepsilon'_s)^{\alpha}$	-19,79	-19,74	-19,69	-19,65	-19,62
$(\varepsilon_s'')^{\alpha}$	-17,32	-17,32	-17,27	-17,16	-17,00
$\Delta \varepsilon_s^{\alpha}$	2,47	2,42	2,42	2,49	2,62
$(\varepsilon'_s)^{\beta}$	-19,83	-19,84	-19,82	-19,79	-19,74
$(\varepsilon''_s)^{\beta}$	-17,35	-17,41	-17,43	-17,40	-17,32
$\Delta \epsilon_s^{\beta}$	2,48	2,42	2,39	2,39	2,42
$(\varepsilon'_p)^{\alpha}$	-11,09	-11,10	-11,08	-11,05	-11,00
$(\varepsilon_p'')^{\alpha}$	-4,65	-4,27	-4,06	-4,01	-4,13
$\Delta \varepsilon_p^{\alpha}$	6,44	6,82	7,02	7,04	6,87
$(\varepsilon'_p)^{\beta}$	-11,09	-11,10	-11,11	-11,10	-11,09
$(\varepsilon_p'')^{\beta}$	-4,88	-4,84	-4,79	-4,74	-4,68
$\Delta \epsilon_p^{\beta}$	6,21	6,27	6,32	6,37	6,41
μα	-4,78	-5,54	-5,81	-5,59	-4,89
μ_{β}	-4,20	-4,16	-4,11	-4,05	-3,99
$\tilde{\epsilon}'_p$	-10,42	-10,72	-10,77	-10,57	-10,13
$\tilde{\epsilon}''_p$	-6,14	-6,08	-6,04	-6,03	-6,05
ε _c	-3,55	-4,02	-4,14	-3,91	-3,32

для Zn-допанта — в область больших энергий (для α-поляризации) на величину от $\approx 0,01$ (m = 1) до $\approx 0,08$ эВ (m = 9), а для β-поляризации ε'_p почти не изменяется. Верхняя граница ε''_p 2p-подзоны смещается: а) в случае Ti- допанта в область более низких энергий на величину от $\approx 0,05$ (при низких концентрациях) до $\approx 0,4$ эВ (при высоких концентрациях); б) в случае Znдопанта в область более высоких энергий на величину $\Delta \varepsilon''_p$ от $\approx 0,25$ (α -поляризация) или от $\approx 0,02$ (β -поляризация) до $\approx 0,9$ эВ (α -поляризация) или $\approx 0,2$ эВ (β -поляризация) ($\Delta \varepsilon''_p$ растет с ростом концентрации допанта). В результате ширина $\Delta \varepsilon_p$ 2p-подзоны для Ti-допанта уменьшается на $\approx 0,05$ —0,30 эВ, а для Zn-допанта увеличивается на $\approx 0,25$ —0,70 эВ (α -поляризация) или на $\approx 0,03$ —0,20 эВ (β -поляризация).

При замещении в GaN атомов Ga на атомы Ti (вносит один дополнительный электрон по сравнению с атомом Ga) или Zn (недостаток одного электрона по сравнению с атомом Ga) в области запрещенных (для GaN) энергий появляются либо донорные состояния (в случае Ti-допанта), либо акцепторные состояния (в случае Zn-допанта). Донорные состояния занимают энергетический интервал $\Delta \varepsilon_{Ti}$ примерно в середине области запрещенных энергий, а акцепторные состояния — интервал, примыкающий к верхней границе 2*p*-подзоны.

Максимум плотности Ті-донорных состояний с ростом концентрации допанта смещается в область более низких энергий от $\varepsilon_{Ti} \simeq -4,3$ (m = 1) до $\simeq -4,5$ эВ (m = 9). Ширина подзоны Ті-донорных состояний увеличивается с ростом концентрации дефекта от $\simeq 0,15$ (m = 1) до $\simeq 0,5$ эВ (m = 9).

Поскольку интересующие нас состояния систем Ti/GaN и Zn/GaN высокоспиновые (см. выше) (количество α - и β -электронов неодинаковое), то имеет смысл вводить химический потенциал μ отдельно для α - и β -электронов. В случае Ti-допантов величина μ_{α} с ростом концентрации дефекта смещается в область более низких энергий на величину от $\approx 0,05$ (m = 1) до $\approx 0,35$ эВ (m = 9). Что касается величины μ_{β} , то при m = 1 она увеличивается на $\approx 0,6$ эВ; при m = 9 смещение в область более высоких энергий достигает максимума $\approx 1,6$ эВ; при дальнейшем росте концентрации допанта снижается к значению, характерному для m = 1. В случае Zn-допанта величина μ_{α} смещается в область более низких энергий на $\approx 0,6$ (m = 1) и 1,6 эВ (m = 5), а при дальнейшем росте концентрации допанта с ростом m на величину от $\approx 0,02$ (m = 9). Химический потенциал μ_{β} линейно возрастает с ростом m на величину от $\approx 0,02$ (m = 1) до $\approx 0,20$ эВ (m = 9).

Плотность состояний электронов в 2*p*-валентной подзоне имеет два максимума (при энергиях $\tilde{\varepsilon}'_p$ и $\tilde{\varepsilon}''_p$). В случае Ті-допанта $\tilde{\varepsilon}'_p$ смещается в область более низких энергий на $\simeq 0,25$ (m = 1), $\simeq 0,7$ (m = 5) и $\simeq 0,35$ эВ (m = 9); $\tilde{\varepsilon}''_p$ при всех концентрациях допанта остается примерно такой же, как для исходного GaN, кроме m = 9 (уменьшается на 0,1 эВ). В случае же Zn-допанта $\tilde{\varepsilon}'_p$ уменьшается с ростом m от 1 до 5 на величину от $\simeq 0,25$ до $\simeq 0,5$ эВ соответственно, а при дальнейшем росте концентрации допанта $\tilde{\varepsilon}'_p$ увеличивается на $\simeq 0,05$ эВ по сравнению с бездефектной структурой; $\tilde{\varepsilon}''_p$ смещается в область более высоких энергий на величину от $\simeq 0,04$ (m = 1) и до $\simeq 0,15$ эВ (m = 9).

В энергетическом спектре структур Ti/GaN в верхней части 2*p*-подзоны появляются состояния, отвечающие связывающим орбиталям связей Ti—N. Эти состояния образуют энергетический интервал, который увеличивается с ростом концентрации дефекта от ≈ 1 (при m = 1) до ≈ 4 эВ (при m = 9).

В случае Zn-допанта в нижней части 2*p*-подзоны появляются состояния, отвечающие связывающим орбиталям связей Zn—N. Парциальная плотность этих состояний характеризуется максимумом при энергии $\tilde{\epsilon}_{Zn}$ и шириной энергетического интервала $\Delta \tilde{\epsilon}_{Zn}$. Величина $\tilde{\epsilon}_{Zn}$ с ростом концентрации допанта смещается в область более низких энергий от $\approx -10,0$ (при m = 1) до $\approx -10,3$ эВ (при m = 9), а $\Delta \tilde{\epsilon}_{Zn}$ возрастает от $\approx 2,1$ (при m = 1) до ≈ 3 эВ (при m = 9).

Положение нижней границы зоны вакантных состояний ε_c в случае Тi-допанта уменьшается на величину от $\simeq 0.02$ (m = 1) до $\simeq 0.45$ эВ (m = 9). Для Zn-допанта смещение ε_c в область более низких энергий немонотонно: оно уменьшается от $\simeq 0.35$ (m = 1) до $\simeq 1.0$ эВ (m = 5), затем увеличивается до $\simeq 0.15$ эВ (m = 9).

Отметим, что учет релаксации структур, обусловленной дефектами замещения, существенно изменяет энергетические характеристики спектров одноэлектронных состояний. Кривые зависимости от концентрации допантов величин ε'_s , ε''_s , ε'_p , $\Delta\varepsilon_{sp}$, $\tilde{\varepsilon}'_p$, $\tilde{\varepsilon}''_p$ смещаются в область более высоких энергий в среднем на величину $\simeq 0.3 \div 1.1$ эВ; $\Delta\varepsilon_s$, $\Delta\varepsilon_p$ — в область более низких энергий в среднем на величину $\simeq 0.6 \div 0.9$ эВ, μ_{α} (Ti/GaN) почти не изменяется, μ_{β} (Ti/GaN), μ_{α} (Zn/GaN) и μ_{β} (Zn/GaN) сдвигаются в область более низких энергий в среднем на $\simeq 0.16$, 0,41 и 0,18 эВ соответственно. Нижняя граница области вакантных состояний смещается в область меньших энергий в среднем на $\simeq 0.7$ и 1,2 эВ в случае Ti/GaN и Zn/GaN соответственно.

Отметим также, что учет релаксации не приводит к заметному сдвигу положения максимума плотности состояний ε_{Ti} , обусловленных орбиталями атомов титана (эта энергия соответствует примерно середине области запрещенных энергий). Что же касается состояний, обусловленных орбиталями атомов цинка, то их энергии смещаются в сторону больших энергий в среднем на $\simeq 0.35$ эВ (в случае неучета релаксации структуры они примыкали к верхней границе $2p_N$ -подзоны).

ЗАКЛЮЧЕНИЕ

1. В данной работе с применением DFT-подхода с полной оптимизацией геометрии изучены спектры одноэлектронных состояний (структура энергетических зон) гексагонального нитрида галлия и GaN, модифицированного донорными (Ti) и акцепторными (Zn) элементами. Корректность проведенного расчета обусловлена удовлетворительным согласием полученных электронно-энергетических и оптических характеристик GaN как с результатами расчета других авторов, так и с экспериментом.

2. Замещение в структуре GaN атомов галлия атомами титана (донорный допант): а) не приводит к существенной релаксации кристаллической структуры; б) приводит к появлению подзоны (ширина которой возрастает с увеличением концентрации допанта) донорных состояний с максимумом плотности состояний электронов в центре зоны запрещенных (для GaN) состояний.

3. Введение в структуру GaN акцепторного Zn-допанта приводит к следующему: а) при малых концентрациях допанта имеет место существенная релаксация структуры преимущественно в области локализации допанта и его ближайшего окружения; б) при больших концентрациях допанта существенно искажаются примитивные ячейки, отвечающие недопированной структуре: размер ячеек, атомы галлия в которых замещены атомами цинка, увеличивается, а ячеек, в которых атомы галлия остаются незамещенными — уменьшается; в) вблизи потолка верхней валентной $2p_{\rm N}$ -подзоны образуется узкая подзона акцепторных состояний; г) имеет место небольшой сдвиг относительно друг друга α - и β - $2p_{\rm N}$ -подзон, который увеличивается с ростом концентрации допанта.

4. Структурная релаксация, обусловленная допированием, для всех концентраций допанта приводит также: а) к смещению границ валентных подзон в область более высоких энергий;
б) к смещению нижней границы зоны вакантных состояний в область более низких энергий;
в) к уменьшению ширины валентных подзон и области запрещенных энергий.

5. Введение в структуру GaN как донорного Ti-, так и акцепторного Zn-допанта приводит к появлению спинового магнетизма (образуются магнитные полуметаллы), причем с увеличением концентрации допантов намагниченность (магнитный момент, приходящийся на единицу объема вещества) увеличивается. При этом магнитные моменты преимущественно локализованы для структур Ti/GaN на атомах титана, а для Zn/GaN — на атомах азота, окружающих атомы цинка.

СПИСОК ЛИТЕРАТУРЫ

- 1. Васильев А., Данилин В., Жукова Т. // Электроника: Наука, Технология, Бизнес. 2007. № 4. С. 68.
- 2. AlShaikhi A., Saswati Barman, Srivastava G.P. // Phys. Rev. B. 2010. 81. P. 1.
- 3. Danilchenko B.A., Obukhov I.A., Paszkiewicz T. et al. // Solid State Comm. 2007. 144. P. 7.
- 4. Kawamura T., Kangawa Y., Kakimoto K. // J. Crystal Growth. 2005. 1-2. P. 197.
- 5. Yu X.G., Liang X.G. // Appl. Phys. Lett. 2007. 16. P. 1711.
- 6. Leszczynski M. // Nanofair 2004. New Ideas for Industry. 2004. 1839. P. 59.
- 7. Xiaojun Ye, Xiaopeng Zhu, Yun Xu et al. // Chin. J. Semicond. 2004. 25. P. 1004.
- 8. Alahmadi N.A., Harrison I., Badr K.H. // Internat. Semicond. Device Res. Symposium. 2007. P. 712.
- 9. Philip A. Shields, Martin D.B. Charlton, Tom Lee et al. // J. Select. Top. Quant. Electron. 2009. 15. P. 1269.
- 10. Nakamura S. et al. // Jap. J. Appl. Phys. Part II. 1999. 38, N 7a. P. 3976.
- 11. Amano H., Kito M., Hiramatsu K., Akasaki I. // Jpn. J. Appl. Phys. 1989. 28. P. L2112.
- 12. Liu C., Yun F., Morkoc H. // J. Mater. Sci.: materials in electronics. 2005. 16. P. 555 597.
- 13. *Xiong Zh. et al.* // Chem. Phys. Lett. 2007. **443**. P. 92 94.
- 14. *Di Valentin C.* // J. Chem. Phys. 2010. **114**. P. 7054 7062.
- 15. Xing H. et al. // Acta Phys. Sinica. 2009. 58. P. 3324 3330.
- 16. Lee S.H. et al. // J. Ceram. Proc. Res. 2010. 11. P. 273 276.
- 17. Soler J.M., Artacho E., Gale J.D. et al. // J. Phys.: Condens. Matter. 2002. 14. P. 2745.
- 18. Ordej'on P. // Phys. Stat. Sol. (b). 2000. 217. P. 335.
- 19. Koch W., Holthausen M.C. A chemist's guide to density functional theory. Weinheim: WILEY-VCH Verlag GmbH, 2001.
- 20. Becke A.D. // Phys. Rev. A. 1988. 38. P. 3098.
- 21. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. 37. P. 785.
- 22. Troullier N., Martins J.L. // Phys. Rev. B. 1991. 43. P. 1993.
- 23. Kleinman L., Bylander D.M. // Phys. Rev. Lett. 1982. 48. P. 1425.
- 24. Li E., Hou L., Li L. et al. // J. Phys.: Conference Series. 2011. 276. P. 012044.
- 25. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. 77. P. 3865.
- 26. Горкавенко Т.В., Зубкова С.М., Русина Л.Н. // ФиТП. 2007. 41. С. 661.
- 27. Илясов В.В., Жданова Т.П., Никифоров И.Я. // ФТТ. 2006. 48. С. 614.
- 28. Соболев В.В., Стерхова М.А. // Светодиоды и лазеры. 2003. № 1-2. С. 87.