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DID LOBACHEVSKY HAVE A MODEL
OF HIS «IMAGINARY GEOMETRY»?*

Abstract. The invention of non-Euclidean geometries is often seen through the optics of Hil-
bertian formal axiomatic method developed later in the 19th century. However such an anachronistic
approach fails to provide a sound reading of Lobachevsky’s geometrical works. Although the mod-
ern notion of model of a given theory has a counterpart in Lobachevsky’s writings its role in Lo-
bachevsky’s geometrical theory turns to be very unusual. Lobachevsky doesn’t consider various
models of Hyperbolic geometry, as the modern reader would expect, but uses a non-standard model
of Euclidean plane (as a particular surface in the Hyperbolic 3-space). In this paper I consider this
Lobachevsky’s construction, and show how it can be better analyzed within an alternative non-
Hilbertian foundational framework, which relates the history of geometry of the 19th century to
some recent developments in the field.

1. Introduction

A popular story about the discovery of Non-Euclidean geometries goes
like this. Since Antiquity people looked at Euclid’s Fifth Postulate (P5) with a
suspicion because unlike other Postulates and Axioms of Euclid’s Elements P5
didn’t seem self-obvious. For this reason people tried to prove P5 as a theorem
(on the basis of the rest of Postulates and Axioms). Typically they tried to
prove P5 by reductio ad absurdum taking the negation of P5 as a hypothesis
and hoping to infer a contradiction from it. However the desired contradiction
didn’t show up. Consequences of non-P5 were unusual but not overtly con-
tradictory. At certain point some people including Gauss, Bolyai and Lo-
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bachevsky guessed that non-P5 opens a door into a vast unexplored territory
rather than leads to the expected dead end. Lobachevsky (or Bolyai on some
accounts) first clearly expressed this view in public. However the issue re-
mained highly speculative until Beltrami in his [2] found some Euclidean
models of Lobachevsky’s geometry, which proved that Lobachevsky’s new
geometry is consistent (relatively to Euclidean geometry). Finally Hilbert in his
[11] put things in order by modernizing Euclidean axiomatic method and clari-
fying the logical structure of Non-Euclidean geometries.

Obviously the story is oversimplified. However my task now is not to
provide it with additional details but to challenge a basic assumption, which
this simplified version of history shares with a number of better elaborated
ones. This assumption concerns the very notion of mathematical theory, which
dates back to [11] and goes on a par with the above story. Here is how it is
described in a popular geometry textbook [8]:

[P]rimitive terms, such as “point”, “line” and “plane” are undefined and
could just as well be replaced with other terms without affecting the validity of
results. ...Despite this change in terms, the proof of all our theorems would still
be valid, because correct proofs do not depend on diagrams; they depend only
on stated axioms and the rules of logic. Thus, geometry is a purely formal ex-
ercise in deducing certain conclusions from certain formal premises. Mathe-
matics makes statements of the form “if ... then”; it doesn’t say anything about
the meaning or truthfulness of the hypotheses.

The following passage makes it clear how the author’s notion of mathe-
matical theory has a bearing on his interpretation of history: †

The formalist viewpoint just stated is a radical departure from the older
notion that mathematics asserts “absolute truths”, a notion that was destroyed
once and for all by the discovery of Non-Euclidean geometry. This discovery
has had a liberating effect on mathematics, who now feel free to invent any set
of axioms they wish and deduce conclusions from them. In fact this freedom
may account for the great increase in the scope and generality of modern
mathematics.

That one’s interpretation of history of mathematics depends on one’s
general views on mathematics is hardly a surprise. In some sense any history of

† [8] is a geometry textbook of college level containing some historical and philosophical ma-
terial. It may be argued that it is not appropriate to take historical and philosophical claims contained
in this book too seriously and criticise them thoroughly. I disagree. Such books written for younger
students often make explicit certain assumptions about history and philosophy of mathematics,
which in more serious studies are often taken for granted and hidden behind further details. Since my
aim here is to reconsider basics rather than criticize details [8] serves me as a perfect reference.
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mathematics is doomed to be anachronistic: in order to study mathematics of
the past one needs to fix some general ideas about mathematics at the first
place. However unless one takes such general ideas dogmatically a historical
study may push one to reconsider the general ideas one starts with. The princi-
pal aim of this short study is to reconsider the Hilbertian “formalist viewpoint”
through looking back at the history of geometry of 19th century, and more
specifically at Lobachevsky’s works.

In the following two Sections I briefly describe Lobachevsky’s work and
his style of reasoning. Then I come back to the “formalist viewpoint” and stress
some difficulties that arise when one studies Lobachevsky from this viewpoint.
Finally, I propose a different viewpoint that provides a remedy. We shall see
that the question of whether or not Lobachevsky had a model of his geometry
has two different answers none of which is of yes-or-no kind. The first imme-
diate answer is that the question is ill-posed since Lobachevsky didn’t distin-
guish between theories and their models in anything like the same way, in
which we do this today. The second answer is subtler and more interesting.
There is indeed an aspect of Lobachevsky’s work relevant to our notion of
model. But if one allows for the the talk of models in this context one finds
something surprising: Lobachevsky didn’t look for models of the geometrical
theory known by his name but used a non-standard model of Euclidean plane.
We shall see that this construction, which from the “formalist viewpoint” looks
exotic and even bizarre, is crucially important for Lobachevsky’s project. The
alternative viewpoint suggested in the last Section of this paper provides
a more natural interpretation of this Lobachevsky’s construction.

2. Hyperbolic intuition

Lobachevsky in his writings presents his main geometrical discovery in
various forms and in various different contexts. For the following concise presen-
tation I take Lobachevsky’s STP as the principle reference. Discussing some
relevant epistemological issues I shall also refer to FG and NFG. Here is a short
description of Lobachevsky’s geometrical works, which explains this choice‡.

‡ The principle edition of Lobachebsky’s writings is [27]. Here are English titles of Lo-
bachevsky’s geometrical works listed in the chronological order and supplied with abbreviations,
which I use in this paper: 1823: Geometry (G) 1829-30: Foundations of Geometry (FG) 1835:
Imaginary Geometry (IG) 1835-38: New Foundations of Geometry (NFG) 1836: Application of
Imaginary Geometry to some Integrals (AIG) 1840: Studies in Theory of Parallels (STP) 1855-56:
Pangeometry (PG) First publication of French version of IG: [17] First publication of German ver-
sion of STP: [18] English translation of STP by G. B. Halsted is printed as a supplement to [4].
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G is an early writing published only after the author’s death, which con-
tains no material related to Non-Euclidean geometry. FG and NFG are two
author’s attempts to write a fundamental geometrical treatise covering the
whole of the discipline from its foundations to its special chapters. Lo-
bachevsky’s project of rebuilding foundations of geometry developed in these
two works doesn’t reduce to what became known as Lobachevskean geometry
but also includes some other new ideas which I cannot discuss here. IG and
AIG have, on the contrary, a more limited task to present of a new analytic
apparatus associated with the Lobachevskian geometry (namely, the hyper-
bolic trigonometry) and to demonstrate its power through some applications.
Lobachevsky introduces here this apparatus “by hand” reducing its geometrical
background to minimum. STP is another shortened account of the basics of
Lobachevskean geometry, which, however, is theoretically complete: it begins
with synthetics geometrical considerations and proceeds to analytic methods.
STP doesn’t cover some more specific issues (like calculation of areas and
volumes) treated in FG and in NFG but unlike IG includes the foundational
synthetic part. PG is the last overview of Lobachevskean geometry written by
the author; it is less systematic than STP and fixes some minor technical prob-
lems, which Lobachevsky found in STP after its publication. This description
makes it clear that STP is the best compact systematic presentation of the topic
written by Lobachevsky himself. Importantly Lobachevsky’s notion of
“Imaginary geometry” remains stable across all of these works.

STP is written in the classical Euclidean “synthetic” style reinforced by
analytic methods described in Section 4. As far as the logical structure of pres-
entation is concerned it is apparently not of Lobachevsky’s major concern.
Lobachevsky presents to the reader a list of propositions without specifying
which of them are definitions, which are assumed as axioms and which are
assumed as commonly known theorems (independent of P5); among proved
propositions there are theorems known to Lobachevsky from his sources as
well as theorems first proven by Lobachevsky himself. From a historical view-
point these features of Lobachevsky’s style are hardly surprising since all of
Lobachevsky’s predecessors and contemporaries working on the “Problem of
parallels” also followed the same traditional line. I stress these features only in
order to confront the widespread philosophical myth according to which the
invention of Non-Euclidean geometry required an abrupt departure from the
“usual” geometrical intuition.
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Instead of P5 Lobachevsky uses the following Axiom of Parallels (AP)
known to be equivalent to P5 since Antiquity:§

(AP) Given a line and a point outside this line there is unique other line
which is parallel to the given line and passes through the given point.

Here the term “parallels” stands as usual for straight lines having no
common points. We’ll se shortly how Lobachevsky changes this Euclidean
terminology. For a terminological convenience I shall call a given straight line
secant of another given straight line when the two lines intersect (in a single
point). Let’s now make the required construction and listen what our intuition
says about it. Although the intuition says us nothing definite as to whether AP
is true or not it says several other important things:

(i) Parallel lines exist (unlike round squares); moreover through a given
point P outside a given straight line l passes at least one parallel line m. The
required construction can be made on the basis of Euclid’s Postulates except
P5. Drop a perpendicular PS from P to l and then produce another perpendicu-
lar m to PS passing through P . The fact that m is parallel to l follows from the
theorem about an external angle of triangle (Proposition 1.16 of Euclid’s Ele-
ments, which doesn’t depend on P5 (Fig.1)**.

Fig. 1

(ii) Given a straight line and a point outside this line there exist secants of
the given line passing through the given point. To construct a secant take any
point of the given line and connect it to the given point outside this line.

(iii) Let PS be perpendicular to l and A be a point of l. Consider a straight
line PR such that angle SPR is a proper part of angle SPA (and hence is less
than angle SPA). Given this I shall call line PR lower than line PA (and call PA
upper than PR). Notice that this definition involves the perpendicular PS, and

§ AP is also known under the name of Playfair’s Axiom
** For suppose that m and l intersect in A. Then the external angle RPA is equal to the internal

angle PSA. This contradicts the theorem about an external angle which implies that RPA must be
strictly superior to PSA.
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so depends on the choice of P. Then PR intersects l in some point B, i.e. it is a
secant. In other words a line, which is lower than a given secant is also a secant
(Fig.2)††.

Fig. 2

(iv) There exist no upper bound for secants of a given line passing
through a given point outside this given line. For given some secant PA one
can always take a further point C such that A will lay between S and C and so
secant PC be upper than the given secant PA (Fig. 2).

(v) Let m be parallel to l , which is constructed as in (i). Let n be another
parallel to l passing through the same point P. Suppose that n is lower than m
(obviously this condition doesn’t restrict the generality). Then any straight line
which is upper than n and lower than m is also parallel to l (Fig. 3).

†† To prove (iii) rigorously one needs Pasch’s axiom which Lobachevsky never mentions but
often uses tacitly. This axiom first introduced in [20] reads: Given a triangle and a straight line inter-
secting one of the triangle’s sides but passing through none of the triangle’s apexes the given line
intersects one of the two other sides of the given triangle. To apply this axiom to the given case one
needs a simple additional construction that I leave to the reader. Remind that my argument here
concerns common intuition but not rigorous proofs: whatever improvement on (iii) can be possibly
made it remains intuitively evident.
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Fig. 3

(vi) Parallels to a given straight line passing through a given point have a
lower bound. To assure it rigorously one needs some continuity principle like
one asserting the existence of Dedekind cuts. Then (vi) follows from (iv). Lo-
bachevsky doesn’t states such a principle explicitly but endorses (vi) anyway.

(vii) Any straight line PA- a secant or a parallel - passing through point P
as shown at Fig. 2 is wholly characterised by its characteristic angle SPA. In
particular this concerns the lowest parallel mentioned in (vi). Let the measure
of SPA corresponding to the case of the lowest parallel be a. Now it is clear
that by an appropriate choice of I and P one can make a as close to ir/2 as one
wishes. For given any angle SPA < ir/2 it is always possible to drop perpen-
dicular AT on PS (Fig.4). Then PA is a secant of AT and so by (iii) all parallels
to AT including its lowest parallels are upper than PA. Hence the value of a
corresponding to straight line AT and point P outside this line is between SPA
and ir/2. Since the only variable parameter of the configuration is the distance d
between the given straight line and the given point outside this line the angle a
is wholly determined by this distance.

Fig. 4

(i - vii) provide the intuitive basis for Lobachevsky’s Imaginary geometry
(see STP, propositions 7, 16, 21). He proceeds as follows. First, he makes a
terminological change: he calls “parallels” (not just non-intersecting straight
lines but) the two boundary lines which separate secants from non-secants (i.e.
parallels in the usual terminology) passing through a given point. So in Lo-
bachevsky’s terms there exist exactly two parallels to a given straight lines
passing through a given point, which may eventually coincide if AP holds (i.e.
in the Euclidean case). For further references I shall call these two parallels
right and left (remembering that this assignment of parity is arbitrary). Since
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Lobachevsky’s definition of parallels involves the choice of P it is not immedi-
ately clear that parallels so defined form equivalence classes. So Lobachevsky
must show that the property of being parallel (in his new sense) to a given
straight line is independent of this choice (STP, proposition 17), and that the
relation of being parallel is symmetric and transitive (while reflexivity may be
granted by the usual convention) (STP, propositions 18, 25). For the obvious
reason transitivity may work here only for parallels of the same orientation, i.e.
separately for right and for left parallels. Lobachevsky provides the required
proofs making them in the traditional synthetic Euclidean-like manner. Then
Lobachevsky proves some further properties of parallels, in particular the fact
that the angle a characterising a parallel (see vii above) can be made not only
however close to 7r/2 but also however close to zero (STP, proposition 23).
This immediately implies that if P5 doesn’t hold then given an angle ABC,
however small, there always exist a straight line I laying wholly inside this
angle and intersecting none of its two sides (Fig.5). This is already by far more
counterintuitive than (i-vii) but still not counterintuitive enough to rule out this
construction as absurd and on this ground to claim a proof of P5.

Fig. 5

Lobachevsky’s aim is to develop a general theory of geometry, which
would not depend of P5 and include Euclidean geometry as a special case, but
not to develop an alternative geometry. In the Introduction to his NFG Lo-
bachevsky makes this point explicitely:

The principle conclusion, to which I arrived .... was the possibility of Ge-
ometry in a broader sense than it has been [earlier] presented by Founder
Euclid. This extended notion of this science [=of Geometry] I called
Imaginary Geometry; Usual [=Euclidean] Geometry is included in it as a
particular case.‡‡

‡‡ Hereafter translations of Lobachevsky’s passages from Russian are mine.
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Formally speaking, (i)-(vii) indeed cover the Euclidean case: in this case a
= ir/2 and so the two Lobachevsky’s two parallels coincide. What remains
problematic here is the nature of variation of a. (vi) says us nothing about the
value of a except that it is positive but doesn’t exceed ir/2. Does this mean that
one can stipulate by fiat any value of a from this interval?

Geometry traditionally makes a sharp distinction between universally
valid propositions (axioms and theorems) and particular constructions with
their stipulated properties. One is free to produce a geometrical construction
with any desired properties as far as Euclid’s Postulates (or some other fixed
constructive principles) grant that the wanted construction is doable. For ex-
ample, one is free to produce a right angle, an acute angle or an obtuse angle
depending on one’s personal taste or one’s specific purpose. But in this tradi-
tional setting one is not free to stipulate axioms and constructive principles
(postulates) in a similar way. However in Lobachevsky’s reasoning this tradi-
tional distinction is blurred. According to (vii) both Lobachevsky’s parallels
passing through a given point P are uniquely determined by the distance d =
PS. This means that given a line I and a point P outside this line the angle APS
= a has some definite value, which cannot be any longer a matter of stipula-
tion. But since we don’t know this value we can only make some hypothetical
reasoning about it. If a = ir/2 (the Euclidean case) then the same holds for any
other choice of I and point P (see STP, proposition 20). If a < ir/2 (the Hyper-
bolic case) the situation is more involved, because a depends on d. Here is Lo-
bachevsky’s fundamental equation, which describes this dependence:

(1) tan (a/2) = a~

where a is a positive factor. How to interpret this formula? The factor makes a
new trouble. On the one hand, it is clear that the unit used for measuring the
distance d can be always chosen in such a way that (1) takes this most conven-
ient form:

(2) tan (a/2) = e~

were e is the base of natural logarithms. Then a gets determined by d as ex-
pected. As Lobachevsky says in STP this move ”simplifies calculations”.
However such a choice of unit determines the value of a in each particular
case! It turns out that the value of a depends of our arbitrary choice of unit,
which is supposed to be a matter of convention having no theoretical signifi-
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cance. Turning things the other way round one may also say that the unite of
length is uniquely determined here by a, that is, that the usual freedom of
choice of units cannot be granted in this case. This property of hyperbolic
spaces first noticed by Lambert (see [4]) is often described as the existence of
absolute unite of length. However one shouldn’t forget that this absolute unite
depends on the variable factor a. This actually means that unlike Euclidean
geometry Lobachevskian geometry is not a single geometry but a family of
similar geometries parametrized by a positive real factor. The geometrical na-
ture of this factor remained a mystery at least until 1868 when Beltrami [3]
discovered the theoretical link between Lobachevsky’s and Riemann’s works
(see Section 5 below). So it is hardly surprising that Lobachevsky’s distinction
between between the general theory of geometry and particular geometries
covered by this general theory remains rather unclear. In the next Section we
shall see how this problem was later settled by Hilbert and his followers who
promoted what Greenberg calls the “formalistic viewpoint” in geometry.

Although the controversy between the ”formal” and the ”intuitive” ap-
proaches to geometry didn’t yet appear in 1830-ies when Lobachevsky made
his most important discoveries a similar controversy was already known.
I mean the controversy between analytic and synthetic ways of doing geome-
try. Here is what Lobachevsky says about it in the Preface to his NFG:

In Mathematics people use two methods: analysis and synthesis. A spe-
cific instrument of analysis are equations, which serve here as the first ba-
sis of any judgement and which lead to all conclusions. Synthesis or the
method of constructions involves representations immediately connected
in our mind with our basic concepts. ... Science starts with a pure synthe-
sis; all the rest is produced by jugement which derives new data from the
first data given by synthesis and thus broadens our knowledge unlimit-
edly into all directions. Without any doubt the first data are always ac-
quired in nature through our senses. Mind can and must reduce them to
minimum, so they could serve as a solid foundation for science.

The fact that Lobachevsky stresses the importance of synthetic ap-
proaches in science in general and in geometry in particular shows that unlike
some of his contemporaries he was not sympathetic to the idea of replacing
intuitive geometrical reasoning by some sort of calculus. He rather believed
that the spatial intuition and the spatial experience are ultimate sources of geo-
metrical truths and that analytic methods serve only for ”derivation of new data
from first data”.
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Consider also this interesting passage from NFG where Lobachevsky
anticipates physics of the 20th century by putting forward a view according
to which geometry of physical space is variable and depends on physical
factors:

[T]he assumption according to which some natural forces follow one Ge-
ometry while some other forces follow some other specific Geometry,
which is their proper Geometry, cannot bring any contradiction into our
mind.

This passage clearly shows that Lobachevsky thinks about alternative
Non-Euclidean geometries as prospective mathematical tools for physics but
not as mere mathematical abstractions. We find in Lobachevsky no sign of
Greenberg’s enthusiasm about the alleged freedom of mathematicians to “in-
vent any set of axioms they wish and deduce conclusions from them”. Al-
though the discovery of Non-Euclidean geometries could later motivate pro-
ponents of such a freedom Lobachevsky himself certainly didn’t enjoy this
freedom when he made his discovery.

Taking into consideration what has been said so far one may come to the
conclusion that the question ”Did Lobachevsky have a model of his geome-
try?” has no more sense than the question whether or not Euclid had a model of
his geometry. In the Section 4 we shall see that in fact this question allows for a
more specific and more interesting answer. But before coming to this discus-
sion let me return to Greenberg’s “formalist viewpoint” and show how the
emergence of this viewpoint relates to Lobachevsky’s work.

3. Hilbertian Axiomatic Method

What Greenberg in the above quote describes as the “formalistic view-
point” comes with a specific method of building mathematical theories, which
dates back to Hilbert’s treatise on foundations of geometry [11] and his influ-
ential paper [13]. This method is often called after Hilbert simply the Axio-
matic Method. This common name hides the fact that the notion of axiom rele-
vant to this modern method of theory-building strikingly differs from what
used to be so called before the 20th century. In order to stress the specific charac-
ter of this Axiomatic Method I call it hereafter Hilbertian. In the rest of this Sec-
tion I remind the reader basic features of Hilbertian Axiomatic Method and then
show how this method solves some epistemological problems related to Non-
Euclidean geometries. The purpose of this Section is not to promote the Hilber-
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tian Axiomatic Method which hardly needs any further promotion but rather
prepare a background for its critical reconsideration in the following Sections.

The Hilbertian Method identifies a mathematical theory with a system of
propositions some of which are assumed as axioms while some other (called
theorems) are deduced from the axioms according to fixed rules of logical
inference. Propositions (i.e. axioms and theorems) are viewed here in two
different ways. First, they are viewed as syntactic constructions having no
meaning and truth-value. So conceived propositions are called formal; sys-
tems of formal propositions are called formal theories. Formal propositions
and formal theories are provided with meaning and truth-values through a
special procedure of interpretation, which assigns to terms of a given formal
some particular mathematical objects. Thus formal theories and propositions
become interpreted; interpreted propositions have certain truth-values, which
obviously depend on the given assignment. An assignment, which makes all
provable (deducible) propositions of a given theory true is called a model of
this theory. A given theory may have multiple models and multiple ”would-
be-models”, in which some formally provable propositions are true but some
other turn to be false.

The role of models is (at least) twofold. First, models provide an intui-
tive support allowing, for example, for thinking of proposition “given two
points there exist an unique straight line going through these points” in the
usual way. (Alternatively one can think of points in the way one usually
thinks of straight lines and think of straight lines in the way one usually
thinks of points. It would make a difference in Euclidean geometry, in
which there exist lines without common points, but not in Projective ge-
ometry in which any two straight lines intersect.) Second, models are used
for proving relative consistency of a given theory T with respect to some
other theory T", which is called in this context a metatheory. This works as
follows. One takes T" and some its model M' for granted and use these
things for building a model of T. In particular, one may take for granted
Arithmetic (assuming that this theory comes with a model) and use Arith-
metic for building models of various geometrical theory. The existence of
such a arithmetical model M of a given geometrical theory T shows that if
Arithmetic is consistent then the theory T is also consistent. If one further
assumes that Arithmetic is more “secure“ or more “basic” than geometrical
theories (as did Hilbert) than this relative consistency result presents an
important epistemic gain.

Let me now explain the meaning of the word “formal” used in this con-
text. Commenting in a letter on his [11] Hilbert writes:
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[E]ach and every theory can always be applied to the infinite number of
systems of basic elements. One merely has to apply a univocal and re-
versible one-to-one transformation [to the elements of the given system]
and stipulate that the axiom for the transformed things be correspondingly
similar (quoted by [6], underlining mine)§§.

Clearly Hilbert assumes here the following property of formal theories:
all models of a given formal theory are transformable into each other element-
wise by reversible transformations. In modern language such models are called
isomorphic while a theory having the property that all its models are isomor-
phic is called (after Veblen) categorical. So the idea behind the Hilbertean
Axiomatic Method is this: an axiomatic theory captures the common form or
structure shared by a bunch of isomorphic mathematical constructions, no
matter how these constructions are produced and how they are conceived intui-
tively. In the current literature the term “structure” is used in the given context
more often than the term “form”. More precisely a structure in the relevant
sense of the term can be described as a result of abstraction from a bunch of
isomorphic constructions, which amounts to ignoring all the differences be-
tween such constructions, i.e., to considering these constructions “up to iso-
morphism”. The fact that “being isomorphic” is an equivalence relation is es-
sential for making such an abstraction possible [22]. The view according to
which mathematics is a science of structures is known under the name of
Mathematical Structuralism [10].

We see that the Hilbertian Axiomatic Method is in fact something more
than just a method. It comes with a specific epistemic framework for doing
mathematics. Within this framework a (formal) mathematical theory can be
described as a set of axioms taken together with its deductive closure, i.e. with
all propositions deducible from the given axioms. Any such mathematical the-
ory must be logically consistent, i.e., not allow for deriving a contradiction.
Further features of theories are desired but optional: a good theory comprises a
set of axioms, which are logically independent; it is categorical; it has interest-
ing models; it solves some earlier stated problems; it can be successfully ap-
plied in physics or elsewhere.

§§ When Greenberg says that in a formalistic geometrical theory “Primitive terms, such as
“point”, “line” and “plane” ... could just as well be replaced with other terms without affecting the
validity of results” he obviously means not only that these geometrical objects can be called differ-
ently; he also means that these geometrical objects (as traditionally conceived) can be replaced by
some other objects.
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Let us now see how the Hilbertian Axiomatic Method solves the epis-
temic problem concerning Lobachevskian geometry stressed in the previous
Section. The key point of this solution is this: the new method of theory-
building doesn’t involve the traditional distinction between general geometrical
principles (Postulates and Axioms) and stipulated properties of particular geo-
metrical constructions. Even if some distinction of this sort can be still drawn
within the Hilbertian framework it no longer plays any important role. In this
framework one is authorized both to assume and to not assume AP just like in
the traditional Euclidean framework one is authorized to assume and not to
assume that a given triangle is isosceles. (As a matter of course in the Hilber-
tian framework one is not authorized to assume AP and its negation simultane-
ously just like in the traditional framework one is not authorized to assume that
one and the same triangle is and is not isosceles.) Thus the Hilbertian frame-
work allows one to do Euclidean geometry (assuming AP) as well as Lo-
bachevskian geometry (not assuming AP). The new framework allows for a
peaceful co-existence of these geometrical theories (as different parts of the
same body of mathematical knowledge) in spite of the fact that they are logi-
cally incompatible.

For the question of historical origins of Hilbertian Axiomatic Method I re-
fer the reader to [24] and further literature wherein. Although the discovery of
Non-Euclidean geometry certainly played a role in the development of this
Method this development was not a direct consequence of this discovery.
Other important conceptual developments took place during the second half of
the 19th century when Non-Euclidean geometries were already known but the
new Axiomatic Method was not available yet. I shall say more about these
developments in Section 5 below. Let us now see whether it is possible to iden-
tify some elements of the Hilbertian Method in Lobachevsky’s writings.

4. Hyperbolic calculus

In order to see that the modern notion of model is not totally irrelevant to
Lobachevsky’s work consider the following quote from FG:.

The geometry on the limiting sphere is exactly the same as on the plane.
Limiting circles stand for straight lines while angles between planes of these
circles stand for angles between straight lines.

Even without knowing the exact sense of Lobachevsky’s terms (which I
shall shortly explain) one can identify here a basic element of the Hilbertean
framework, namely the idea that usual geometrical terms like “straight line”
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and “angle between straight lines” can be given some unusual meanings with-
out producing any essential change in the corresponding theory (in this case -
Euclidean geometry). Speaking in today’s terms Lobachevsky describes here a
non-standard model of Euclidean plane. Why not a model of his new Hyper-
bolic geometry as the today’s reader would most probably expect? Why Lo-
bachevsky translates convenient notions of Euclidean geometry into the new
language of Hyperbolic geometry rather than the other way round? Let me
now explain why and how.

Basic facts about Hyperbolic plane, which can be proved by traditional
synthetic methods, were mostly known before Lobachevsky. Lobachevsky
first managed to supply the system of synthetic reasoning briefly described
above in Section 2 with an appropriate analytic tool, which allowed him to do
analytic geometry on the Hyperbolic plane. The non-standard model of Euclid-
ean plane serves Lobachevsky for developing this analytic apparatus. The fol-
lowing presentation follows STP closely.

In Euclidean geometry there are two kinds of sheaves of straight lines: (a)
sheaves of paralel lines and (b) sheaves of lines passing through the same
point. Given a sheaf of either sort consider a line (or surface in 3D case) normal
to each line of the given sheaf. So you get (a) either a straight line (or plane in
3D case) or (b) a circle (or sphere in 3D case ) (Fig.6 a, b).

Fig. 6

In Lobachevskian (Hyperbolic) geometry both configurations shown at
Fig.7 a, b exist although lines at Fig.7b are not parallels in Lobachevsky’s
sense. In addition one gets here a new specific sort of sheaf, namely that of
Lobachevsky’s parallels. This new sheaf comes with a new normal line and a
new normal surface, which Lobachevsky calls limiting circle (or otherwise
horocircle) and limiting sphere (otherwise horosphere) correspondingly.
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To see that horocircles on given horosphere verify AP (and in fact the rest
of axioms of Euclidean geometry) observe the following. Call (as usual) a
given straight line I parallel to a given plane a just in case I is parallel (in Lo-
bachevsky’s sense) to its orthogonal projection m onto a. It can be then easily
shown by usual synthetic methods (I leave it as an exercise) that for all I and a

Fig. 7

defined as before there exist a unique plane /3 having no common point with a
(that is, parallel to a in the usual sense) such that I lays in /3. This lemma,
which resembles AP in a way, doesn’t depend on AP. Notice that any horocir-
cle laying on a given horosphere can be obtained as an intersection of the horo-
sphere with a plane parallel to the sheaf of Lobachevsky’s parallels corre-
sponding to this horosphere. This immediately implies that the non-standard
interpretation of Euclidean geometry suggested by Lobachevsky verifies AP
(the horocircles are called here parallel in the usual Euclidean sense of having
no shared point) (Fig. 8):

Fig.8
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Lobachevsky himself uses a slightly different lemma (STP, proposition
28) for the same purpose . Let me quote only his conclusion (STP, proposition
34), which shows more precisely the way in which Lobachevsky anticipated
the Hilbertean approach:

On the limiting surface [i.e. on the horosphere] sides and angles of trian-
gles hold the same relations as in the Usual [i.e. Euclidean] geometry.

This crucial observation allowed Lobachevsky to develop (what we call
today) the Hyperbolic trigonometry on the basis of the usual (Euclidean) trigo-
nometry. He writes down basic principles of this new calculus in the form of
four (eqational) identites (STP, proposition 37, formula 8). In FG and NFG
Lobachevsky applies this calculus to a large class of geometrical problems and
in AIG - to calculation of certain integrals, which earlier were not given any
geometrical sense. On the top of that Lobachevsky puts forward in FG the fol-
lowing general argument purporting to show that the new calculus guarantees
consistency of his Imaginary geometry:

”[1] As far as we are found the equations which represent relations be-
tween sides and angles of triangle ... Geometry turns into Analytics,
where calculations are necessarily coherent and one cannot discover any-
thing what is not already present in the basic equations. [2] It is then im-
possible to arrive at contradiction, which would oblige us to refute first
principles, unless this contradiction is hidden in those basic equations
themselves. [3] But one observes that the replacement of sides a,b, c by
ai, bi, ci turn these [basic hyperbolic] equations into equations of Spheri-
cal Trigonometry. [4] Since relations between lines in the Usual [i.e.
Euclidean] and Spherical geometry are always the same, [5] the new [i.e.
Imaginary] geometry and [Hyperbolic] Trigonometry will be always in
accordance with each other.” (FG; i stands here for the square root from
minus one as usual; numbers in square brackets are introduced for the fol-
lowing analysis of this argument.)

Let’s analyse this complicated argument step by step. First (in part [1])
Lobachevsky claims that trigonometric relations, which are valid for an arbi-
trary triangle, allow one to translate the whole of geometry from the synthetic
to the analytic language. He takes this claim for granted in case of Euclidean
geometry and then says that it equally holds in a more general case of Imagi-
nary geometry. In [2] Lobachevsky assumes that algebraic transformations are
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better controllable than synthetic constructive procedures. The transparency of
the “analytic” procedures guarantees that if basic equations contain no hidden
contradiction so does the rest. One cannot claim the same for constructive syn-
thetic procedures since such procedures can bring a contradiction at any step of
reasoning but not only at the initial step of laying out basic principles. So the
analytic means help to reduce the question about consistency of Imaginary
geometry to the same question concerning only foundations of this geometry,
i.e., only the “basic equation”. [3] is a crucial observation (first made by Lam-
bert) concerning a profound analogy between Spherical and Hyperbolic ge-
ometries. Lobachevsky didn’t understand the sense of this analogy in terms of
curvature as we understand it today but took it as a purely formal analogy. His
argument, as far as I understand it, is the following. Since spherical geometry
(including spherical trigonometry) is a well-established part of Euclidean ge-
ometry there is no reason to expect any contradiction in it (see [4]). The two
faces of Spherical geometry - the synthetic face and the analytic face - match
each other just like in the case of Plane Euclidean geometry. Hence Spherical
trigonometry is consistent. Since the formal substitution a → ai transforms ev-
ery equation of Spherical trigonometry into an equation of Hyperbolic trigo-
nometry and since such a formal substitution cannot bring any contradiction
into the given theory the Hyperbolic trigonometry is consistent too.  But the
analytic face of Imaginary geometry (i.e., Hyperbolic trigonometry) matches
its synthetic face just like in Spherical case (see [5]). Hence Imaginary geome-
try (including its synthetic part) is consistent in general. The line of this argu-
ment can be pictured with the following diagram:

It is tempting to interpret this Lobachevsky’s argument as a proof of rela-
tive consistency in Hilbert’s sense. Even if such reading is not unreasonable
one should keep in mind that, first, this argument is in fact very vaguely formu-
lated and, second, it is produced by Lobachevsky at the absence of any genuine
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understanding of what is behind the formal correspondence between trigono-
metric identities in Spherical and Hyperbolic cases. The main source of Lo-
bachevsky’s ambiguity here is the lack of any proper distinction between
Imaginary (Hyperbolic), Spherical and Usual (Euclidean) geometries. The
context strongly suggests considering them on equal footing as we do it today.
But remind that Lobachevsky considers the Usual geometry as a special case
of Imaginary and Spherical geometry as a part of Usual. At least the latter as-
sumption is essential for the argument. When Lobachevsky says that “relations
between lines in the Usual and Spherical geometry are always the same” he, in
my understanding, looks at a given sphere as an Euclidean object but not in-
trinsically. Thus he doesn’t think about it as a model in anything like today’s
sense. The formal character of substitution a → ai is obviously explained by
Lobachevsky’s lack of understanding of its nature. Lobachevsky like Lambert
simply noticed the striking analogy between trigonometric identities valid in
Imaginary geometry and well-known trigonometric identities for spherical
triangles. The analogy suggested considering Plane Imaginary geometry as a
sort of Spherical geometry on a sphere of imaginary radius, for example, of
radius equal to i. Prima facie this didn’t make any geometrical sense. But the
analogy also suggested that the new trigonometric calculus could work just as
well as Spherical trigonometry, and this in its turn suggested that the synthetic
reasoning behind this new calculus was also correct. This is the core of the
above argument. But obviously the analogy noticed by Lambert and Lo-
bachevsky was calling for explanation. It is an irony of history that Lo-
bachevsky’s eventual “formalism”, which was due to the lack of understanding
of one particular mathematical question, can be seen today as an anticipation of
Hilbert’s deliberate formalism based on serious epistmological considerations.

We have seen that although Lobachevsky had some elements of Hilber-
tian scheme at his disposal he was quite strongly attached to the traditional way
of geometrical thinking. Given the historical distance between Lobachevsky
and Hilbert this is hardly surprising. What is more surprising is the unusual
way in which Lobachevsky uses these elements of Hilbertian scheme. The
epistemological background behind this scheme suggests no possible reason
why Lobachevsky might need a non-standard model of the old good Euclidean
plane (rather than some model of Hyperbolic plane) - even if the role of this
construction can be easily understood in purely technical terms. This fact
shows that the Hilbertian framework is not quite adequate for analyzing Lo-
bachevsky’s work. This, once again, is hardly a surprise. But I think that one
can get a more interesting lesson from this story by questioning the Hilbertian
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framework itself. In order to do this let me first introduce some broader histori-
cal context.

5. Extending the context

The research focused on the problem of parallels was not the only source
of development of Non-Euclidean geometries in 19th century. Another major
source was the research of general curve surfaces that first brought significant
results in [7]. In this seminal work Gauss first identified geometrical properties
of a surface that don’t depend on the way, in which this surface is embedded in
the 3D Euclidean space. Such properties determine what we call today the
intrinsic geometry of the given surface. By generalizing Gauss’ idea of intrinsic
geometry to higher dimensions Riemann in his [21] put forward the notion of
(Riemannian) manifold. This new generalized notion of geometrical space
until today remains on object of active mathematical study.

Gauss’ long-term interest to the problem of parallels suggests that he al-
ready understood that the two lines of research were closely related. However
Lobachevsky was apparently wholly unaware about this link. It was first
clearly shown by Beltrami in his [3] where this author identified Lo-
bachevsky’s plane and Lobachevsky’s space with Riemannian manifolds of
constant negative curvature of dimensions 2 and 3 correspondingly***.

Noticeably this Beltrami’s result is less known than another result pub-
lished by the same author earlier in the same year of 1868. In this earlier paper
[2] Beltrami claimed that he found a surface (that he called a pseudosphere)
such that certain curves on this surface (geodesics) behave just like straight
lines on the Lobachevsky’s plane. To put it in modern (Hilbertain) terms
Beltrami claimed that he found an Euclidean model of Lobachevsky’s Non-
Euclidean geometry. However this result was not quite satisfactory even in
Beltrami’s own eyes. First, it contained a mistake noticed soon be Hilbert and

*** In the same year of 1840 when Lobachevsky published his STP Ferdinand Minding (1806-
1885) published in the Crelle Journal a note [5], where he showed that trigonometrical formulae for
triangles formed by geodesics on surfaces of constant negative curvature can be obtained from trigo-
nometrical formulae for spherical triangles by replacement of usual trigonometric functions by hy-
perbolic functions. Lobachevsky in STP makes a similar observation about straight lines of his ge-
ometry. A communication between the two authors would most probably lead to the discovery made
by Beltrami only in 1868. However Lobachevsky apparently didn’t read this Minding’s paper in
spite of the fact that the library of Kazan University had this issue the Crelle Journal. At least the
preserved list of books and journals borrowed by Lobachevsky from the University Library doesn’t
include this item [26].
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Helmholz: Beltrami’s pesudosphere models only a finite region of Lo-
bachevsky’s plane but not the whole infinite plane. As Hilbert showed soon
this mistake couldn’t be corrected. Second and more important, Beltrami real-
ized that the case of Lobachevsky’s 3D space cannot be treated similarly. So he
looked for a different and more satisfactory solution, which he found and pub-
lished [3] after he read Riemann’s memoir [21].†††

Using Beltrami’s results Klein in two papers [14] and [15] sketched a
theoretical framework, which unified most important geometrical theories of
the time, including Projective geometry, Affine geometry, Riemannian geome-
try (the case of constant curvature) and, finally, the “Imaginary” Lo-
bachevsky’s geometry. In a more developed and systematic form this unifica-
tory account is presented in Klein’s posthumously published lectures [16]. This
work realizes by different means Lobachevsky’s and Bolyai’s idea of a gener-
alized geometry independent of P5, which comprises Euclidean geometry as a
particular case. It made clear why Lobachabsky’s and Bolyai’s approaches to
building such a general theory didn’t work as expected: the Euclidean and the
Hyperbolic (Lobachevskian) cases taken together don’t produce a viable gen-
eral theory because such a theory leaves out the Elliptic case, i.e., the case of
manifolds of constant positive curvature. The absolute geometry in Bolyai’s
sense can be compared with a tentative theory of conics that treats parabolas
and hyperbolas but doesn’t treat circles and ellipses.

Thus although the problem of parallels in its traditional setting indeed
suggests a possibility of generalization of Euclidean geometry it doesn’t point
at any viable generalization of this sort. As Weyl [9] describes the situation in
1923:

The question of the validity of the “fifth postulate”, on which historical
development started its attack on Euclid, seems to us nowadays to be a
somewhat accidental point of departure. The knowledge that was neces-
sary to take us beyond the Euclidean view was, in our opinion, revealed
by Riemann.

Although a detailed conceptual analysis of the 19th century geometry is
out of the scope of this paper I nevertheless mention here Riemann’s and
Klein’s contributions for making it clear that Hilbert’s treatise on foundations
of geometry [11] didn’t provide even a minimal theoretical background neces-

††† From the Hilbertian viewpoint the mistake made by Beltramy in his first paper [2] is ex-
cusable because this paper also contains what is called today Beltrami-Klein model of Lo-
bachevsky’s plane.
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sary for doing new geometrical research in the beginning of the 20th century. It
had a more limited and more specific task: to demonstrate how an older geo-
metrical theory (Euclidean geometry) can be reconstructed with a novel Axio-
matic Method. Non-Euclidean geometries (in particular, the Lobachevskian
geometry) show up here only as means for proving the mutual independence of
the geometrical axioms.

Hilbert was, of course, well aware about this fact but hoped that his
Axiomatic Method could be equally applied in more advanced theoretical
contexts. Already the second edition [12] of Hilbert’s Grundlagen contained
four Supplements treating some contemporary geometrical issues including
issues of Rimannian geometry. A more complete Hilbert-style axiomatiza-
tion of Riemannian geometry has been proposed in 1932 by Veblen and
Whitehead [25]. In my view, this result is somewhat controversial. On the
one hand, this axiomatization was clearly a success: it allowed for a signifi-
cant clarification of the whole subject and was later widely used for educa-
tional and research purposes [23]. On the other hand, a comparison of Hil-
bert’s axiomatization of Euclidean geometry with the axiomatization of
Riemannian geometry by Veblen and Whitehead immediately shows that
Veblen and Whitehead don’t really stick to the Hilbertian formalist approach.
In the first five Chapters of their tract the authors provide a traditional con-
tentual account of the subject; axioms of the theory are given only in Chapter
6 while in the last Chapter 7 the authors study some general consequences of
the axioms. Perhaps this can be explained on the basis of some pragmatic
arguments without questioning the Axiomatic Method itself. However the
axiomatic account of the two last Chapters also misses essential features of
Hilbert’s axiomatic account of Euclidean geometry. Unlike Hilbert Veblen
and Whitehead don’t explicitly discuss models of their axiomatic theory, so the
very difference between the theory and its models, which is fundamental for
Hilbert’s approach, is not present in Veblen and Whitehead’s account in an
explicit form. Thus in spite of the fact that Veblen and Whitehead were indeed
inspired by Hilbert’s notion of Axiomatic Method, and tried to apply this
method in the Riemannian geometry, in order to produce a useful axiomatiza-
tion of this geometrical discipline they had to compromise against Hilbert’s
original approach quite severely‡‡‡.

‡‡‡ In Hilbert’s account the Analytic geometry is presented as a particular model of the (for-
mal) Euclidean geometry, namely as an arithmetical model, so Arithmetic is used here as a meta-
theory. In Veblen and Whitehead’s account analytic devices (and hence Arithmetic) are directly
involved into the axioms of their geometrical theory, so in this case Arithmetic is used as a sub-
theory rather than a meta-theory. Since Veblen and Whitehead take Arithmetic (as well as relevant
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Today we know how to formalize mathematical theories to the extent
with comparison to which Hilbert’s original approach to foundations of ge-
ometry may look completely “informal”. What remains controversial is the
epistemic significance of this procedure. Without going into a broad philoso-
phical discussion about this issue I shall criticize in the next Section some as-
pects of Hilbert’s Axiomatic Method and point to an alternative method of
theory-building. We shall see that this alternative method suggested by some
recent developments in mathematics has its roots in the 19th century geometry.

6. Rethinking Hilbertian Framework with Lobachevsky

Gauss’ notion of intrinsic geometrical property of a given surface men-
tioned in the previous Section makes the very notion of geometrical space rela-
tional in the following sense. Given such a surface one can think of it (i) in the
usual way as a two-dimensional object living in the Euclidean 3-space and (ii)
as a 2-space on its own rights (characterized by the intrinsic properties of the
given surface), which is a home for its points, lines, triangles, etc.. Generally, a
geometrical object can be described in this context as an embedding of the
form s : B → C where B is a type of the given object and C is a space where
the given object lives. By generalizing again the picture I shall assume s to be a
map of any sort and not necessarily an embedding. In the given context to be a
space means to be a target of certain maps; given an object s : B → C one calls
C a space only w.r.t. s (or w.r.t. some other object living in the same space) but
not absolutely.

This way of thinking about geometrical objects and geometrical spaces
straightforwardly applies to the traditional Euclidean geometry. Let me distin-
guish here between two different notions of Euclidean plane: (i) the domain of
Euclidean Planimetry and (ii) an object living in the Euclidean 3-space. Notice
that one doesn’t need this latter notion for doing the Planimetry, it first appears
only in the Stereometry! I shall write “EPLANE” for the Euclidean plane in the
first sense, and write “eplane” for the Euclidean plane in the second sense. I
shall also write ESPACE and ISPACE to denote the domains of Euclidean and

set-theoretic notions) for granted and since the only geometrical primitive term of their theory is that
of point the only way of producing alternative models, which remains available for the authors, is to
assign to the term “point” different semantic values. This indeed opens a possibility of putting a
Riemannian structure “on the top of” mathematical structures of different sorts. However Veblen and
Whitehead don’t explore this possibility.
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Lobachevskian Stereometry correspondingly. Then an eplane e can be de-
scribed as a map:

e: EPLANE → ESPACE.

Notice that there are many different maps of this form (and so we get
many different eplanes living in the ESPACE) while the EPLANE and the
ESPACE are unique. All eplanes share these two things: first, they share
a space, namely ESPACE, and, second, they share a type, namely EPLANE. It
is common to say that a given eplane instantiates its type EPLANE; on our
account the instantiation amounts to mapping this type into a background space
like ESPACE.

Let me also write “ISPACE” for the domain of Lobachevskian Stereome-
try (Letter “I” stands for “Imaginary”). Then Lobachevsky’s observation about
horospheres mentioned in the Section 4 above can be presented as follows:
a horosphere h is a map of the form:

h: EPLANE → ISPACE

Thus a horosphere is also an instantiation of the EPLANE but this time
obtained with a different background space.

A Hilbertian-minded thinker would think of a given eplane and a given
horosphere as self-standing entities, construct an isomorphism between them
by mapping points of the eplane to appropriate points of the horosphere and
vice-versa, and on this basis claim that the eplane and the horosphere represent
the same plane Euclidean structure. I claim that such an isomorphism is ill-
formed. For the eplane and the horosphere are not self-standing entities. The
fact that an eplane lives in the Euclidean 3-space is just as essential as the fact
that it is an image of the EPLANE. The fact that a horosphere lives in the Hy-
perbolic 3-space (rather than elsewhere) is equally essential. There is no way to
“take out” (through an abstraction or otherwise) an eplane from the Euclidean
3-space or to “take out” a horosphere from the Hyperbolic space. Any reason-
able notion of map (and in particular of isomorphism, i.e. of reversible map)
between an eplane and a horosphere must take ESPACE and ISPACE into
consideration. The isomorphism suggested by the Hilbertian-minded thinker
does not meet this requirement leaving the ESPACE and the ISPACE out the
consideration as meta-theoretical constructions. This isomorphism is ill-formed
because its source and its target are ill-formed. An eplane and a horosphere are
not isomorphic; what they share in common is a type, namely the EPLANE,
but not an abstract Euclidean structure.



58 A. Rodin

A space and a type are not things that one can represent in one’s imagina-
tion directly. One needs some objects for it. In order to visualize a type one
instantiates it by an appropriate object (belonging to this given type), i.e. maps
the given type into some available space. In order to visualize a space one
populates this given space by appropriate objects, i.e. maps available types into
this given space. One cannot imagine the EPLANE in the same sense in which
one can imagine an eplane but one may have an intuitive grasp on the
EPLANE through geometrical objects living in this space: circles, triangles and
the like. All such familiar objects are maps from corresponding types into the
EPLANE; in particular a circle is a map of the form:

c: CIRCLE → EPLANE

The “view on EPLANE from inside” is multi-faced just like the “outside
view” obtained by mapping the EPLANE to different spaces like ESPACE or
ISPACE. I can see no epistemic reason for thinking that the inside view tells us
more about this space than the outside view (or the other round). Nevertheless
these two views are clearly different and certainly should not be confused.

The fact that the EPLANE is populated by objects of different shapes
was, of course, well known long before Lobachevsky. However the fact that
the EPLANE itself can be seen “from the outside” not only as an eplane but
also as a horosphere was discovered only by Lobachevsky. This and other
similar discoveries (in particular the discovery of a pseudo-sphere by Beltrami)
led Hilbert and many of his contemporaries to thinking that one cannot any
longer count on intuition in geometry. Given Lobachevsky’s notion of horo-
sphere Hilbert would think that since an eplane and a horosphere are two dif-
ferent intuitive representations of the EPLANE and since these intuitive repre-
sentations look so differently a “right” notion of EPLANE cannot be given
through intuition at all but must be construed otherwise, namely by formal
methods. Unlike Hilbert and his followers I cannot see that our intuition gets
something wrong in this situation. An eplane and a horosphere look so differ-
ently because they live in different spaces. What is wrong in the traditional
geometrical thinking is not the very notion according to which geometrical
concepts come with intuitive representations but the idea that a given represen-
tation involves just one geometrical concept. In fact any geometrical represen-
tation involves at least two things: one, which is represented (a type), and one,
which provides a space for this representation. In the traditional Euclidean
Planimetry the representation space (the EPLANE) is fixed. Euclidean
Stereometry provides extrinsic images of the EPLANE, which all look simi-
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larly because these images are all taken against the same fixed background
space, namely against the ESPACE. Lobachevsky and other pioneers of non-
Euclidean geometry showed that backgrounds (i.e. representation spaces) may
vary. Hilbert and other proponents of formal methods didn’t take this possibil-
ity seriously and looked for a way of doing geometry without any background.
Later the proponents of formal methods began to use such methods with a new
fixed background of a more “abstract” sort, namely with the background uni-
verse of sets. The alternative approach that I defend here allows for variation of
backgrounds and moreover makes the very notion of background strictly re-
lational. Hilbert conceives of geometrical space as a “system of things” deter-
mined by mutual relations between these “things”. A geometrical space so
construed doesn’t depend on its eventual relations with any other geometrical
space. The proposed approach makes any talk of a single self-standing space
senseless. So the sense of being “relational” relevant to the suggested alterna-
tive approach is stronger than that relevant to the Hilbertian approach.

Let me now return to the set of questions discussed in the beginning of
this paper: Are there different geometries or a single science of geometry? If
there exist mutually incompatible geometries how they may coexist?  Where
do different geometrical spaces live together?

The alternative approach just outlined suggests the following answer: all
geometrical spaces live in a “space” of maps between these spaces. The theory
of this “space” unifies theories of particular geometrical spaces into is a general
theory of geometry.

Such a notion that involves a class of “things”, a class of maps between
these “things” and an operation of composition of these maps, which is a sub-
ject to several simple rules, is well-known in today’s mathematics under the
name of category [19]. For example all Riemannian manifolds and all maps
between these manifolds form the category R of Rie-mannian manifolds. There
are two ways of thinking about R. One may have beforehand a notion of Rie-
mannian manifold and a notion of map between such manifolds and then build
R by considering all such manifolds and all such maps. Alternatively one may,
first, conceive of an “abstract” category (without assuming in advance what
exactly it consists of) and then, by specifying the “behavior” of its maps, make
this category look exactly (with an appropriate notion of exactness) like R ob-
tained by the former method. For obvious reason only the latter method is rele-
vant to foundations and can in principle compete with the Hilbertian approach.
The reference to the former method is, in fact, not essential. Although it is natu-
ral to ask whether on not the new method can reproduce an earlier known re-
sult its real purpose is to produce a new notion of geometrical space, which
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may settle some earlier posed problems. The present discussion concerns such
a general notion of space but not a more specific issue of Riemannian mani-
folds, which I mention here only as a suggestive example.

I warn the reader that the terminology used in this paper differs from one
that is commonly used in the Category theory. Recall that I identify a geomet-
rical object with a map from a type to a space; a space here is a “meet” of maps
while a type is a “join” of maps; a join of maps may well be a meet of some
other maps. In the Category theory such types/spaces are called objects (while
maps are also called morphisms). In order to justify this change of terminology
let me stress that a space is not just an object and an object is not just a thing.
An object is a thing represented in a background space. When one talks about
objects without specifying the background one uses some background space by
default. In fact the terms “type” and “space” are already used in a similar sense
in some more special contexts. My types/spaces (i.e. objects in the sense of the
usual terminology) are called (or interpreted as) “types” in the categorical logic
[1] and called (or interpreted as) “spaces” in any geometrical category. The
proposed terminology reflects both these ways of thinking about categories. It
reflects a duality between logic and geometry, which becomes apparent when
one thinks about an object as a map from some given type to some given
space. A map going into the opposite direction turns the given type into a space
and the given space into a type. In order to simplify the terminology I propose
to call these type/spaces by the common name of unit (rather than call them
“objects” as usual).

Recall that Hilbert in his [11] construes the ESPACE as a “system of
things” comprising primitive objects of several sorts and primitive relations of
several sorts that satisfy certain axioms. The alternative approach that I advo-
cate here amounts, roughly, to the replacement of relations by maps. This may
look like a merely technical improvement but in fact it implies a significant
epistemic shift. The ESPACE construed as a category is not a formal scheme:
eplanes, straight lines, points and all its other inhabitants can be conceived of in
the usual intuitive way. Yet in a categorical setting the ESPACE has multiple
images (by appropriate mappings) in arithmetical and other categories, which
in a standard Hilbertain setting are described as different models of ESPACE.
The Hilbertian notion of meta-theory turns to be irrelevant to this new context:
in a categorical setting the “models” ESPACE belong to an extension of the
theory of ESPACE but not to a meta-theory distinguished by its epistemic role.
I shall not try to suggest such a precise categorical construction of ESPACE in
this paper but leave it as a project for the future work.
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7. Conclusion

We have seen that a popular image of the history of geometry of 19th
century based on he Hilbertian view onto this discipline, doesn’t quite fit his-
torical evidences. The idea according to which the discovery of Non-Euclidean
geometries implied a break with the geometrical intuition in favor of a more
abstract mathematical thinking is anachronistic and reflects a later trend, for
which Lobachevsky and other pioneers of the new geometry are not responsible.

Instead of looking at Lobachevsky’s way of translating between different
theories as an early incomplete grasp of the modern notion of model I sug-
gested a different approach, which takes the notion of such an ”incomplete”
translation seriously. Then as it so often happens in history apparent shortcom-
ings of an older work become to look as strokes of genius.

Lobachevsky’s observation that “[t]he geometry on the limiting sphere [=
the horosphere] is exactly the same as on the [Euclidean] plane” was indeed
a great discovery that allowed Lobachevsky to develop an analytic apparatus
appropriate for his brand-new “imaginary geometry”. However unlike Hilbert
and his followers Lobachevsky didn’t interpret this observation in the sense
that the horosphere and the usual Euclidean plane (or more precisely the
eplane) are different intuitive images of the same abstract entity, which must be
ultimately accounted for without using these or other similar images. Actually
one can draw a very different epistemic moral from the same geometrical ob-
servation: since such different objects as the horosphere and the eplane have
the same intrinsic geometry the intrinsic viewpoint is not sufficient for charac-
terizing these objects; this example demonstrates that the intrinsic and the ex-
trinsic viewpoints are equally significant in geometry, so there is no reason to
stress one at the expense of the other. The whole Hilbertian idea of construing
a geometrical space as a self-standing “system of things” (determined by mu-
tual relations between these things) is misleading because geometrical spaces
are collective animals (just like points and straight lines on Hilbert’s own ac-
count!) and any such space is determined by maps from and to some other
spaces.

I don’t claim that Lobachevsky held this modern categorical view on ge-
ometry that I am advocating here. To the best of my knowledge Lobachevsky
never explicitly stressed the controversy between the extrinsic and the intrinsic
viewpoints in geometry (although his expression “the geometry on the limiting
sphere” shows that he was familiar with the notion of intrinsic geometry of a
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surface). However unlike Hilbert he doesn’t say either anything that rules this
modern interpretation out.

It is true that the Axiomatic Method as designed by Hilbert was a great
achievement that allowed, among other things, to cope with Non-Euclidean
geometries in a certain way. It is also true that this method proved effective in
mathematics of 20th century. However this success doesn’t mean that the de-
velopment of our understanding of basic mathematical issues may or should
stop at this point. There emerge new ways of doing mathematics and new ways
of thinking about mathematics, which have a bearing on our understanding of
history of the subject. Reciprocally, a careful study of history of mathematics
may provide useful hints for making further progress in the pure mathematics
and its philosophy. The intellectual revolution triggered by Gauss, Lo-
bachevsky, Riemann and other geometers of 19th century still continues and
requires further theoretical efforts.
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