УДК 547.863:547.944/945 DOI: 10.15372/KhUR20150501

Конъюгаты дигидрокверцетина с 6,7-диметокситетрагидроизохинолином и сальсолидином

Ш. Н. ЖУРАКУЛОВ, М. Г. ЛЕВКОВИЧ, В. И. ВИНОГРАДОВА

Институт химии растительных веществ им. академика С. Ю. Юнусова АН РУз, ул. Мирзо Улугбека, 77, Ташкент 100170 (Узбекистан)

E-mail: j.sherzod.78@mail.ru

(Поступила 13.04.15; после доработки 13.05.15)

Аннотация

По реакции Пикте – Шпенглера из гомовератриламина и формальдегида получен 6,7-диметокси-1,2,3,4тетрагидроизохинолин. Алкалоид сальсолидин выделен из растения *Salsola richteri* Karel. Взаимодействием дигидрокверцетина (ДГК) с 6,7-диметокси-1,2,3,4-тетрагидроизохинолином и сальсолидином по реакции Манниха синтезированы гетероциклические монозамещенные конъюгаты ДГК. Электрофильное замещение происходит только по 6-положению ДГК; образование других продуктов не наблюдалось. Синтез производных проводили в изопропиловом спирте при температуре 20–25 °С и соотношении ДГК/изохинолин/формалин = 1 : 1 : 1.

Ключевые слова: дигидрокверцетин, 6,7-диметокситетрагидроизохинолин, сальсолидин, формалин, Salsola richteri, реакция Манниха

введение

Создание новых лекарственных средств базируется как на направленном синтезе новых препаратов, так и на скрининге биологически активных соединений (БАС), получаемых модификацией молекул известных лекарственных средств.

Среди множества гетероциклических соединений флавоноиды и алкалоиды – одни из важнейших классов природных органических веществ. Особый интерес среди флавоноидов представляет дигидрокверцетин (ДГК) **1** (схема 1), который получают из *Larix sibirica*. Он обладает противовоспалительными, гепатопротекторными, иммунокоррегирующими свойствами и максимальной антиоксидантной активностью [1, 2].

Также следует отметить, что природные изохинолиновые алкалоиды и их синтетические производные характеризуются высокой активностью и входят в состав многих лекарственных препаратов [3, 4].

Конденсированные гетероциклы, включающие изохинолиновый и хромоновый фрагменты, в природе не найдены, поэтому получение и изучение свойств соединений этого ряда представляет теоретический и практический интерес.

Цель данной работы – синтез полифункциональных БАС сочетанием в одной молекуле различных фармакоформных фрагментов ДГК и простых изохинолиновых алкалоидов, обладающих низкой токсичностью и широким спектром биологической активности.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Ранее при аминировании ДГК 1-арил-6,7диметокси-1,2,3,4-тетрагидроизохинолинами,

© Журакулов Ш. Н., Левкович М. Г., Виноградова В. И., 2015

Схема 1.

используя соотношение ДГК/изохинолин/формалин = 1 : 1 : 1, мы получили ряд моно-, дизамещенных конъюгатов и три оксиметильных производных исходных изохинолинов [5].

В продолжение этих исследований осуществлены реакции аминометилирования ДГК **1** 6,7-диметокси-1,2,3,4-тетрагидроизохинолином **2а** и сальсолидином **26** (см. схему 1).

6,7-Диметокси-1,2,3,4-тетрагидроизохинолин **2а** получали по реакции Пикте – Шпенглера, исходя из гомовератриламина и формальдегида, по методике, аналогичной [6]. Алкалоид сальсолидин **26** выделен из растения *Salsola richteri* Karel.

Конъюгаты получали в изопропиловом спирте при температуре 20-25 °C и соотношении ДГК/изохинолин/формалин = 1 : 1 : 1. Выход конъюгатов ДГК составил 91 % для **За** и 78 % для **36**.

Ни в одной из ранее проведенных реакций [5] нам не удалось зафиксировать образование промежуточного комплексного соединения ДГК · амин, выделение которого описано в работах [7–9]. Авторы этих работ подтверждают образование комплекса наличием в его ¹Н ЯМР-спектре сигналов всех протонов ДГК и амина в соотношении 1 : 1.

Следует отметить, что, несмотря на близость строения веществ **2a** и **26**, сальсолидин в изопропиловом спирте давал "комплекс" с ДГК, тогда как в случае с **2a** выпадение комплекса не наблюдалось. Под термином "комплекс" подразумевается осадок, полученный при смешении растворов **26** и ДГК в изопропиловом спирте и промытый последовательно изопропиловым спиртом, этанолом и хлороформом. Каждый из используемых растворителей способен растворять исходный ДГК и сальсолидин, но полученный "комплекс" в них не растворялся. Однако все наши попытки подтвердить спектральными методами (ИК, ПМР) образование комплекса не удались. В ПМР-спектре "комплекса", снятого в ДМСО- d_6 , соотношение протонов ДГК и сальсолидина равно 1 : 1, но отсутствуют видимые смещения сигналов атомов, которые должны участвовать в образовании комплекса. Особенностью спектра "комплекса" стало смещение (исчезновение) сигналов всех гидроксильных протонов ДГК.

Структура полученных веществ доказана на основании данных спектров ИК, ЯМР ¹Н и ¹³С. В ИК-спектрах конъюгатов **За, б** присутствуют интенсивные полосы поглощения гидроксильных групп (3418 см⁻¹) и карбонильной группы (1639–1640 см⁻¹) дигидрокверцетинового фрагмента.

В ¹Н ЯМР-спектрах полученных соединений **3a** и **36** нет сигналов протонов гидроксильных групп и H-6 ДГК-фрагмента. Отсутствие последнего свидетельствует об электрофильном его замещении. Характерные для ДГКфрагмента метиновые протоны H-2 и H-3 резонируют при 4.90 и 4.41–4.42 м. д. соответственно в виде дублет-дублетов, а H-8 проявляется в виде синглета при 5.69–5.74 м. д. Протоны метоксильных групп тетрагидроизохинолиновой части молекулы дают сигналы при 3.63–3.66 м. д., ароматические протоны H-5, H-6 – при 6.62–6.65 м. д. в виде синглетов.

Сравнительный анализ данных, полученных нами в работе [5] и в этом исследовании, подтверждает, что направление протекания реакций и выход конъюгатов при соотношении компонентов, равном 1 : 1 : 1 (ДГК/амин/формальдегид), зависят от строения изохинолинов. При использовании изохинолинов **2а,6** реакция шла только по 6-положению ДГК, образование других продуктов не наблюдалось.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК-спектры записывали на приборе FTIR system 2000 (фирма Perkin-Elmer) в таблетках с KBr; ¹H ЯМР-спектры регистрировали на спектрометре UNITY-400 (растворитель – DMSO- d_6 , внутренний стандарт – ГМДС). Значения R_f определены на пластинах силикагеля LS 5/40 с использованием систем растворителей хлороформ/метанол I (4 : 1), II (6 : 1).

Температуры плавления всех синтезированных веществ определены на микростолике Boetius.

Получение 6,7-диметокси-1,2,3,4-тетрагидроизохинолина 2а. К раствору 3,4-диметоксифенилэтиламина (5.05 г, 0.028 моль/л) в бензоле (40 мл) добавили 3 мл 25 % формалина и кипятили в течение 2 ч с насадкой Дина -Старка до окончания отделения воды. Растворитель отогнали, к полученному имину прибавили трифторуксусную кислоту (10-15 мл) и нагревали на водяной бане примерно 3 ч. Окончание реакции контролировали ТСХ. Далее реакционную смесь охлаждали и подщелачивали аммиаком до рН 9-10, затем амин исчерпывающе экстрагировали хлороформом. После отгонки хлороформа сырой продукт очищали получением хлоргидрата. Выход 4.84 г (90%), т. пл. хлоргидрата 263-266 °С (из ацетона), $R_{\rm f} = 0.3$ (система I).

Спектр ЯМР ¹Н (400 МГц, CDCl₃, δ , м. д.; J, Гц): 1.99 (1H, уш. с, NH), 2.65 (2H, т, J = 5.9, H-4), 3.05 (2H, т, J = 5.9, H-3), 3.77 (3H, с, 7-ОСН₃), 3.78 (3H, с, 6-ОСН₃), 3.88 (2H, c, H-1), 6.45 (1H, с, H-8), 6.51 (1H, с, H-5).

Получение 2-(3,4-дигидроксифенил)-6-((6,7-диметокси-1,2,3,4-тетрагидроизохинолин-2(1H)-ил)метил)-3,5,7-тригидроксихроман-4-она (3а). К раствору 0.13 г (0.667 ммоль) 6,7-диметокси-1,2,3,4-тетрагидроизохинолина в 5 мл изопропилового спирта прибавляли по каплям раствор дигидрокверцетина (0.2 г, 0.667 ммоль) в 5 мл изо-пропилового спирта при перемешивании в течение 10 мин. Реакционную смесь перемешивали в течение 30 мин при 20-25 °C, затем по каплям добавили 0.06 мл (0.667 ммоль) 30 % раствора формалина (d = 1.092). Сразу же началось выпадение осадка. Реакционную смесь перемешивали еще 2 ч и оставляли при комнатной температуре на 10 ч. Контроль за ходом реакции осуществляли методом TCX. Затем осадок отфильтровали, промыли изопропиловым спиртом, смесями гексан/эфир (1:1), хлороформ/эфир (1:1), хлороформом и метанолом. В бензоле и диоксане осадок осмолялся.

Выход соединения **За** составил 0.32 г (91 %), т. пл. 187–190 °С (из изопропилового спирта), $R_{\rm f}=0.57$ (система II).

Спектр ЯМР ¹Н (400 МГц, DMSO- d_6 , δ , м. д.; J, Гц): а) дигидрокверцетиновый фрагмент: 3.72 (2H, сигнал перекрыт, N-CH₂), 4.42 (1H, д, J = 11.0, H-3), 4.90 (1H, д, J = 11.0, H-2), 5.74 (1H, c, H-8), 6.69 (2H, c, H-5', 6'), 6.82 (1H, c, H-2');

б) 6,7-диметокси-1,2,3,4-тетрагидроизохинолиновый фрагмент: 2.73 (2H, м, H-4), 2.83 (2H, м, H-3), 3.63 (3H, с, 7-ОСН₃), 3.65 (3H, с, 6-ОСН₃), 3.80 (2H, с, H-1), 6.62 (1H, с, H-8), 6.65 (1H, с, H-5).

Спектр ЯМР ¹³С; δ , м. д.: а) дигидрокверцетиновый фрагмент: 48.66 (CH₂-N), 71.92 (C-3), 83.39 (C-2), 96.21 (C-8), 99.51 (C-6), 100.21 (C-8a), 115.55 (C-2'), 115.80 (C-5'), 119.81 (C-6'), 128.64 (C-1'), 145.38 (C-3'), 146.18 (C-4'), 160.99 (C-4a), 162.10 (C-5), 171.54 (C-7), 197.40 (C-4); 6) 6,7-диметокси-1,2,3,4-тетрагидроизохинолиновый фрагмент: 20.06 (C-4), 24.55 (C-1), 42.78 (C-3), 55.11 (6-OCH₃), 55.14 (7-OCH₃), 111.56 (C-8), 115.40 (C-5), 124.50 (C-8a), 127.85 (C-4a), 145.76 (C-6), 146.89 (C-7).

ИК-спектр (КВг, v_{max} , см⁻¹): 3418 (ОН), 1640 (С=О), 1519, 1452 (С=С), 1262 (С-О).

Дигидрокверцетин (1). Спектр ЯМР ¹H (400 МГц, DMSO- d_6 , δ , м. д.; J, Гц): 4.44 (1H, дд, J = 6.0, 11.2, H-3), 4.92 (1H, д, J = 11.2, H-2), 5.71 (1H, д, J = 6.0, 3-OH), 5.80 (1H, д, J = 2.4, H-6), 5.85 (1H, д, J = 2.4, H-8), 6.68 (2H, c, H-5', 6'), 6.81 (1H, д, J = 1.2, H-2'), 8.94 (1H, c, 3'-OH), 8.99 (1H, c, 4'-OH), 10.79 (1H, c, 5'-OH).

Сальсолидин (26). Спектр ЯМР ¹Н (400 МГц, DMSO- d_6 , δ , м. д.; J, Гц): 1.31 (3H, д, J = 6.6, 1-CH₃), 2.53 (1H, дт, J = 4.2, 14.8, H_a-4), 2.65 (1H, ддд, J = 4.9, 7.9, 14.8, H_e-4), 2.77 (1H, ддд, J = 4.2, 7.9, 12.0, H_a-3), 3.04 (1H, тд, J = 4.2, 12.0, H_e-3), 3.68 (3H, c,

7-ОСН₃), 3.69 (3H, c, 6-ОСН₃), 3.88 (1H, кв, J = 6.6, H-1), 6.60 (1H, c, H-8), 6.67 (1H, c, H-5).

Комплекс дигидрокверцетин – сальсолидин. Спектр ЯМР ¹Н (400 МГц, DMSO- d_6 , δ , м. д., J, Гц): а) дигидрокверцетиновый фрагмент: 4.39 (1H, д, J = 11.0, H-3), 4.87 (1H, д, J = 11.0, H-2), 5.69 (1H, д, J = 1.9, H-6), 5.74 (1H, д, J = 2.0, H-8), 6.67 (2H, c, H-5', 6'), 6.81 (1H, c, H-2');

б) сальсолидиновый фрагмент: 1.29 (3H, д, J = 6.6, 1-CH₃), 2.52 (1H, дт, $J = 5.2, 16.0, H_a$ -4), 2.63 (1H, тд, $J = 5.4, 16.0, H_e$ -4), 2.79 (1H, ддд, $J = 5.0, 8.2, 12.4, H_a$ -3), 3.05 (1H, тд, $J = 5.2, 12.4, H_e$ -3), 3.64 (3H, c, 7-OCH₃), 3.64 (3H, c, 6-OCH₃), 3.91 (1H, кв, J = 6.6, H-1), 6.57 (1H, c, H-8), 6.64(1H, c, H-5).

2-(3,4-Дигидроксифенил)-6-(6,7-диметокси-1-метил-1,2,3,4-тетрагидроизохинолин-2(1Н)-ил)метил)-3,5,7-тригидроксихроман-4он (36). К раствору 0.25 г (1.207 ммоль) сальсолидина в 5 мл изопропилового спирта при перемешивании прибавляли по каплям раствор ДГК (0.367 г, 1.207 ммоль). Сразу же выпадал осадок, который отфильтровывали, промыли изопропиловым спиртом, этанолом, смесью хлороформ/эфир = 1:1, хлороформом и метиловом спиртом. К взвеси полученного осадка в изопропиловом спирте при перемешивании по каплям добавили 0.11 мл (1.207 ммоль) 30 % раствора формалина (d =1.092). Реакционную смесь перемешивали еще в течение 2 ч и оставляли при комнатной температуре на 10 ч. Затем осадок отфильтровали, промыли изопропиловым спиртом, смесями гексан/ эфир (1:1), хлороформ/эфир (1:1), хлороформом и метанолом. Выход 0.49 г (78 %), т. пл. 198-201 °С, $R_{\rm f} = 0.71$ (система I).

Спектр ЯМР ¹Н (400 МГц, DMSO-*d*₆, δ, м. д.; *J*, Гц): а) дигидрокверцетиновый фрагмент: 3.89 (2H, c, N–CH₂), 4.41 (1H, д, *J* = 11.0, H-3), 4.90 (1H, д, *J* = 11.0, H-2), 5.69 (1H, c, H-8), 6.68 (2H, c, H-5', 6'), 6.81 (1H, c, H-2'), 8.95 (каждый 1H, уш. c, 3', 4'-OH); б) сальсолидиновый фрагмент: 1.32 (3H, д, J = 6.6, 1-CH₃), 2.58 (1H, м, H_a-4), 2.83 (2H, м, H-4_e, 3_a), 3.11 (2H, м, H_e-3, H-1), 3.65 (3H, с, 7-OCH₃), 3.66 (3H, с, 6-OCH₃), 6.65 (1H, с, H-8), 6.66 (1H, с, H-5).

ИК-спектр (КВг, v_{max} , см⁻¹): 3418 (ОН), 1639 (С=О), 1519, 1446 (С=С), 1281 (С-О).

ЗАКЛЮЧЕНИЕ

Таким образом, взаимодействием ДГК с 6,7-диметокси-1,2,3,4-тетрагидроизохинолином и сальсолидином по реакции Манниха синтезированы гетероциклические монозамещенные конъюгаты ДГК. Следует отметить, что, несмотря на близость строения веществ **2a** и **26**, сальсолидин в изопропиловом спирте давал "комплекс" с ДГК, тогда как в случае с **2a** выпадения комплекса не наблюдалось.

При использовании изохинолинов **2а,6** реакция шла только по 6-положению ДГК, другие продукты не образовывались.

СПИСОК ЛИТЕРАТУРЫ

- 1 Бабкин В. А., Остроухова Л. А., Малков Ю. А. // Химия уст. разв. 2001. Т. 9, № 3. С. 363.
- 2 Weidmann A. E. // Eur. J. Pharm. 2012. Vol. 684. P. 19.
- 3 Исраилов И. А. Итоги исследования алкалоидоносных растений. / отв. ред. Х. А. Арипов. Ташкент: Фан, 1993. С. 125–260.
- 4 Машковский М. Д. Лекарственные средства. Ташкент: Изд-во мед. лит-ры, 1998.
- 5 Zhurakulov Sh. N., Babkin V. A., Chernyak E. I., Morozov S. V., Grigorev I. A., Levkovich M. G., Vinogradova V. I. // Chem. Nat. Comp. 2015. Vol. 51, No. 1. P. 57-61.
- 6 Zhurakulov Sh. N., Vinogradova V. I., Levkovich M. G. // Chem. Nat. Comp. 2013. Vol. 49, No. 1. P. 70-74.
- 7 Нифантьев Э. Е., Мосюров С. Е., Кухарева Т. С., Васянина Л. К. // Докл. РАН. 2013. Т. 451, № 4. С. 404-407.
- 8 Нифантьев Э. Е., Мосюров С. Е., Кухарева Т. С., Васянина Л. К. // Докл. РАН. 2013. Т. 448, № 1. С. 51–55.
- 9 Кухарева Т. С., Краснова В. А., Нифантьев Э. Е. // Журн. общ. химии. 2005. Т. 75, вып. 10. С. 1628-1630.