УДК 539:374:629.7

УСТОЙЧИВОСТЬ, ТРАЕКТОРИИ И ДИНАМИЧЕСКИЙ ИЗГИБ ЗАТУПЛЕННОГО ТЕЛА ВРАЩЕНИЯ ПРИ ПРОНИКАНИИ В УПРУГОПЛАСТИЧЕСКУЮ СРЕДУ

И. В. Симонов, К. Ю. Осипенко

Институт проблем механики РАН, 119526 Москва

Исследуется глубокое проникание в малопрочную среду тонкого тела с затуплением носовой и тыльной частей. На основе физической модели отрывного несимметричного обтекания тела и метода локального взаимодействия движение тела описывается системой автономных дифференциально-интегральных уравнений. Проведен аналитический расчет границы устойчивости прямолинейного движения в смысле Ляпунова для тел с параболическим меридианом. Зависимость устойчивости движения тела от различных параметров изучается численно. Построены траектории криволинейного движения в области неустойчивости и подтверждена классификация траекторий, предложенная ранее при изучении движения заостренных тел. Показана возможность обратного выброса при входе затупленного ударника в полубесконечную мишень. Установлена принципиальная возможность реализации траектории, близкой к заданной, а также слабая зависимость характеристик движения с развитым отрывом от угла отрыва. Приведены примеры расчета эволюции боковой нагрузки, перерезывающей силы и момента, а также запаса прочности тела по теории динамического изгиба неоднородного стержня.

Ключевые слова: проникание, ударник, упругопластическая среда, траектории движения, отрыв потока, устойчивость.

Введение. Ранее аналитически изучалось прямое проникание тел вращения [1–3] с учетом кавитации и численно — неодномерные движения [4]. Предложены технологии, основанные на явлении глубокого проникания: научные станции для изучения внеземных объектов [5, 6], управляемое воздействие на вулканическую и сейсмическую деятельность [7]. В связи с этим расчет процесса проникания, оптимизация формы тела и анализ устойчивости его движения становятся принципиально важными.

В гидродинамике отрыв потока и устойчивость движения относятся к числу фундаментальных проблем. Из-за сложной природы сил взаимодействия и кавитационного характера обтекания даже при малых скоростях исследование неодномерных движений тел в прочных средах является нетривиальным и решение таких задач в точной постановке в настоящее время невозможно [1]. Численные методы решения задач в точной постановке эффективны при изучении начальной стадии удара и погружения, но из-за большого числа параметров и определяющих функций результаты имеют имитационный характер и малопригодны для выявления общих закономерностей. Кроме того, из-за низкой точности измерений и нестабильности динамических свойств материалов, особенно геологических сред, требования к точности моделирования могут быть понижены. Поэтому оправданны приближенные подходы, основанные на феноменологическом описании взаимодействия среды и тела при соответствующей "калибровке" модели.

146

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (код проекта 02-01-00259).

В данной работе рассмотрена физическая модель отрывного обтекания тела средой, основанная на анализе локального взаимодействия [8] (в математике — методе изолированного элемента). Явное задание коэффициентов как функций параметров среды на базе асимптотически точных решений [9, 10] и результатов экспериментов [11, 12] позволило оценить коэффициенты, провести асимптотический анализ и максимально упростить систему автономных дифференциально-интегральных уравнений движения тела, разрешенных относительно производных, для которой ставится задача Коши. Для тел параболической формы проведен аналитический расчет границы устойчивости прямолинейного движения в смысле Ляпунова (в общем виде эта задача решена в [13]). Численно изучается зависимость устойчивости движения тела от величин начальных отклонений от условий нормального входа, "замороженной" осевой скорости, формы тела, угла отрыва (параметра, входящего в эмпирический критерий отрыва) и положения центра масс тела при сопоставлении с критериями устойчивости в малом. Построены траектории криволинейного движения в области неустойчивости с учетом торможения и подтверждена классификация траекторий, предложенная в [14] при изучении движения заостренных тел. Показана возможность обратного выброса при входе затупленного ударника в полубесконечную мишень, ранее обнаруженного в неопубликованных экспериментах Ю. К. Бивина.

Гипотеза отрыва основана на наблюдениях движений тел в малопрочных средах: идеальный отрыв происходит в миделевом сечении при малых скоростях; с ростом скорости, а также при наличии начальных напряжений вводится эмпирический угол отрыва. Интервал исследуемых скоростей определяется одним порядком вкладов гидродинамического и прочностного сопротивления. В этом случае имеет место глубокое (значительно превышающее длину тела) проникание высокопрочного массивного тонкого ударника.

1. Физическое описание и гипотезы. Удлиненное затупленное тело вращения движется по инерции в безграничной изотропной и однородной упругопластической среде. В качестве масштаба длины в продольном и поперечном направлениях принимаются длина тела L и его максимальный радиус r_{max} соответственно. Безразмерное уравнение меридиана запишем в цилиндрической системе координат $(R, \varphi, l): R = R(l) = r/r_{\text{max}}$, жестко связанной с телом и с местной прямоугольной системой координат: $x = l_c - l, y = R \cos \varphi$, $z = R \sin \varphi$ $(l - \text{расстояние от носика тела; } R_0 \leq R \leq 1; 0 \leq l \leq 1; R_0 - \text{радиус затупле$ $ния; } l = l_c, R = 0$ — координаты центра масс). Условия тонкого тела

$$\varepsilon = r_{\max}/L \ll 1, \qquad \varepsilon \beta \ll 1, \qquad \beta = R' = dR/dl, \qquad l_n < l < 1$$
 (1)

выполняются везде, за исключением малой окрестности носовой части при $0 \leq l \leq l_n \ll 1$, которая в расчетах не учитывается.

В начальный момент времени t = 0 заданы вектор скорости v_0 центра масс тела и угловая скорость вращения Ω_0 относительно этого центра. Полагаем, что вращение начинается в плоскости, образованной вектором скорости v_0 и осью тела (рыскание и другие вращения отсутствуют). Тогда траектории движения точек тела будут плоскими, если его динамические свойства обладают осевой симметрией.

Обозначим $\boldsymbol{v} = (v_x, v_y, 0), \boldsymbol{\Omega} = (0, 0, \Omega), \boldsymbol{V} = \boldsymbol{v} + \boldsymbol{\Omega} \times (x, y, z), V_n = \boldsymbol{n} \boldsymbol{V} = \varepsilon \, \delta v_x$ векторы текущих переносной, угловой, полной и нормальной к поверхности тела скоростей (\boldsymbol{n} — единичная нормаль к поверхности)

$$\delta = \beta - a\cos\varphi, \qquad a = -\omega x - \eta, \qquad \omega = \Omega L/(\varepsilon v_x), \qquad \eta = v_y/(\varepsilon v_x). \tag{2}$$

Безразмерные угловая скорость ω и угол атаки η нормированы так, что в строящейся асимптотически точной модели могут принимать значения O(1) с погрешностью $O(\varepsilon^2)$. Массу тела m выразим через безразмерную длину эквивалентного по массе и миделеву сечению цилиндра l_e и среднюю плотность тела ρ_1 : $m = \pi r_{\max}^2 L l_e \rho_1$. Несжимаемую среду будем характеризовать плотностью ρ_0 , модулем сдвига μ и динамическим пределом

Рис. 1. Схема обтекания затупленного тела упругопластической средой

текучести Мизеса τ_d . Для пластически сжимаемых (пористых) сред можно считать, что среда становится сплошной на значительном расстоянии от тела с плотностью ρ_0 в этом состоянии.

Согласно результатам [9, 10] около контура образуется пластическая зона "большого" характерного размера $\sqrt{\mu/\tau_d} R(l)$. Вблизи контура наблюдаются интенсивное сдвиговое течение и отрыв потока. При малых скоростях наблюдаются вязкие пристенные эффекты. При умеренных (более 1 м/с для влажных глинистых сред) и высоких скоростях материал скользит вдоль стенок ударника, и результаты теории и эксперимента согласуются при выборе закона пластического трения [11, 12]. Согласно модели [13] отрыв возникает, когда угол наклона элемента поверхности тела к вектору скорости потока на бесконечности достигает критического значения [12]

$$\delta^* \equiv \delta - \beta_*(\sigma_{ij}^0, V) = 0. \tag{3}$$

При дозвуковых скоростях, пока инерционное движение среды несущественно, отрыв идеальный и происходит вблизи задней границы тела в миделевом сечении ($\beta_* = 0$). С увеличением скорости угол отрыва увеличивается и уменьшается с ростом начальных сжимающих напряжений σ_{ij}^0 в среде. В [15] предложена простая методика определения β_* в эксперименте.

Будем различать зону смачивания S_+ ($\delta^* > 0$) и зону отрыва S_- ($\delta^* < 0$), где напряжения равны нулю; $S = S_+ + S_-$ — полная поверхность тела (рис. 1). Ограничимся изучением режимов без присоединения струй. Влиянием начальных напряжений и присоединенной массы на результирующие силы будем пренебрегать [11, 12].

Разобьем поверхность S на элементы, которые аппроксимируем поверхностью одной из канонических форм (сфера, конус, цилиндр). Вектор контактных напряжений Σ на смоченном элементе поверхности тела определим согласно модели локального взаимодействия [8] (подтвержденной теоретически [9] и экспериментально [11, 12]) суммой вкладов гидродинамического и прочностного слагаемых:

$$S_+$$
: $\Sigma = \tau_S \boldsymbol{n}_{\tau} - \sigma_n \boldsymbol{n}, \quad \sigma_n = C_x \rho_0 V^2 / 2 + b \tau_d, \qquad S_-$: $\Sigma = 0.$

Здесь $\tau_S = \text{const} \leqslant \tau_d$ — закон пластического трения; \mathbf{n}_{τ} — единичный вектор в направлении скольжения (в рассматриваемом приближении $\mathbf{n}_{\tau} = (-1, 0, 0)$); $\sigma_n > 0$ — контактное давление. Коэффициенты C_x и *b* можно варьировать, задавая их из экспериментов или из решений модельных задач обтекания. Так, на пологих участках боковой поверхности S_f , где $\delta \ll 1$, примем [9]

$$C_x(S_f) = C_f \delta^2 \varepsilon^2, \qquad C_f = \ln(\mu/\tau_d) + 2{,}55, \qquad b = b_f = \ln(4\mu/\tau_d) - 1$$

Квадратичный закон справедлив до значений $C_x \leq 0.2$, а формулы для C_f , b_f получены из решения задачи о тонком конусе при условии $\varepsilon \delta \ll (\tau_d/\mu)^{1/2}$ ($\varepsilon \delta < 10^{-2}$). В области $\varepsilon \delta \sim 10^{-1}$ можно принять согласованное с экспериментами [12] значение $C_f = 2.9$. Как

следствие приближенности модели физическое условие отрыва $\sigma_n = 0$ оказывается нарушенным, так как под σ_n здесь понимается среднее значение на элементе поверхности.

Лобовая поверхность S_{\perp} при $0 \leq l \leq l_n$ и небольших возмущениях полностью смочена, и на ней как на едином элементе $C_x = C_{\perp}$, $b = b_{\perp}$. Для конусов с полууглами раствора $15 \div 90^{\circ}$ коэффициент $C_x = 0.18 \div 0.82$ (дозвуковые скорости) близок к его гидродинамическому значению [12], а значение *b* слабо зависит от формы (изменяется лишь на 8 %) и составляет приблизительно 2/3 значения *b*, рассчитанного по формуле для максимального нормального напряжения в точке торможения упругопластического потока, обтекающего шар [10] (точная формула для случая шара и цилиндра приведена в [15]). Типичные значения $\mu/\tau_d = 10^2 \div 10^3$, поэтому $b_f = 5 \div 8$, $b_{\perp} = 16 \div 24$ при $\delta > 0.1$. Для случая сверхзвукового проникания в пористую среду давление на конусе найдено в [16].

Предел текучести τ_d как параметр процесса в 1,5–2 раза больше его статического значения [11, 12] и перестает зависеть от скорости нагружения при скоростях выше 1 м/с для ряда геологических сред. Причинами различия τ_d и τ_S могут быть разогрев среды около контура из-за трения или принудительного нагревания тела вплоть до плавления (испарения).

В модели фактически остался неопределенным только один параметр — угол отрыва β_* ; его влияние будем изучать параметрически. Кроме того, поскольку ряд допущений не имеет достаточного обоснования, рекомендуется уточнение значений C_f , b_f , τ_d , τ_S на основе контрольных экспериментов.

2. Математическая постановка задачи. Введем безразмерные переменные и параметры:

$$\begin{aligned} & \mathscr{X} = \frac{c^2}{v_x^2}, \qquad \xi = \int \frac{v_x \, dt}{L}, \qquad c^2 = \frac{2b_f \tau_d}{\varepsilon^2 \rho_0 C_f}, \\ & D = \frac{\rho C_f}{2\pi l_e}, \quad \rho = \frac{\rho_0}{\rho_1}, \quad j_0 = \frac{mL^2}{J}, \quad \tau = \frac{\tau_S}{\varepsilon b_f \tau_d}, \quad A_1 = \pi R_0^2 \frac{DC_\perp}{\varepsilon^2 C_f}, \quad A_2 = \pi D R_0^2 \frac{b_\perp}{b_f} \end{aligned}$$
(4)

(*J* — главный момент инерции поперечного вращения).

Для функций x, η, ω , определенных в (2), (4), система уравнений движения тела приводится к автономной системе дифференциально-интегральных уравнений, разрешенной относительно обыкновенных производных, и для нее ставится задача Коши

$$\begin{aligned} \boldsymbol{x}' &= 2\boldsymbol{x}\boldsymbol{\varepsilon}^2(A_1 + A_2\boldsymbol{x} + f_{\boldsymbol{x}} - \omega\boldsymbol{\eta}), \qquad \boldsymbol{\eta}' &= f_{\boldsymbol{\eta}} - \omega, \qquad \boldsymbol{\omega}' = j_0 f_{\boldsymbol{\omega}}, \\ \boldsymbol{x} &= (\boldsymbol{x}, \boldsymbol{\eta}, \boldsymbol{\omega}) = \boldsymbol{x}_0, \qquad \boldsymbol{\xi} = 0; \end{aligned}$$
(5)

$$\boldsymbol{f} = (f_{x}, f_{\eta}, f_{\omega}) = D \int_{S_{+}} (\tau x + \beta \sigma, -\sigma \cos \varphi, -\sigma x \cos \varphi) R \, dl \, d\varphi,$$

$$f_{x} = D \int_{0}^{1} \Theta R \, dl, \qquad (f_{\eta}, f_{\omega}) = D \int_{0}^{1} (1, l_{c} - l) \Phi R \, dl,$$

$$\Theta = \varphi_{0} \Theta_{1} + \Theta_{2}, \qquad \Phi = 2a\beta\varphi_{0} + \Psi \operatorname{sgn} a, \qquad 0 < l < 1,$$

$$\Theta_{1} = 2(x\tau + x\beta + \beta^{3}) + \beta a^{2}, \qquad \Theta_{2} = \beta |a|(4\beta - \beta^{*})\sqrt{1 - q^{2}}H(1 - q)^{2},$$

$$\Psi = [2x + \beta^{2} + a^{2}(2 + q^{2})/3 - \beta\beta^{*}]\sqrt{1 - q^{2}}H(1 - q)^{2}, \qquad q = \beta^{*}/a,$$

$$\varphi_{0} = \begin{cases} \pi, & q \operatorname{sgn} a \ge 1, \\ 0, & q \operatorname{sgn} a \leqslant -1, \end{cases} \qquad \varphi_{0} = \begin{cases} \pi - \varphi^{*}, & a > 0, \ |q| < 1, \\ \varphi^{*}, & a < 0, \ |q| < 1, \end{cases}$$

$$\sigma = x + \delta^{2}, \qquad \beta^{*} = \beta - \beta_{*}, \qquad \varphi^{*} = \arccos q,$$

$$(6)$$

где H — ступенчатая функция; штрих означает производную по ξ . В выражениях для равнодействующих (6), где отброшены величины $O(\varepsilon^2)$, при условиях (1) удается провести интегрирование по углу φ , так что остаются только одинарные интегралы. Тем не менее правые части уравнений (5) нелинейны.

Решения уравнения (3) $\varphi^* = \arccos(\beta^*/a)$ определяют симметричные относительно меридианов $\varphi = 0, \pi$ границы зон отрыва с экстремумами на этих меридианах. Формулы для обобщенных распределенных нагрузок Θ и Φ описывают все случаи обтекания произвольной параллели: безотрывное обтекание ($\varphi_0 = \pi$), полный ($\varphi_0 = 0$) или частичный ($\varphi_0 \neq 0, \pi$) отрыв.

Неизвестные функции \mathfrak{E} , η , ω зависят от формы тела и восьми безразмерных параметров. Величину \mathfrak{E} можно охарактеризовать как отношение прочностного сопротивления к скоростному напору. При движении тела она изменяется в пределах $\mathfrak{E}_0 < \mathfrak{E} < \infty$, при этом решение задачи (5) асимптотически описывает почти все этапы замедленного движения тела. При $\mathfrak{E} \ll 1$ преобладает инерция. Этим значениям \mathfrak{E} соответствует область значительных сверхзвуковых скоростей, где модель взаимодействия (6) становится непригодной, а проникание сопровождается разрушением самого тонкого тела. При $\mathfrak{E} \gg 1$ можно пренебречь влиянием инерции при вычислении равнодействующих. Поэтому считаем $\mathfrak{E}_0 = O(1)$. Порядок величины \mathfrak{E} определяется не только скоростью, но и прочностью среды, при этом можно получить значение $\mathfrak{E}_0 = O(1)$ и при достаточно малых скоростях движения. Для грунта средней динамической прочности ($\tau_d = 5 \cdot 10^6$ Па) значению $\mathfrak{E} \approx 1$ соответствует скорость конического (15°) ударника $V \approx 700$ м/с.

Задача Копи (5), (6) решалась численно методом Рунге — Кутты. Интегралы вычислялись методом трапеций с учетом сложного аналитического поведения подынтегральных функций (разрывы, области типа пограничного слоя). Ограничимся заданием меридиана тела в виде сегмента параболы

$$R(l) = R_0 + (1 - R_0)[\beta_0 l - (\beta_0 - 1)l^2],$$

$$\beta(l) = (1 - R_0)[\beta_0 - 2(\beta_0 - 1)l], \quad 0 < l < 1.$$
(7)

Тело имеет дискообразное затупление радиуса R_0 с углом при вершине $\beta_0(1 - R_0)$. Зафиксируем значения $\varepsilon = 0,065, C_{\perp} = 0,82$ и будем варьировать параметры $\varpi_0, \beta_0, \beta_*, D, \tau, j, l_c$.

Для исследования устойчивости прямолинейного движения тела проведена серия вычислений при "замороженной" осевой скорости $\mathscr{X} = \text{const.}$ Математически "замораживание" оправданно разным асимптотическим порядком правых частей уравнений (5): $O(\varepsilon^2)$ в уравнении для \mathscr{X} и O(1) в остальных уравнениях, что означает для тонкого тела преобладание бокового сопротивления над осевым. В действительности такое движение возможно при приложении внешней компенсирующей следящей силы.

Учитывался вход в полупространство без всплеска, что оказывает влияние на положение точек бифуркации решения при конечных возмущениях.

3. Размер зоны отрыва и критерий отрыва в малом. Рассмотрим тела с отрывом, локализованным вблизи тыльной точки l = 1, при $\beta_* = \beta_1 = \beta(1)$. Максимальную длину Δ зоны отрыва на меридианах $\varphi = 0$ (знак "+") или $\varphi = \pi$ (знак "-") для формы тела (7) определим из уравнения (3):

$$\Delta = \frac{(b_0 - 2)(1 - R_0) + \beta_* \pm (1 - l_c)\omega \mp \eta}{2(b_0 - 1)(1 - R_0) \pm \omega}, \qquad |\omega| < 2$$

при условии $0 \leq \Delta \leq 1$. Если оба корня находятся вне указанного промежутка, то путем исследования неравенства $\delta^* < 0$ на наличие зоны отрыва определяется, $\Delta = 0$ или $\Delta = 1$. При $\beta_* \leq \beta_1$ и малых возмущениях зона отрыва локализована вблизи границы отрыва при симметричном обтекании $l = l_*$: $\beta(l_*) = \beta_*$.

Рис. 2. Зависимость критических значений положения центра масс от радиуса затупления при x = 2: $1 - D_0 = 0.01$; $2 - D_0 = 0.2$; $3 - D_0 = 0.5$

Критическое значение положения центра масс l_s находится из анализа устойчивости в малом [1] с учетом малых несимметричных зон отрыва вблизи некоторой параллели $l = l_*$:

$$l_{s} = \frac{A_{0}A_{2} - A_{1}^{2} + \zeta A_{1}}{\zeta A_{0}}, \qquad A_{m} = p_{m} + l_{*,m}\psi, \qquad \zeta = \frac{2l_{e}(R_{0})}{\rho C_{f}} = \frac{1}{\pi D},$$

$$D = D_{0} \frac{l_{e}(0)}{l_{e}(R_{0})}, \qquad \psi = \frac{x + \beta_{*}^{2}}{e_{0}|\beta'(l_{*})|} R(l_{*}), \qquad e_{0} = \begin{cases} 2, & \beta_{*} = \beta_{1}, & l_{*} = 1, \\ 1, & \beta_{*} < \beta_{1}, & l_{*} < 1, \end{cases}$$

$$p_{m} = 2 \int_{0}^{l_{*}} l_{m}R(l) dR(l), \qquad m = 0, 1, 2,$$

$$l_{e} = \int_{0}^{1} R^{2}(l) dl = R_{0}^{2} + 2R_{0}(1 - R_{0}) \left(\frac{b_{0}}{2} - \frac{b_{2}}{3}\right) + (1 - R_{0})^{2} \left(\frac{b_{0}^{2}}{3} - \frac{b_{0}b_{2}}{2} + \frac{b_{2}^{2}}{5}\right).$$
(8)

При $\varepsilon_0 = 1 - R_0 \to 0$ справедлива асимптотика $l_s \to 1 + \varepsilon_0/\zeta(1) + O(\varepsilon_0^2)$: значения $l_s > 1$ слева в окрестности точки $R_0 = 1$. Это согласуется с утверждением об абсолютной устойчивости цилиндра и вообще тел, асимптотически близких к цилиндру, вблизи тыльной точки $(\beta'(1) = \beta''(1) = 0)$ [13, 15]. Деградация метода Ляпунова объясняется тем, что для образования малых зон отрыва вблизи тыльных точек такого тела при $R_0 \to 1$ требуются предельно малые возмущения η, ω , а при $R_0 = 1$ сколь угодно малые возмущения приводят к появлению несимметричных пятен отрыва конечной площади.

Расчеты по формуле (8) показали, что ход кривых $l_s = l_s(R_0)$ немонотонный: при $R_0 > 0.85$ имеется максимум, после которого кривые выходят на указанную выше асимптотику (рис. 2). Следует отметить, что значениям $D_0 = 0.11$; 0.26; 0.44 соответствует проникание ударников из вольфрамового сплава, стали и титана в глинистую среду ($\rho_0 = 1.65 \text{ г/см}^3$). Расчеты показывают, что чем больше D_0 (легче тело), тем больше запас устойчивости (рис. 2).

Можно доказать утверждение, что для тел с возрастающей зависимостью R(l) запас устойчивости растет с увеличением относительной плотности ρ как при сплошном, так и при отрывном обтекании.

Рис. 3. Эффект вычислительной неустойчивости решения вблизи точки бифуркания $l_c = l_i$ ($l_c = 0.58795$; $x_0 = 1$; $\omega_0 = -\eta_0 = 0.4$; $R_0 = 0.4$; $D_0 = 0.115$; $\tau = 1.1$): $1 - N_l = 400$; $2 - N_l = 800$; $3 - N_l = 1600$

4. Устойчивость в большом. Как и в случае заостренных тел [14], в численном эксперименте наблюдается бифуркация решения на некоторой поверхности

$$l_i = l_i(x_0, b_0, \ldots), \qquad l_a(x, b_0, \ldots) \le l_i \le l_s(x, b_0, \ldots)$$

в фазовом пространстве параметров: возмущения затухают при $l_c < l_i$ и растут при $l_c > l_i$ (экспоненциально, если они малы). При $l_c < l_a$ (l_a — абсолютное критическое значение) возмущения затухают, а при $l_c > l_s$ растут при любых начальных условиях. Значение l_i при уменьшении возмущений стремится снизу к пределу l_s согласно критерию устойчивости в малом (8). При изменении R_0 на отрезке $0 \div 0.7$ с шагом 0.1 и фиксированных значениях $D_0 = 0.115, b_0 = 2, \beta_* = 0, j = 5.5$ $l_i = 0.61256; 0.59913; 0.58789; 0.57802; 0.56789; 0.55513; 0.53742; 0.52693$ соответственно.

Из-за слабой сходимости решения к пределу в окрестности точек бифуркации требовался контроль точности вычислений и расчет до значения $\xi \approx 2000$ для определения этих точек методом последовательных приближений. При $R_0 \ge 0.7$ найти значение l_a не удавалось из-за слабого затухания (роста) решения при $\xi \to \infty$ в окрестности искомой точки. Ниже указаны некоторые промежуточные критические значения l_i для заостренного тела в зависимости от начальных условий:

$$l_i = 0,61256$$
 при $\gamma_0 = (-0,5;0,5),$ $l_i = 0,66955$ при $\gamma_0 = (-0,1;0,1),$
 $l_i = 0,69335$ при $\gamma_0 = (-0,01;0,01)$ ($\gamma_0 = (\eta_0,\omega_0)$).

Интервал бифуркации решения $l_s - l_a$ увеличивается при наличии затупления, например: $l_s - l_a \approx 0,092$ при $R_0 = 0$, $l_s - l_a \approx 0,235$ при $R_0 = 0,5$. Если точка l_c расположена справа от критической точки l_i хотя бы на малом расстоянии (развитая неустойчивость), то достаточно быстро наступает стабилизация: $\gamma, \Delta \to \gamma_*, \Delta_*$. Предельным циклом всегда является постоянное движение по окружности асимптотически большого радиуса $R_* = 1/(\varepsilon^2 \omega_*)$, как и в случае заостренных тел. При увеличении l_c амплитуды γ_* растут, а зона отрыва почти сразу распространяется на всю длину тела избранной формы.

В расчетах обнаружен интересный эффект неустойчивости решения при значениях l_c , близких (справа) к l_i : возмущением при этом оказалась дискретность вычислений, хотя они проводились с очень высокой точностью. В качестве примера рассмотрим результаты расчета с учетом торможения, представленные на рис. 3. Видно, что кривые зависимости $\omega(\xi)$, полученные методом трапеций при разном количестве точек разбиения N_l отрезка интегрирования $0 \leq l \leq 1$, существенно различаются. Количество точек разбиения

Рис. 4. Траектории легкого (a) и массивного (б) ударника при $R_0 = 0,4; \beta_0 = 2; \beta_* = 0; \omega_0 = 1; \omega_0 = -\eta_0 = 0,4; \tau = 0,5:$ $a - D_0 = 0,3 (1 - l_c = 0,58; 2 - l_c = 0,62; 3 - l_c = 0,66); \delta - D_0 = 0,06 (1 - l_c = 0,55; 2 - l_c = 0,59; 3 - l_c = 0,63)$

на единице длины траектории в процессе интегрирования методом Рунге — Кутты было фиксированным: $n_{\xi} = 15$. Кривая 1 на рис. 3 соответствует значению $N_l = 400$. По мере увеличения N_l кривые смещаются от нее в разные стороны, что свидетельствует о проявлении вычислительной неустойчивости, а не о недостаточной точности расчетов. Следует отметить, что при небольшом изменении параметров ($l_c = 0,59$ или $\tau = 1,3$) наступает стабилизация: все три кривые совпадают.

5. Влияние определяющих параметров на траектории движения с торможением. В процессе решения задачи (5), (6) при $x \neq \text{const}$ находились координаты центра масс тела X, Y, начиная со входа в полупространство X > 0, и траектории X = X(Y). Анализ результатов показал, что пластическое трение au существенно влияет на длину траектории и, как указано выше, способствует подавлению неустойчивости. При изменении положения центра масс l_c , рассматриваемого в данном пункте как свободный параметр, не связанный с формой тела и другими параметрами, качественно меняется траектория движения (причем несколько раз). От величины D, которая определяется главным образом отношением плотностей, при очень высоких скоростях прямо пропорционально зависит длина траектории, а также ее кривизна. На рис. 4, а показаны кривые, форма которых близка к некоторым траекториям заостренных, более массивных ($D_0 = 0.115$) ударников [14]. Прямолинейная траектория (кривая 1) соответствует устойчивому движению, две другие траектории (кривые 2, 3) имеют начальный, близкий к дуге окружности участок, сменяющийся участком прямолинейного движения, что согласуется с теоретическим выводом об увеличении запаса устойчивости при уменьшении скорости. Если скорость увеличивается в два раза, то прямолинейные участки исчезают, траектории принимают форму, близкую к дугам окружности, что согласуется с результатами анализа при "замороженной" осевой скорости.

При сохранении отрыва вблизи тыльных точек тела другой формы при ненулевом угле отрыва ($\beta_0 = 1.5$, $\beta_* = b(1) = 0.3$) и $R_0 = 0.4$, $D_0 = 0.06$, $l_c = 0.52$; 0.55; 0.58 форма траекторий близка к форме кривых, представленных на рис. 4,*a*.

Рис. 5. Траектории тела умеренной плотности ($D_0 = 0,115$) при $R_0 = 0,2$; $\beta_0 = 2$; $\beta_* = 0$; $æ_0 = 1$; $\omega_0 = -\eta_0 = 0,4$; $\tau = 1$: $1 - l_c = 0,52$; $2 - l_c = 0,6$; $3 - l_c = 0,68$

В случае очень массивного ударника ($D_0 = 0.06$), например из вольфрамового сплава, проникающего в вулканическую породу малой плотности (пемзу), помимо удлинения пути при устойчивом движении наблюдаются новые нелинейные эффекты: слабоискривленное движение заканчивается резким разворотом тела из-за больших углов атаки (рис. $4, \delta$). Это связано с появлением вторичного максимума угловой скорости вращения ω на кривой зависимости $\omega(\xi)$. Описанный эффект не наблюдался в случае заостренных тел [14] и может быть объяснен существенным расширением зоны бифуркации $l_s - l_a$ для затупленных тел и изменением характера зависимости параметров траектории γ_* , Δ_* от осевой скорости.

В случае $R_0 = 0,2, D_0 = 0,115$ (рис. 5) эффект удлинения пути вследствие уменьшения лобового сопротивления более значителен, чем эффект торможения, обусловленный пластическим трением. При увеличении начальной скорости в два раза ($x_0 = 0,25$) (рис. 6,a) и при увеличении значений l_c (рис. $6, \delta$) кривизна траекторий увеличивается, что обусловлено увеличением "запаса неустойчивости" $l_c - l_i$ (с ростом скорости проникания значения l_i , как правило, уменьшаются). Увеличение "запаса" только за счет изменения l_c (рис. $6, \delta$), в отличие от случая роста скорости входа, приводит к резкому уменьшению длины пути из-за быстрого нарастания возмущений.

Форма кривых на рис. 4, *a* не меняется, если угол отрыва не равен нулю ($\beta_* = 0,5$) и центр масс немного смещен к носику тела ($l_c = 0,55; 0,6; 0,65$). В этом случае l = 7/12, что соответствует положению точки отрыва при симметричном обтекании. При изменении угла отрыва до значения $\beta_* = 0,8$ по сравнению с $\beta_* = 0$ на рис. 5, так же как при увеличении скорости входа в два раза, траектории почти идентичны кривым на рис. 6, *a*. Все это свидетельствует о том, что вариация параметра отрыва (а значит, и выбор модели отрыва) практически не влияет на основные качественные закономерности движения, при этом остается неизменной классификация траекторий.

6. Затупленный конус. Конус ($\beta_0 = 1$, $\beta_* = 0$) и цилиндр, а также их комбинации с элементами криволинейного меридиана являются вырожденными формами тела по отношению к отрыву: в соответствии с предложенной моделью конечные пятна отрыва появляются мгновенно. В окрестности $-l_c < \pm \omega^{-1}(1 \pm \eta) < 1 - l_c$ конус сначала движется в режиме сплошного обтекания, а затем его движение определяется критическим значением положения центра масс l_g [13].

Рис. 6. Изменение траекторий ударника при увеличении начальной скорости (a) и запаса неустойчивости (b):

 $a - 1 - l_c = 0,52; \ 2 - l_c = 0,6; \ 3 - l_c = 0,68; \ \delta - 1 - l_c = 0,69; \ 2 - l_c = 0,71; \ 3 - l_c = 0,73$

Рассчитанные траектории конуса при $R_0 = 0,4$, $\beta_0 = 1$; $b_* = 0$, $D_0 = 0,3$; 0,06, $a_0 = 1; -0,4; 0,4$ и значениях $l_c = 0,58; 0,61; 0,64; 0,70; 0,74; 0,78$ качественно соответствуют приведенным на рис. 4,6 и рис. 6,6. Отличие состоит в том, что в этом случае значения угла атаки и скорости вращения перед полной остановкой больше. Отсутствуют также прямолинейные участки траекторий в области неустойчивости: кривизна траекторий увеличивается, и они становятся более короткими, чем в случае параболической формы тела.

Заметим, что для однородного по плотности конуса $l_g = 0,6345$, и если он достаточно массивен, то его движение неустойчиво. Конус часто используется в опытах по пенетрации, поэтому при сопоставлении проникания осесимметричных и трехмерных конфигураций необходимо выполнение условия равенства критериев устойчивости.

7. Расчет силовых характеристик динамического изгиба. Рассмотрим задачу об изгибе тонкого неоднородного по длине упругого стержня под действием боковой квазистатической нагрузки в результате взаимодействия со средой в процессе высокоскоростного проникания и со свободными от усилий концами. Главный вектор и главный момент этих нагрузок не равны нулю, поэтому разложим движение упругого тела на составляющие: движение как жесткого тела и динамический изгиб. Соответственно внешнюю безразмерную боковую нагрузку q_0 представим в виде суперпозиции эквивалентной несамоуравновешенной нагрузки, не вызывающей изгиба, и самоуравновешенного остатка $q(l, \xi)$:

$$q_0(l,\xi) = m(l)[P_0/m_0 + P_1(l - l_c)/J] + q(l,\xi) \equiv \mathscr{E}\Phi(l,\xi)R(l)$$
$$P_j(\xi) = \int_0^1 q_0(l,\xi)(l - l_c)^j \, dl, \qquad m_0 = \int_0^1 m(l) \, dl.$$

Здесь $m(l) = \pi \rho(l) r^2(l)$ — погонная масса; P_j — равнодействующие сил. Перерезывающая сила Q и изгибающий момент M определяются путем решения краевой задачи

$$\frac{dQ}{dl} = q(l,\xi), \qquad \frac{d^2M}{dl^2} = q(l,\xi), \qquad Q = 0, \qquad M = 0, \qquad l = 0,1$$

при нормировке

$$q = \frac{q_y}{B}, \qquad Q = \frac{Q_y}{BL}, \qquad M = \frac{M_y}{BL^2}, \qquad B = b_f \tau_d r_{\max}$$

(индексом y отмечены размерные величины). Максимальное растягивающее напряжение $\sigma_{x,\max}$, его безразмерный аналог σ_{\max} в некотором сечении стержня и запас прочности n определяются по известным формулам

$$\sigma_{\max} = \frac{M}{R^3} = \frac{\pi \varepsilon^2 \sigma_{x,\max}}{4b_f \tau_d}, \qquad n = \frac{\Sigma_*}{\Sigma}, \qquad \Sigma = \max\left\{\sigma_{\max}(l)\right\}, \qquad 0 < l < 1, \tag{9}$$

где Σ_* — безразмерный предел прочности на растяжение, связанный с его размерным аналогом σ_* формулой, аналогичной выражению для σ_{\max} в (9).

Для обеспечения заданного расположения центра масс подбором погонной массы m(l) считаем, что ударник состоит из двух материалов плотности: $\rho = \rho'$ при $0 < l < l_1$ и $\rho = \rho''$ при $l_1 < l < 1$; $\gamma = \rho'/\rho''$. Тогда

$$l_c = \frac{I_1}{I_0}, \qquad I_k = \int_0^1 l^k m(l) \, dl, \qquad J = \int_0^1 (l - l_c)^2 m(l) \, dl. \tag{10}$$

Подбором значения l_1 при некотором заданном значении l_c из уравнения (10) находятся отношение γ и момент инерции J, а затем вычисляется параметр j_0 по одной из формул (4).

В случае параболической формы тела (7) расчетные формулы принимают вид

$$\begin{split} \gamma &= \frac{l_c [F_1(1) - F_1(l_1)] + F_2(l_1) - F_2(1)}{F_2(l_1) - l_c F_1(l_1)},\\ j_0 &= \frac{(\gamma - 1) F_1(l_1) + F_1(1)}{(\gamma - 1) [l_c^2 F_1(l_1) - 2l_c F_2(l_1) + F_3(l_1)] + l_c^2 F_1(1) - 2l_c F_2(1) + F_3(1)]}\\ F_k &= l^k \Big(\frac{R_0^2}{k} + \frac{2R_0 R_1 l}{k+1} + \frac{(R_1^2 - 2R_0 R_2) l^2}{k+2} - \frac{2R_1 R_2 l^3}{k+3} + \frac{R_2^2 l^4}{k+4} \Big),\\ R_1 &= \beta_0 (1 - R_0), \qquad R_2 = (\beta_0 - 1)(1 - R_0), \qquad k = 1, 2, 3. \end{split}$$

Анализ показывает, что зависимость $\sigma_{\max}(l)$ непрерывна в точке l = 0, т. е. остается конечной и в случае заостренного тела, однако имеет в ней абсолютный максимум; тем не менее разрушение начинается с носика тела. Таким образом, для обеспечения большей прочности носик тела необходимо затуплять.

Влияние радиуса затупления R_0 на величину запаса прочности, положение точки начала разрушения и время достижения опасного состояния исследуем на примере тела параболической формы (7), варьируя положение центра масс и радиус затупления, при следующих значениях параметров (осевая скорость "заморожена"): $\beta_0 = 2, \tau = 1, D_0 = 0,115, \beta_* = 0, b_f = 7, \tau_d = 5$ МПа, $\sigma_* = 1$ ГПа, w = 2.

Наличие дискообразного затупления еще не означает срыв потока среды непосредственно за диском: срыв наступает при достижении некоторой предельной скорости. Этому препятствуют два фактора: образование перед диском застойной зоны, которая "смывается" и становится более узкой при увеличении скорости движения, а также наличие

		Таб						тица 1
R_0	l_0	l_c	γ	j	n	$l_{ m max}$	S_{\max}	Δ_{\max}
		0,61	2,361	21,37	0,92	0,001	3,0	0,455
0	$0,\!65$	0,62	2,108	21,16	0,30	0,038	20,0	1,0
		0,63	1,887	21,04	0,26	0,001	20,0	1,0
		0,59	2,317	18,57	1,30	0,201	2,6	0,468
0,1	$0,\!60$	0,61	1,889	18,47	0,40	0,190	20,0	1,0
		0,63	1,541	$18,\!65$	0,33	0,190	20,0	1,0
		0,58	2,053	17,11	1,69	0,276	2,93	0,502
0,2	$0,\!60$	0,60	$1,\!686$	17,05	0,51	0,274	20,0	1,0
		0,62	$1,\!386$	$17,\!23$	0,45	$0,\!273$	20,0	1,0
		0,57	1,819	$15,\!45$	2,44	0,334	4,4	0,413
0,3	$0,\!55$	0,59	1,512	15,79	0,78	0,300	20,0	1,0
		0,61	1,253	14,52	0,84	0,268	20,0	1,0
		0,57	1,483	14,74	3,17	0,398	5,9	$0,\!656$
0,4	0,55	0,59	1,238	15,14	1,12	0,338	20,0	1,0
		0,61	1,030	15,31	1,10	0,355	20,0	1,0

Примечание. Расчеты проведены при $\beta_0=2,\,\beta_*=0,\,\omega_0=0,4.$

_							Таблица 2		
R_0	l_0	l_c	γ	j	n	$l_{ m max}$	S_{\max}	Δ_{\max}	
		$0,\!65$	1,515	$21,\!06$	3,58	0,044	$2,\!53$	$0,\!130$	
0	$0,\!65$	0,66	1,358	21,21	3,50	0,001	$3,\!13$	0,141	
		0,67	1,217	$21,\!45$	0,21	0,001	20,0	1,0	
		0,66	$1,\!124$	$19,\!80$	3,88	0,310	$_{3,8}$	0,162	
0,1	0,70	$0,\!67$	1,009	$19,\!95$	0,31	0,190	20,0	1,0	
		$0,\!68$	0,906	$20,\!18$	0,34	0,178	20,0	$1,\!0$	
0,2		0,66	0,926	18,26	4,54	0,415	$3,\!27$	$0,\!175$	
	$0,\!65$	$0,\!67$	0,835	$18,\!60$	0,58	0,243	20,0	1,0	
		$0,\!68$	0,751	$19,\!03$	0,74	0,218	20,0	$1,\!0$	
		0,66	0,766	$16,\!84$	5,34	0,480	$2,\!67$	$0,\!185$	
0,3	0,70	$0,\!67$	0,693	17,09	5,43	0,478	4,07	0,2	
		$0,\!68$	$0,\!627$	$17,\!40$	0,96	0,495	20,0	$1,\!0$	
0,4		0,68	0,526	$16,\!39$	6,52	0,538	3,73	0,214	
	0,70	$0,\!69$	0,477	$16,\!80$	0,25	0,465	20,0	1,0	
		0,70	$0,\!431$	$17,\!28$	0,19	0,463	20,0	$1,\!0$	
0,5		0,70	0,366	16,49	7,90	0,628	6,4	0,2	
	0,70	0,71	0,331	17,08	0,106	0,473	20,0	$1,\!0$	
		0,72	0,297	17,77	0,087	0,475	20,0	$1,\!0$	

Примечание. Расчеты проведены при $\beta_0=2,\,\beta_*=0,\,\omega_0=0,1.$

Рис. 7. Зависимость боковой нагрузки q, перерезывающей силы Q, изгибающего момента M и максимального по сечению напряжения σ_{\max} от глубины погружения l при $r_0 = 0,4$; $l_c = 0,57$; $\omega_0 = 0,4$; æ = 2: $a - \xi = 0,733$; $b - \xi = 1$; $b - \xi = 6$; $c - \xi = 7$

ненулевого (максимального) угла наклона боковой поверхности тела непосредственно за диском.

В табл. 1, 2 приведены значения запаса прочности *n*, расстояние от носика тела l_{max} , длина траектории ξ_{max} , где достигается максимум $\sigma_{\text{max}}(l)$, и длина зоны отрыва Δ_{max} в момент достижения максимума. При каждом значении радиуса затупления R_0 расчеты проводились для трех значений расстояния l_c , которым соответствовали "устойчивая" (близкая к прямолинейной) траектория, а также "слабонеустойчивая" и "сильнонеустойчивая" траектории при использовании двух значений начальных возмущений: $\omega_0 = -\eta_0 = 0,1$ и $\omega_0 = -\eta_0 = 0,4$. Из табл. 1, 2 следует, что даже в случае малого затупления $(R_0 = 0,1)$ опасная точка $l = l_{\text{max}}$ смещается от носика к центру тела (это смещение максимально для "устойчивых" траекторий). При этом запас прочности может увеличиться в 1,5 раза. Отмеченные особенности наблюдаются и при увеличении радиуса затупления до значения $R_0 = 0,9$, при этом точка $l = l_{\text{max}}$ находится вблизи центра тела. Соответствующая глубина погружения ξ_{max} также существенно меняется в зависимости от параметров l_c, R_0, ω_0 . Следует отметить, что минимум запаса прочности достигается не на входе, а при полном погружении тела в среду: для близких к прямолинейным траекторий при $\xi_{\text{max}} \approx 2,5 \div 6,0$,

а для криволинейных "неустойчивых" траекторий — при выходе на стационарную траекторию, где в расчетах достигается максимум возмущения.

Запас прочности *n* растет с увеличением радиуса затупления при прочих равных условиях. При $0 \leq R_0 \leq 0.1$ приращение *n* близко к линейному и меняется существенно, а затем, при $R_0 \geq 0.1$, не убывает, хотя сравнение может быть только косвенным, так как оно проводится для разных кривых затухания или роста возмущений ω , η .

Анализ данных о размере зоны отрыва Δ_{\max} показывает, что опасные напряжения возникают, как правило, при достижении ее максимального значения, которое опосредованно коррелирует с максимумом ω , η .

На рис. 7 показано распределение боковой изгибающей нагрузки q, перерезывающей силы Q, изгибающего момента M и максимального по сечению растягивающего напряжения σ_{\max} при различных значениях ξ . Скачок при $l = l_1 = 0.57$ обусловлен скачком вычитаемых из полной боковой нагрузки инерционных сил (обусловливающих движение тела как жесткого) из-за скачка плотности в этом сечении. Затем следует резкое (характерное для пограничного слоя) изменение этой нагрузки в начале зоны отрыва.

Заключение. Из результатов исследования устойчивости прямолинейного движения тонкого затупленного тела следует, что большие возмущения, вообще говоря, в большей степени снижают запас устойчивости в малом по сравнению с заостренными телами. Показана возможность реализации криволинейных траекторий, качественно близких к заданным, при существенно различных значениях параметра отрыва: прямолинейных, искривленных на начальном участке и затем прямолинейных (при этом тело может удаляться, двигаться параллельно или приближаться к поверхности мишени, так что возможен его возврат на эту поверхность или останов внутри мишени), искривленных, близких к дуге окружности. Таким образом, основные характеристики изучаемых движений слабо зависят от выбора критерия отрыва, который нуждается в уточнении. Распределение динамических нагрузок, действующих на тонкое тело со стороны среды, аналогично распределению в пограничном слое.

ЛИТЕРАТУРА

- 1. Григорян С. С. Приближенное решение задачи о проникании тела в грунт // Изв. РАН. Механика жидкости и газа. 1993. № 4. С. 18–24.
- 2. Бивин Ю. К., Симонов И. В. Оценки глубин проникания жестких тел в грунтовые среды при сверхзвуковых скоростях входа // Докл. РАН. 1993. Т. 328, № 4. С. 447–450.
- 3. Симонов И. В. Кавитационное проникание тел минимального сопротивления в прочную среду // Прикл. математика и механика. 1993. Т. 57, вып. 6. С. 111–119.
- Фомин В. М., Гулидов А. И., Сапожников Г. А. и др. Высокоскоростное взаимодействие тел. Новосибирск: Изд-во СО РАН, 1999.
- 5. Богданов А. В., Николаев А. В., Скуридин Г. А. и др. Об одном методе исследования планет земной группы // Космич. исслед. 1988. Т. 24, вып. 4. С. 591–603.
- Zaitsev A. V., Dobrov A. V., Kotin V. A., Simonov I. V. Possibilities of the hypervelocity impact experiment in frames of demonstration project "Space patrol" // Intern. J. Impact Engng. 1997. V. 20. P. 849–860.
- Симонов И. В., Федотов С. А., Хаврошкин О. Б. Предкатострофическое состояние геофизических объектов, триггерное воздействие и пенетрация //Докл. РАН. 1996. Т. 347, № 6. С. 811–813.
- 8. Сагомонян А. Я. Проникание. М.: Изд-во Моск. ун-та, 1974.

- Флитман Л. М. Дозвуковое осесимметричное обтекание тонких заостренных тел вращения упругопластическим потоком // Изв. АН СССР. Механика твердого тела. 1991. № 4. С. 155–164.
- 10. Флитман Л. М. Безотрывное обтекание затупленного тела высокоскоростным упругопластическим потоком // Прикл. математика и механика. 1990. Т. 54, вып. 4. С. 642–651.
- 11. Бивин Ю. К., Викторов В. В., Коваленко Б. Я. Определение динамических характеристик грунтов методом пенетрации // Изв. АН СССР. Механика твердого тела. 1980. № 3. С. 105–110.
- Бивин Ю. К., Колесников В. А., Флитман Л. М. Определение механических свойств среды методом динамического внедрения // Изв. АН СССР. Механика твердого тела. 1982. № 5. С. 181–185.
- Симонов И. В. Об устойчивости движения удлиненного тела вращения в упругопластической среде при отрыве потока // Прикл. математика и механика. 2000. Т. 64, вып. 2. С. 311–320.
- 14. Симонов И. В. О классификации траекторий плоскопараллельного движения тела вращения в прочной среде при отрыве потока // Докл. РАН. 2002. Т. 386, № 2. С. 198–202.
- 15. Осипенко К. Ю., Симонов И. В. Модель пространственной динамики тела вращения при взаимодействии с малопрочной средой и несимметричной кавитации // Изв. РАН. Механика твердого тела. 2002. № 1. С. 151–161.
- 16. Осипенко К. Ю., Симонов И. В. Обтекание конуса сверхзвуковым потоком пористой среды // Изв. РАН. Механика твердого тела. 2001. № 2. С. 87–95.

Поступила в редакцию 19/VIII 2002 г., в окончательном варианте — 13/III 2003 г.