УДК 532.5.032

ОБТЕКАНИЕ НЕОДНОРОДНОЙ ПОРИСТОЙ СФЕРЫ ВЯЗКОЙ ЖИДКОСТЬЮ ПРИ МАЛЫХ ЧИСЛАХ РЕЙНОЛЬДСА

Н. Сривастава

Амрита Вишва Видиапитхам (Университет Амриты), Бангалор, Индия F-mail: s neetu Øblr.amrita.edu

С помощью теории возмущений исследован процесс обтекания пористой сферы. Течение через сферу делится на две насыщенные вязкой жидкостью области с различными коэффициентами проницаемости и описывается уравнением Бринкмана. Внешнее пространство, в котором движется чистая жидкость, также разделено на две области: область Навье — Стокса и область Озеена. Решения на границе областей внутри сферы согласовывались с помощью условия Мерриха — Мохамада. Функция тока в области Навье — Стокса согласуется с функцией тока в области на поверхности оболочки с помощью условия Очоа-Тапиа — Уайтэкера. Обнаружено, что при увеличении проницаемости в направлении к границе сферы сопротивление сферы уменьшается.

Ключевые слова: равномерное течение, неоднородная пористая сфера, течение Бринкмана, течение чистой жидкости.

DOI: 10.15372/PMTF20160609

Введение. Исследование движения жидкости сквозь пористую среду является важной задачей геологии и геофизики. Обтекание тел вязкой жидкостью изучалось с помощью различных моделей. В работе [1] исследована задача Стокса об обтекании неоднородной сферы, состоящей из n+1 концентрических сфер с различной пористостью, при этом течение через пористую среду описывалось законом Дарси с условиями согласования [2] на поверхности раздела между пористой сферой и чистой жидкостью. В [3] рассмотрена задача обтекания пористой оболочки, погруженной в однородную вязкую жидкость, при этом течение в пористой области удовлетворяло закону Дарси. Обнаружено, что сопротивление на пористой сфере такое же, как и на жесткой сфере меньшего радиуса. Та же задача с условием согласования Саффмана на поверхности сферы решена в работе [4]. В [5] рассмотрены предельные случаи течения вязкой несжимаемой жидкости вблизи полой пористой сферы. В [6] исследована задача обтекания полупроницаемой частицы вязкой жидкостью. Установлено, что сопротивление пористой полупроницаемой сферы меньше сопротивления непористой сферы. В [7] с использованием модели Бринкмана [8] и условия согласования Мерриха — Мохамада [9] получено аналитическое решение двумерной задачи о стационарном обтекании проницаемой сферы, находящейся в пористой среде, вязкой несжимаемой жидкостью.

В работе [10] вычислена эффективная вязкость μ_e для течения Бринкмана через произвольную систему, состоящую из двух неподвижных сфер. Показано, что во всех случаях значения μ_e отличаются от значений вязкости чистой жидкости μ . В [11] эксперимен-

тально получено значение μ_e для установившегося течения через ограниченную стенками пористую среду и обнаружено, что отношение $\mu_e/\mu=\gamma^2$ находится в диапазоне $5,1\div 10,9$. И. А. Очоа-Тапиа и С. Уайтэкер с использованием метода осреднения по объему исследовали граничные условия на поверхности раздела пористая среда — чистая жидкость и показали, что из уравнений движения следуют разрывность касательных напряжений и непрерывность компонент скорости и нормальных напряжений [12]. С помощью этого метода в [13] показано, что $\gamma^2=\varepsilon_\beta^{-1}$ (ε_β^{-1} — пористость среды). С использованием условий [14] в [15] изучено обтекание пористой сферы вязкой жидкостью при малом числе Рейнольдса в предположении, что течение в сфере подчиняется уравнению Бринкмана, а течение вне сферы — уравнениям Навье — Стокса и решения этих уравнений на поверхности согласуются с помощью условия Очоа-Тапиа — Уайтэкера. В [16] исследовано течение вязкой жидкости, обтекающей пористую сферу с твердым ядром при малом числе Рейнольдса в предположении, что течение внутри сферы удовлетворяет уравнению Бринкмана, течение вне сферы — уравнениям Навье — Стокса. Два течения на границе согласуются с помощью условия Очоа-Тапиа — Уайтэкера. На границе непроницаемой сферы задавалось условие прилипания.

В данной работе исследуется обтекание пористой сферы, насыщенной вязкой жидкостью, при малом числе Рейнольдса. На поверхности раздела пористая среда — жидкость используется условие согласования Очоа-Тапиа — Уайтэкера, а на границе раздела пористая среда — пористая среда — условие Мерриха — Мохамада. Вычисления проводятся при малых значениях числа Дарси.

1. Постановка задачи. Исследуется обтекание пористой сферы, внутри которой находится концентрическое сферическое пористое ядро радиусом b, вязкой несжимаемой жидкостью с равномерной скоростью U. Выберем сферическую систему координат (r, θ, φ) с началом в центре обеих сфер. Сфера радиусом r = b имеет проницаемость \varkappa_1 , сферическая оболочка $b < r \leqslant a$ заполнена пористым веществом с проницаемостью \varkappa_2 . Область решения делится на четыре подобласти. Области I, II — ядро и пористая сферическая оболочка, в которых течение описывается уравнением Бринкмана [8]:

$$0 = -\nabla p + \mu_e^{(1)} \nabla^2 \mathbf{v}^{(1)} - \frac{\mu \mathbf{v}^{(1)}}{\varkappa^{(1)}}, \qquad 0 \leqslant r \leqslant b,$$

$$0 = -\nabla p + \mu_e^{(2)} \nabla^2 \mathbf{v}^{(2)} - \frac{\mu \mathbf{v}^{(2)}}{\varkappa^{(2)}}, \qquad b < r \leqslant a.$$

Здесь $\varkappa^{(1)}$, $\varkappa^{(2)}$ — проницаемости пористых сред в областях I и II соответственно; $v^{(1)}$, $v^{(2)}$ — векторы скорости; p — давление в любой точке областей I, II; $\mu_e^{(1)}$, $\mu_e^{(2)}$ — эффективные вязкости жидкости в областях I и II; индекс "(i)" (i=1,2,3,4) соответствует номеру области. В областях III, IV течение чистой жидкости удовлетворяет уравнениям Навье — Стокса. Область III — область вблизи поверхности сферы, где справедливо приближение Стокса, область IV — область вдали от сферы, где справедливо приближение Озеена. Кроме того, течение предполагается осесимметричным.

На внешней границе области III выполняются следующие условия:

$$v_r^{(3)} \to U \cos \theta, \qquad v_{\theta}^{(3)} \to -U \sin \theta.$$

Условия согласования на поверхности раздела пористая среда — пористая среда r=b можно записать в виде

$$v_r^{(2)} = v_r^{(1)}, v_\theta^{(2)} = v_\theta^{(1)},$$

$$\tau_{rr}^{(1)} = \tau_{rr}^{(2)}, \tau_{r\theta}^{(1)} = \tau_{r\theta}^{(2)}.$$

$$(1)$$

На поверхности раздела пористая среда — чистая жидкость r = a скорость и нормальные напряжения полагаются непрерывными, а касательные напряжения имеют скачок [12, 14]:

$$v_r^{(2)} = v_r^{(3)}, v_\theta^{(2)} = v_\theta^{(3)},$$

$$\tau_{rr}^{(2)} = \tau_{rr}^{(3)}, \tau_{r\theta}^{(2)} - \tau_{r\theta}^{(3)} = \frac{\beta\mu}{\sqrt{\varkappa}} v^{(2)}.$$

Здесь β — постоянная порядка единицы, знак которой может быть как положительным, так и отрицательным.

Введем функцию тока ψ_i :

$$u^{(i)} = \frac{1}{r^2 \sin \theta} \frac{\partial \psi^{(i)}}{\partial \theta}, \qquad v^{(i)} = -\frac{1}{r \sin \theta} \frac{\partial \psi^{(i)}}{\partial r}.$$
 (2)

Вне пористой сферы, т. е. при r > a, выражение для функции тока записывается в виде

$$\psi^{(3)}(r,\theta) = \frac{1}{2} \left(r^2 - \frac{1}{r}\right) \sin^2 \theta.$$

В сферической системе координат выражение для нормальных напряжений $\tau_{rr}^{(i)}$ и касательных напряжений $\tau_{r\theta}^{(i)}$ имеет вид

$$\tau_{r\theta}^{(i)} = \mu \left(\frac{1}{r} \frac{\partial u^{(i)}}{\partial \theta} + \frac{\partial u^{(i)}}{\partial r} - \frac{v^{(i)}}{r} \right), \qquad \tau_{rr}^{(i)} = -p^{(i)} + 2\mu \frac{\partial u^{(i)}}{\partial r}. \tag{3}$$

2. Решение задачи. Введем следующие безразмерные переменные для областей I–III:

$$\bar{\psi}^{(i)} = a^2 U \psi^{(i)}, \quad \bar{p}^{(i)} = \frac{\mu U}{a} p^{(i)}, \quad i = 1, 2, 3, \qquad \bar{r} = \frac{r}{a}, \quad \eta = \cos \theta$$

(далее черта над безразмерными переменными опускается). С использованием этих переменных уравнение Бринкмана в областях I, II можно записать в виде

$$(\gamma^{(1)})^{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1 - \eta^{2}}{r^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right)^{2} \psi^{(1)} - (\sigma^{(1)})^{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1 - \eta^{2}}{r^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right) \psi^{(1)} = 0,$$

$$(\gamma^{(2)})^{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1 - \eta^{2}}{r^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right)^{2} \psi^{(2)} - (\sigma^{(2)})^{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1 - \eta^{2}}{r^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right) \psi^{(2)} = 0,$$

$$(4)$$

где $\sigma^{(1)}=b/\sqrt{\varkappa^{(1)}},\ \sigma^{(2)}=a/\sqrt{\varkappa^{(2)}}$ — числа Дарси в областях I, II. Уравнение Навье — Стокса для области III имеет вид

$$\frac{1}{r^2} \frac{\partial \left(\psi^{(3)}, D^2 \psi^{(3)}\right)}{\partial \left(r, \eta\right)} + \frac{2D^2 \psi^{(3)}}{r^2} \left(\frac{\eta}{1 - \eta^2} \frac{\partial \psi^{(3)}}{\partial r} + \frac{1}{r} \frac{\partial \psi^{(3)}}{\partial \eta}\right) \psi^{(2)} = \frac{1}{\text{Re}} D^4 \psi^{(3)},\tag{5}$$

где Re = Ua/ν — число Рейнольдса; $\nu = \mu/\rho$ — кинематическая вязкость. Разрешая выражение (5) с использованием переменной Озеена, получаем выражение для функции тока в области Озеена $\psi^{(4)}(r,\eta)$ [17]

$$\psi^{(4)} = \frac{a^2 U}{2} \left\{ \left[\frac{a}{2r} + \left(\frac{r}{a} \right)^2 \right] (1 - \eta^2) - \frac{4B}{\text{Re}} (1 + \eta) \left(1 - e^{-(\text{Re} \, r/(2a))(1 - \eta)} \right) \right\}.$$

Здесь коэффициент B определяется из условия согласования с течением Стокса. Для непроницаемой пористой сферы B=3/4, следовательно, сопротивление для твердой сферы равно $C_d=1,5$. В работах [15, 16] получен коэффициент B, меньший 0,75.

Для того чтобы найти решение уравнений (4), (5) для областей I–III, разложим функции тока $\psi^{(i)}$ и давления $p^{(i)}$ по степеням числа Рейнольдса Re:

$$\psi^{(i)} = \psi_0^{(i)} + \operatorname{Re} \psi_1^{(i)} + O(\operatorname{Re}^2), \qquad p^{(i)} = p_0^{(i)} + \operatorname{Re} p_1^{(i)} + O(\operatorname{Re}^2), \qquad i = 1, 2, 3.$$
 (6)

3. Первое приближение. Приравнивая члены, не зависящие от Re, и подставляя (6) в (4), получаем следующие дифференциальные уравнения для $\psi_0^{(1)},\,\psi_0^{(2)},\,\psi_0^{(3)}$:

$$(\gamma^{(1)})^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1 - \eta^2}{r^2} \frac{\partial^2}{\partial \eta^2} \right)^2 \psi_0^{(1)} - (\sigma^{(1)})^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1 - \eta^2}{r^2} \frac{\partial^2}{\partial \eta^2} \right) \psi_0^{(1)} = 0,$$

$$(\gamma^{(2)})^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1 - \eta^2}{r^2} \frac{\partial^2}{\partial \eta^2} \right)^2 \psi_0^{(2)} - (\sigma^{(2)})^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1 - \eta^2}{r^2} \frac{\partial^2}{\partial \eta^2} \right) \psi_0^{(2)} = 0,$$

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1 - \eta^2}{r^2} \frac{\partial^2}{\partial \eta^2} \right)^4 \psi_0^{(3)} = 0.$$

$$(7)$$

Предположим, что для функций $\psi_0^{(1)},\,\psi_0^{(2)},\,\psi_0^{(3)}$ справедливо следующее разделение переменных:

$$\psi_0^{(1)} = (1 - \eta^2) F_0^{(1)}(r), \qquad \psi_0^{(2)} = (1 - \eta^2) F_0^{(2)}(r), \qquad \psi_0^{(3)} = (1 - \eta^2) F_0^{(3)}(r).$$

Подставляя $\psi_0^{(1)}$, $\psi_0^{(2)}$, $\psi_0^{(3)}$ в уравнения (7) и разделяя члены, содержащие r, η , получаем обыкновенные дифференциальные уравнения для $F_0^{(1)}(r)$, $F_0^{(2)}(r)$, $F_0^{(3)}(r)$. Интегрируя эти уравнения по r, находим выражения для $F_0^{(1)}(r)$, $F_0^{(2)}(r)$, $F_0^{(3)}(r)$. Решение для области r < b (область I), не имеющее особенности в начале координат, имеет вид

$$F_0^{(1)}(r) = K^{(1)}r^2 + C^{(1)}\left(\frac{\sinh\alpha^{(1)}r}{\alpha^{(1)}r} - \cot\alpha^{(1)}r\right). \tag{8}$$

Для области $b < r \leqslant a$ (область II) решение можно записать в виде

$$F_0^{(2)}(r) = K^{(2)}r^2 + \frac{L^{(2)}}{r} + C^{(2)}\left(\frac{\sin\alpha^{(2)}r}{\alpha^{(2)}r} - \cot\alpha^{(2)}r\right) + N^{(2)}\left(\frac{\cot\alpha^{(2)}r}{\alpha^{(2)}r} - \sin\alpha^{(2)}r\right),\tag{9}$$

где $\alpha^{(i)} = \sigma^{(i)}/\gamma^{(i)}, \, i=1,2.$ Для области III

$$F_0^{(3)}(r) = \frac{A}{r} - Br + Cr^2.$$

Поскольку в этой области течения функция тока имеет вид

$$\psi_0^{(3)}(r) = (r^2 - 2Br)(1 - \eta^2)/2, \qquad r \to \infty,$$

постоянную интегрирования можно выбрать равной C=1/2. Тогда

$$F_0^{(3)}(r) = \frac{A}{r} - Br + \frac{1}{2}r^2. \tag{10}$$

Постоянные $A, B, L^{(2)}, N^{(2)}, K^{(i)}, C^{(i)}$ вычисляются из условия согласования решений (8)–(10) на поверхности сферы и на поверхности раздела пористая среда. Подставляя (8), (9) в условие согласования (1), получаем следующие соотношения на поверхности раздела пористая среда — пористая среда при $\lambda = b/a$:

$$(\gamma^{(1)})^2 \Big(F_0^{(1)\prime\prime\prime} - \frac{6F_0^{(1)\prime}}{r^2} + \frac{12}{r^3} F_0^{(1)} \Big) - \sigma_0^{(1)} F_0^{(1)\prime} = (\gamma^{(2)})^2 \Big(F_0^{(2)\prime\prime\prime} - \frac{6F_0^{(2)\prime}}{r^2} + \frac{12}{r^3} F_0^{(2)} \Big) - \sigma_0^{(2)} F_0^{(2)\prime\prime},$$

$$(\gamma^{(1)})^2 \Big(F_0^{(1)\prime\prime\prime\prime} - \frac{2F_0^{(1)\prime\prime}}{r^2} + \frac{4}{r^3} F_0^{(1)} \Big) = (\gamma^{(2)})^2 \Big(F_0^{(2)\prime\prime\prime\prime} - \frac{2F_0^{(2)\prime\prime}}{r^2} + \frac{4}{r^3} F_0^{(2)} \Big).$$

4. Второе приближение. Сначала найдем решение во втором приближении в области III, согласовывая его с соответствующим решением в области IV, затем получим решение во втором приближении в области II, согласовывая его с соответствующим решением в области III, а также решение в области I, согласовывая его с решением в области II. Тогда выражение для функции тока $\psi^{(3)}$ записывается следующим образом:

$$\psi^{(3)} = -6B\left(\frac{2A}{r^5} - \frac{2B}{r^3} + \frac{1}{r^2}\right)\eta(1-\eta^2),$$

откуда следует, что эту функцию можно представить в виде

$$\psi_1^{(3)}(r,\eta) = F_1(r)(1-\eta^2) + G_1(r)(1-\eta^2)\eta,$$

где

$$F_1 = \frac{B}{2} F_0(r), \qquad G_1 = \frac{B}{4} \left(\frac{2A}{r} + 2Br - r^2 + C^{(2)} + \frac{E^{(2)}}{r^2} \right) F_0(r).$$

Получим второе приближение для уравнения Бринкмана в областях I и II. Решение в области II не зависит от Re, поэтому $\psi_1^{(1)}(r,\eta)$ и $\psi_1^{(2)}(r,\eta)$ удовлетворяют уравнению

$$(\gamma^{(2)})^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1 - \eta^2}{r^2} \frac{\partial^2}{\partial \eta^2} \right)^2 \psi^{(2)} - (\sigma^{(2)})^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1 - \eta^2}{r^2} \frac{\partial^2}{\partial \eta^2} \right) \psi^{(2)} = 0.$$

Выражение для $\psi_1^{(2)}(r,\eta)$ должно согласовываться с выражением для $\psi_1^{(3)}(r,\eta)$ при r=1. Следовательно, выражение для $\psi_1^{(2)}(r,\eta)$ имеет вид

$$\psi_1^{(2)}(r,\eta) = f_1^{(2)}(r)(1-\eta^2) + g_1^{(2)}(r)(1-\eta^2)\eta,$$

где

$$f_1^{(2)} = Bf_0^{(2)}(r)/2,$$

$$g_1^{(2)}(r) = r^3 + \frac{K^{(2)}}{r^2} + N^{(3)} \left(\frac{3 + (\alpha^{(2)})^2 r^2}{r^2} \operatorname{sh} \alpha^{(2)} r - \frac{3\alpha^{(2)}}{r} \operatorname{ch} \alpha^{(2)} r\right) +$$

$$+ L^{(1)} \left(\frac{3\alpha^{(2)}}{r} \operatorname{sh} \alpha^{(2)} r - \frac{3 + (\alpha^{(2)})^2 r^2}{r^2} \operatorname{ch} \alpha^{(2)} r\right).$$

$$(11)$$

Решение в области I не зависит от Re, поэтому функции тока $\psi_1^{(1)}(r,\eta)$ и $\psi_1^{(2)}(r,\eta)$ удовлетворяют уравнению

$$(\gamma^{(1)})^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1 - \eta^2}{r^2} \frac{\partial^2}{\partial \eta^2}\right)^2 \psi_1^{(1)} - (\sigma^{(1)})^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1 - \eta^2}{r^2} \frac{\partial^2}{\partial \eta^2}\right) \psi_1^{(1)} = 0.$$

Выражение для $\psi_1^{(1)}(r,\eta)$ должно согласовываться с выражением для $\psi_1^{(2)}(r,\eta)$ при r=1. Следовательно, выражение для $\psi_1^{(2)}(r,\eta)$ имеет вид

$$\psi_1^{(1)}(r,\eta) = f_1^{(1)}(r)(1-\eta^2) + g_1^{(1)}(r)(1-\eta^2)\eta,$$

где

$$f_1^{(1)} = \frac{B}{2} f_0^{(1)}(r), \qquad g_1^{(1)}(r) = M^{(2)}r^3 + N^{(2)} \left(\frac{3 + (\alpha^{(2)})^2 r^2}{r^2} \operatorname{sh} \alpha^{(2)} r - \frac{3\alpha^{(2)}}{r} \operatorname{ch} \alpha^{(2)} r\right). \tag{12}$$

Постоянные $A, B, M^{(2)}, N^{(2)}, M^{(3)}, N^{(3)}, K^{(2)}$ и $L^{(1)}$ вычисляются из условия согласования решений при r=1 и $r=\lambda$. Записывая условие согласования для $\psi_1^{(1)}(r,\eta), \, \psi_1^{(2)}(r,\eta),$ получаем уравнения

$$\begin{split} \frac{B}{4} \left(2A + 2B - 1 - C^{(2)} + E^{(1)} \right) &= M^{(3)} + K^{(2)} + N^{(3)} [(3 + (\alpha^{(2)})^2) \sh \alpha^{(2)} - 3\alpha^{(2)} \cosh \alpha^{(2)}] + \\ &\quad + L^{(1)} [-(3 + (\alpha^{(2)})^2) \cosh \alpha^{(2)} + 3\alpha^{(2)} \sh \alpha^{(2)}], \\ \frac{B}{4} \left(-A + B - 1 + E^{(1)} \right) &= 3M^{(3)} - 2K^{(2)} + N^{(3)} [(6 + (\alpha^{(2)})^2)\alpha^{(2)} \cosh \alpha^{(2)} - 3(2 + (\alpha^{(2)})^2) \sh \alpha^{(2)}] + \\ &\quad + L^{(1)} [(6 + (\alpha^{(2)})^2)\alpha^{(2)} \sh \alpha^{(2)} - 3(2 + (\alpha^{(2)})^2) \cosh \alpha^{(2)}], \\ \frac{B}{2} \left[(10 - \beta\sigma^{(2)})A + (4 + \beta\sigma^{(2)})B - (2 + \beta\sigma^{(2)}) - 3C^{(2)} - (8 - \beta\sigma^{(2)})E^{(1)} \right] = \\ &= (\gamma^{(2)})^2 \{6M^{(3)} + 16K^{(2)} + N^{(3)} [(48 + 21(\alpha^{(2)})^2 + (\alpha^{(2)})^4) \sh \alpha^{(2)} - (48\alpha^{(2)} + 5(\alpha^{(2)})^3) \cosh \alpha^{(2)}] + \\ &\quad + L^{(1)} [-(48 + 21(\alpha^{(2)})^2 + (\alpha^{(2)})^4) \cosh \alpha^{(2)} - (48\alpha^{(2)} + 5(\alpha^{(2)})^3) \sh \alpha^{(2)}] \}, \\ 3B(1 + 7A + 4B - 3C^{(1)} - 3E^{(1)}) &= (\gamma^{(1)})^2 \{6M^{(3)} + 48K^{(2)} + \\ &\quad + N^{(3)} [-(\alpha^{(2)})^5 - 36\alpha^{(2)} - 72) \cosh \alpha^{(2)} + (3(\alpha^{(2)})^4 + 36(\alpha^{(2)})^2 - 108) \sh \alpha^{(2)}] \} + \\ &\quad + L^{(1)} [((\alpha^{(2)})^5 - 36\alpha^{(2)} - 72) \sh \alpha^{(2)} + (3(\alpha^{(2)})^4 + 36(\alpha^{(2)})^2 - 108) \cosh \alpha^{(2)}] \} + \\ &\quad + (\sigma^{(2)})^2 \{3M^{(1)} + 2K^{(1)} + N^{(3)} [(6 + (\alpha^{(2)})^2)\alpha^{(2)} \cosh \alpha^{(2)} - 3(2 + (\alpha^{(2)})^2) \cosh \alpha^{(2)}] \}. \end{split}$$

Выражения для второго приближения для давления в областях I и II получаются в результате подстановки уравнений (11), (12) в (2) и интегрирования их:

$$\begin{split} \frac{1}{\mu} \, p^{(1)} &= (\gamma^{(1)})^2 \Big(g_1^{(1)\prime\prime\prime} + \frac{12}{r^3} \, g_1^{(1)} \Big) \frac{\cos 2\theta}{4} - \frac{(\sigma^{(1)})^2 g_1^{(1)\prime} \cos 2\theta}{4}, \\ \frac{1}{\mu} \, p^{(2)} &= (\gamma^{(2)})^2 \Big(g_1^{(2)\prime\prime\prime} + \frac{12}{r^3} \, g_1^{(2)} \Big) \frac{\cos 2\theta}{4} - \frac{(\sigma^{(2)})^2 g_1^{(2)\prime} \cos 2\theta}{4} + L. \end{split}$$

Здесь L — постоянная интегрирования. На поверхности раздела пористая среда — пористая среда $(r=\lambda)$ ставятся следующие условия:

— условия непрерывности скоростей

$$\begin{split} M^{(3)}\lambda^3 + \frac{K^{(2)}}{\lambda^2} + N^{(3)} \Big(\frac{3 + (\alpha^{(2)})^2 \lambda^2}{\lambda^2} \sin \alpha \lambda - \frac{3\alpha^{(2)}}{\lambda} \operatorname{ch} \alpha^{(2)} \lambda \Big) + \\ + L^{(1)} \Big(-\frac{3 + (\alpha^{(2)})^2 \lambda^2}{\lambda^2} \operatorname{ch} \alpha^{(2)} \lambda + \frac{2\alpha^{(2)}}{\lambda} \sin \alpha^{(2)} \lambda \Big) = \\ = M^{(2)}\lambda^3 + N^{(3)} \Big(\frac{3 + (\alpha^{(2)})^2 \lambda^2}{\lambda^2} \sin \alpha^{(2)} \lambda - \frac{3\alpha^{(2)}}{\lambda} \operatorname{ch} \alpha^{(2)} \lambda \Big), \end{split}$$

$$\begin{split} 3M^{(3)}\lambda^2 - \frac{N^{(3)}}{\lambda^3} \left[3(2 + (\alpha^{(2)})^2\lambda^2) \operatorname{sh}\alpha^{(2)}\lambda - \alpha^{(2)}\lambda(6 + (\alpha^{(2)})^2\lambda^2) \operatorname{ch}\alpha^{(2)}\lambda \right] - \frac{2K^{(2)}}{\lambda^3} - \\ - \frac{L^{(1)}}{\lambda^3} \left[-3(2 + (\alpha^{(2)})^2\lambda^2) \operatorname{ch}\alpha^{(2)}\lambda + \alpha^{(2)}\lambda(6 + (\alpha^{(2)})^2\lambda^2) \operatorname{sh}\alpha^{(2)}\lambda \right] = \\ = 3M^{(3)}\lambda^2 - \frac{N^{(3)}}{\lambda^3} \left[3(2 + (\alpha^{(2)})^2\lambda^2) \operatorname{sh}\alpha^{(2)}\lambda - \alpha^{(2)}\lambda(6 + (\alpha^{(2)})^2\lambda^2) \operatorname{ch}\alpha^{(2)}\lambda \right]; \end{split}$$

— условия непрерывности напряжений

$$\tau_{rr}^{(1)} = \tau_{rr}^{(2)}, \qquad \tau_{r\theta}^{(1)} = \tau_{r\theta}^{(2)}.$$

5. Результаты исследования. Сопротивление на неоднородной пористой сфере определяется выражением

$$C_d = 2\pi\mu U a^2 \int_0^{\pi} (\tau_{rr}\cos\theta - \tau_{r\theta}\sin\theta)\big|_{r=a}\sin\theta \,d\theta.$$
 (13)

Подставляя значения τ_{rr} , $\tau_{r\theta}$ в уравнение (13) и интегрируя его, получаем

$$C_d = 4\pi\mu U a (2B + B^2 \operatorname{Re}).$$

В случае если оболочка представляет собой твердую сферу радиусом a, выражение для ее сопротивления имеет вид

$$C_d = 6\pi\mu U a [1 + (3/8) \text{ Re}].$$

При уменьшении проницаемости внутренней пористой сферы до нуля задача становится аналогичной задаче, рассмотренной в работе [16].

В табл. 1—5 приведены результаты исследования характеристик течения при различных значениях параметров задачи. Из табл. 1 следует, что в случае если проницаемость области I больше проницаемости области II, сопротивление сферы больше, чем в случае, если проницаемость области I меньше проницаемости области II. Из табл. 2, 3 следует, что с увеличением $(\gamma^{(i)})^2$ сопротивление сферы уменьшается, а с увеличением λ — увеличивается. В табл. 4, 5 приведены значения постоянных интегрирования первой аппроксимации решения, в табл. 6 — значения углов входа и выхода в области I при различных значениях функции тока и числа Рейнольдса.

Результаты расчетов показывают, что при $\lambda=0.85$ линии тока $\psi^{(1)}=0.001;\ 0.005;\ 0.009;\ 0.010;\ 0.020;\ 0.030$ области I переходят в соответствующие линии тока $\psi^{(2)}$ области II с погрешностью, меньшей $0.05\ \%$.

 ${\rm T\,af\,\pi}\,{\rm m}\,{\rm m}\,{\rm a}\,\,{\rm 1}$ Сопротивление сферы при $(\gamma^{(1)})^2=(\gamma^{(2)})^2=1$ и различных значениях $B,\,\lambda,\,\alpha^{(1)},\,\alpha^{(2)}$

Соотношение		$\alpha^{(2)}$	C_d						
проницаемостей	$\alpha^{(1)}$		B = -0.3			B = 0.3			
сфер			$\lambda = 0.25$	$\lambda = 0.50$	$\lambda = 0.75$	$\lambda = 0.25$	$\lambda = 0.50$	$\lambda = 0.75$	
	5	6	0,649 107	0,647 464	0,646 767	0,578 483	$0,\!566492$	0,555462	
$\varkappa^{(1)} > \varkappa^{(2)}$	5	7	0,699681	0,697503	0,679 067	0,672 749	0,663063	$0,\!646214$	
n\/ > n\/	6	7	0,682 760	0,679789	0,665440	0,639318	0,630283	0,618539	
	6	8	0,730 443	0,716874	0,690095	0,728097	0,703546	$0,\!660821$	
$\varkappa^{(1)} < \varkappa^{(2)}$	6	5	0,554 579	0,565691	0,584 105	0,353408	$0,\!425210$	0,461 315	
	7	5	0,484 068	0,499156	0,562131	0,095645	$0,\!244094$	$0,\!392155$	
	7	6	0,559426	0,586810	0,614 082	0,368797	$0,\!460358$	$0,\!510466$	
	8	6	$0,\!297569$	0,499154	0,595745	0,007 140	$0,\!243280$	$0,\!454835$	

 ${\rm T\, a\, 6\pi\, m\, u\, u\, a}\ 2$ Сопротивление сферы при $\alpha^{(1)}=5$, $\alpha^{(2)}=6$ и различных значениях B, λ , $\gamma^{(i)}$

	C_d							
$(\gamma^{(i)})^2$	B = -0.5			B = 0.5				
	$\lambda = 0.25$	$\lambda = 0.50$	$\lambda = 0.75$	$\lambda = 0.25$	$\lambda = 0.50$	$\lambda = 0.75$		
5	0,634 974	0,665 197	0,670 137	0,368 995	0,607506	0,627 501		
6	0,630269	0,664485	0,670072	$0,\!304189$	0,607261	0,627495		
7	0,625411	0,663281	0,669354	$0,\!214370$	0,605115	0,626709		
8	0,620474	0,661 660	0,668 088	$0,\!196190$	0,601420	0,624311		
9	0,615529	0,659713	0,666350	$0,\!172642$	$0,\!596397$	0,620502		
10	0,610635	0,657482	0,664194	$0,\!106032$	0,590191	0,615383		

 ${\rm T\,af}\,{\rm fi}\,{\rm i}\,{\rm i}\,{\rm a}\,\,3$ Сопротивление сферы при $\alpha^{(1)}=6$, $\alpha^{(2)}=5$ и различных значениях B, λ , $\gamma^{(i)}$

	C_d							
$(\gamma^{(i)})^2$	B = -0.5			B = 0.5				
	$\lambda = 0.25$	$\lambda = 0.50$	$\lambda = 0.75$	$\lambda = 0.25$	$\lambda = 0.50$	$\lambda = 0.75$		
5	$0,\!576408$	0,612655	0,609 549	0,301 448	0,382 784	0,442 982		
6	$0,\!561777$	0,600870	0,607378	$0,\!297411$	0,343684	0,417 404		
7	$0,\!553161$	$0,\!594356$	0,601 995	0,204120	0,288350	0,381 745		
8	$0,\!544920$	$0,\!588066$	0,595695	$0,\!189420$	$0,\!214415$	0,331936		
9	0,537158	$0,\!581449$	0,588708	$0,\!154810$	$0,\!115921$	0,263853		
10	$0,\!529926$	$0,\!574679$	0,581 231	0,091420	0,017246	0,170 281		

 ${\rm Taf}_{\rm \pi \pi \pi \pi a} \ 4$ Значения постоянных интегрирования первой аппроксимации решения при $\alpha^{(1)}=5$, $\alpha^{(2)}=6$, B=-0.5 и различных значениях $(\gamma^{(i)})^2$

$(\gamma^{(i)})^2$	A	$L^{(2)}$	$K^{(2)}$	$-N^{(2)}$	$-C^{(2)}$	$-K^{(1)}$	$-C^{(1)}$
5	0,213 894	0,002 226	0,008 923	0,007 241	0,000 891	0,012 534	0,000719
6	0,215045	0,003 483	0,009393	0,009995	0,000586	0,030684	0,000226
7	0,215935	0,004 964	0,010305	0,012876	0,001 002	0,046 096	0,011814
8	0,216611	0,006631	0,011582	0,015011	0,001 421	0,064276	0,029404
9	0,217107	0,008455	0,013161	0,018751	0,001 561	0,084676	$0,\!052801$
10	0,217454	0,010402	0,014987	0,021 652	0,001722	0,106808	0,006721

 ${\rm Taf}_{\rm \pi \pi \pi \pi a}\ 5$ Значения постоянных интегрирования первой аппроксимации решения при $\alpha^{(1)}=5,\ \alpha^{(2)}=6,\ B=0,5$ и различных значениях $(\gamma^{(i)})^2$

$(\gamma^{(i)})^2$	A	$L^{(2)}$	$K^{(2)}$	$-N^{(2)}$	$-C^{(2)}$	$-K^{(1)}$	$-C^{(1)}$
5	0,186 331	0,004 468	0,000 207	0,014417	0,001 006	0,045 938	0,008 441
6	0,185 508	0,006 914	0,001 200	0,019723	0,001 071	0,047219	0,008441
7	0,187563	0,009 829	0,002961	0,025376	0,001 096	0,049593	0,007443
8	0,188 795	0,005 379	0,005379	0,031 314	0,001 107	0,081 299	0,005393
9	0,189 382	0,016 955	0,008386	0,037 481	0,001 130	0,119 039	0,004231
10	0,189 439	0,021 138	0,019356	0,043 871	0,001 190	0,162312	0,003832

 $\mbox{Значения углов входа и выхода}$ при $\lambda=0,5,~(\gamma^{(i)})^2=1,~\alpha^{(2)}=5,~\alpha^{(1)}=6$ и различных значениях $\psi^{(1)}$

		•	,		
$\psi^{(1)}$	Re = 0	Re = 0.5			
ψ(1)	θ	$ heta_{ ext{BX}}$	$\theta_{ ext{\tiny BbIX}}$		
0	0	0	0		
0,0010	21,47	20,02	158,98		
0,0020	31,18	28,96	149,04		
0,0040	47,07	43,22	135,98		
0,0060	63,75	57,00	120,00		
0,0070	75,62	64,95	110,90		
0,0074	84,85	68,65	107,35		

Автор выражает благодарность руководству Колледжа Амрита Вишва Видиапитхам (Бангалор) за поддержку данной работы.

ЛИТЕРАТУРА

- 1. **Verma P. D., Bhatt B. S.** Low Reynolds number flow past a heterogeneous porous sphere using matched asymptotic techniques // Appl. Sci. Res. 1974. V. 32. P. 61–72.
- 2. **Jones I. P.** Low Reynolds number flow past a porous spherical shell // Proc. Cambridge Philos. Soc. 1973. V. 73. P. 231–238.
- 3. **Joseph D. D., Tao L. N.** The effect of permeability in the slow motion of a porous sphere in a viscous liquid // Z. angew. Math. Mech. 1964. Bd 44. S. 361–364.
- 4. Padmavathi B. S., Amarnath T., Palaniappan D. Stokes flow about a porous spherical particle // Arch. Mech. 1994. V. 46. P. 191–199.
- 5. Vereshchagin A. S., Dolgushev S. V. Low-velocity viscous incompressible fluid flow around a hollow porous sphere // J. Appl. Mech. Tech. Phys. 2011. V. 52, N 3. P. 406–414.
- 6. **Shapovalov V. M.** Viscous fluid flow around a semipermeable particle // J. Appl. Mech. Tech. Phys. 2009. V. 50, N 4. P. 584–588.
- 7. Grosan T., Postelnicu A., Pop I. Brinkman flow of a viscous fluid through a spherical porous medium embedded in another porous medium // Transport Porous Media. 2010. V. 81. P. 89–103.
- 8. **Brinkman H. C.** Calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles // Appl. Sci. Res. 1947. V. A1. P. 27–34.
- Merikh A. A., Mohamad A. A. Non Darcy effects in buoyancy driven flows in an enclosure filled with vertically layered porous media // Intern. J. Heat Mass Transfer. 2002. V. 45. P. 4305–4313.
- Lundgren T. S. Slow flow through stationary random beds and suspensions of sphere // J. Fluid Mech. 1972. V. 51. P. 273–299.
- 11. **Givler R. C., Altobelli A.** Determination of the effective viscosity for the Brinkman Forchheimer flow model // J. Fluid Mech. 1994. V. 258. P. 355–370.
- 12. Ochoa-Tapia J. A., Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid. 1. Theoretical development // Intern. J. Heat Mass Transfer. 1995. V. 38. P. 2635–2646.
- 13. Whitaker S. The method of volume averaging. Dordrecht: Kluwer Acad. Publ., 1999.

14. Ochoa-Tapia J. A., Whitaker S. Momentum transfer at the boundary between a porous medium and a homorogeneous fluid. 2. Comparison with expirement // Intern. J. Heat Mass Transfer. 1995. V. 38. P. 2647–2655.

- 15. **Srivastava A. C., Srivastava N.** Flow past a porous sphere at small Reynolds number // Z. angew. Math. Phys. 2005. Bd 56. S. 821–835.
- 16. Srivastava A. C., Srivastava N. Flow of a viscous fluid at small Reynolds number past a porous sphere with a solid core // Acta Mech. 2006. V. 186. P. 161–172.
- 17. Langlois W. E. Hydrodynamics. N. Y.: Macmillan, 1964. P. 131–153.

Поступила в редакцию 21/XI 2013 г., в окончательном варианте — 5/XI 2014 г.