УДК 532.5.032

ОБТЕКАНИЕ НЕОДНОРОДНОЙ ПОРИСТОЙ СФЕРЫ ВЯЗКОЙ ЖИДКОСТЬЮ ПРИ МАЛЫХ ЧИСЛАХ РЕЙНОЛЬДСА

Н. Сривастава

Амрита Вишва Видиапитхам (Университет Амриты), Бангалор, Индия E-mail: s_neetu @blr.amrita.edu

С помощью теории возмущений исследован процесс обтекания пористой сферы. Течение через сферу делится на две насыщенные вязкой жидкостью области с различными коэффициентами проницаемости и описывается уравнением Бринкмана. Внешнее пространство, в котором движется чистая жидкость, также разделено на две области: область Навье — Стокса и область Озеена. Решения на границе областей внутри сферы согласовывались с помощью условия Мерриха — Мохамада. Функция тока в области Навье — Стокса согласуется с функцией тока в области на поверхности оболочки с помощью условия Очоа-Тапиа — Уайтэкера. Обнаружено, что при увеличении проницаемости в направлении к границе сферы сопротивление сферы уменьшается.

Ключевые слова: равномерное течение, неоднородная пористая сфера, течение Бринкмана, течение чистой жидкости.

DOI: 10.15372/PMTF20160609

Введение. Исследование движения жидкости сквозь пористую среду является важной задачей геологии и геофизики. Обтекание тел вязкой жидкостью изучалось с помощью различных моделей. В работе [1] исследована задача Стокса об обтекании неоднородной сферы, состоящей из n+1 концентрических сфер с различной пористостью, при этом течение через пористую среду описывалось законом Дарси с условиями согласования [2] на поверхности раздела между пористой сферой и чистой жидкостью. В [3] рассмотрена задача обтекания пористой оболочки, погруженной в однородную вязкую жидкость, при этом течение в пористой области удовлетворяло закону Дарси. Обнаружено, что сопротивление на пористой сфере такое же, как и на жесткой сфере меньшего радиуса. Та же задача с условием согласования Саффмана на поверхности сферы решена в работе [4]. В [5] рассмотрены предельные случаи течения вязкой несжимаемой жидкости вблизи полой пористой сферы. В [6] исследована задача обтекания полупроницаемой частицы вязкой жидкостью. Установлено, что сопротивление пористой полупроницаемой сферы меньше сопротивления непористой сферы. В [7] с использованием модели Бринкмана [8] и условия согласования Мерриха — Мохамада [9] получено аналитическое решение двумерной задачи о стационарном обтекании проницаемой сферы, находящейся в пористой среде, вязкой несжимаемой жидкостью.

В работе [10] вычислена эффективная вязкость μ_e для течения Бринкмана через произвольную систему, состоящую из двух неподвижных сфер. Показано, что во всех случаях значения μ_e отличаются от значений вязкости чистой жидкости μ . В [11] экспериментально получено значение μ_e для установившегося течения через ограниченную стенками пористую среду и обнаружено, что отношение $\mu_e/\mu = \gamma^2$ находится в диапазоне 5,1 ÷ 10,9. И. А. Очоа-Тапиа и С. Уайтэкер с использованием метода осреднения по объему исследовали граничные условия на поверхности раздела пористая среда — чистая жидкость и показали, что из уравнений движения следуют разрывность касательных напряжений и непрерывность компонент скорости и нормальных напряжений [12]. С помощью этого метода в [13] показано, что $\gamma^2 = \varepsilon_{\beta}^{-1} (\varepsilon_{\beta}^{-1} -$ пористость среды). С использованием условий [14] в [15] изучено обтекание пористой сферы вязкой жидкостью при малом числе Рейнольдса в предположении, что течение в сфере подчиняется уравнению Бринкмана, а течение вне сферы — уравнениям Навье — Стокса и решения этих уравнений на поверхности согласуются с помощью условия Очоа-Тапиа — Уайтэкера. В [16] исследовано течение вязкой жидкости, обтекающей пористую сферу с твердым ядром при малом числе Рейнольдса в предположении, что течение внутри сферы удовлетворяет уравнению Бринкмана, течение вне сферы — уравнениям Навье — Стокса. Два течения на границе согласуются с помощью условия Очоа-Тапиа — Уайтэкера. На границе непроницаемой сферы задавалось условие прилипания.

В данной работе исследуется обтекание пористой сферы, насыщенной вязкой жидкостью, при малом числе Рейнольдса. На поверхности раздела пористая среда — жидкость используется условие согласования Очоа-Тапиа — Уайтэкера, а на границе раздела пористая среда — пористая среда — условие Мерриха — Мохамада. Вычисления проводятся при малых значениях числа Дарси.

1. Постановка задачи. Исследуется обтекание пористой сферы, внутри которой находится концентрическое сферическое пористое ядро радиусом b, вязкой несжимаемой жидкостью с равномерной скоростью U. Выберем сферическую систему координат (r, θ, φ) с началом в центре обеих сфер. Сфера радиусом r = b имеет проницаемость \varkappa_1 , сферическая оболочка $b < r \leq a$ заполнена пористым веществом с проницаемостью \varkappa_2 . Область решения делится на четыре подобласти. Области I, II — ядро и пористая сферическая оболочка, в которых течение описывается уравнением Бринкмана [8]:

$$0 = -\nabla p + \mu_e^{(1)} \nabla^2 \boldsymbol{v}^{(1)} - \frac{\mu \boldsymbol{v}^{(1)}}{\varkappa^{(1)}}, \qquad 0 \leqslant r \leqslant b,$$

$$0 = -\nabla p + \mu_e^{(2)} \nabla^2 \boldsymbol{v}^{(2)} - \frac{\mu \boldsymbol{v}^{(2)}}{\varkappa^{(2)}}, \qquad b < r \leqslant a.$$

Здесь $\varkappa^{(1)}, \varkappa^{(2)}$ — проницаемости пористых сред в областях I и II соответственно; $v^{(1)}, v^{(2)}$ — векторы скорости; p — давление в любой точке областей I, II; $\mu_e^{(1)}, \mu_e^{(2)}$ — эффективные вязкости жидкости в областях I и II; индекс "(*i*)" (i = 1, 2, 3, 4) соответствует номеру области. В областях III, IV течение чистой жидкости удовлетворяет уравнениям Навье — Стокса. Область III — область вблизи поверхности сферы, где справедливо приближение Стокса, область IV — область вдали от сферы, где справедливо приближение Озеена. Кроме того, течение предполагается осесимметричным.

На внешней границе области III выполняются следующие условия:

$$v_r^{(3)} \to U \cos \theta, \qquad v_{\theta}^{(3)} \to -U \sin \theta$$

(0)

Условия согла
сования на поверхности раздела пористая среда — пористая сред
аr=bможно записать в виде

На поверхности раздела пористая среда — чистая жидкость r = a скорость и нормальные напряжения полагаются непрерывными, а касательные напряжения имеют скачок [12, 14]:

$$v_r^{(2)} = v_r^{(3)}, \qquad v_{\theta}^{(2)} = v_{\theta}^{(3)},$$

$$\tau_{rr}^{(2)} = \tau_{rr}^{(3)}, \qquad \tau_{r\theta}^{(2)} - \tau_{r\theta}^{(3)} = \frac{\beta\mu}{\sqrt{\varkappa}} v^{(2)}$$

Здесь
 β — постоянная порядка единицы, знак которой может быть как положительным, так и отрицательным.

Введем функцию тока ψ_i :

$$u^{(i)} = \frac{1}{r^2 \sin \theta} \frac{\partial \psi^{(i)}}{\partial \theta}, \qquad v^{(i)} = -\frac{1}{r \sin \theta} \frac{\partial \psi^{(i)}}{\partial r}.$$
 (2)

Вне пористой сферы, т. е. при r > a, выражение для функции тока записывается в виде

$$\psi^{(3)}(r,\theta) = \frac{1}{2} \left(r^2 - \frac{1}{r} \right) \sin^2 \theta.$$

В сферической системе координат выражение для нормальных напряжений $\tau_{rr}^{(i)}$ и касательных напряжений $\tau_{r\theta}^{(i)}$ имеет вид

$$\tau_{r\theta}^{(i)} = \mu \left(\frac{1}{r} \frac{\partial u^{(i)}}{\partial \theta} + \frac{\partial u^{(i)}}{\partial r} - \frac{v^{(i)}}{r}\right), \qquad \tau_{rr}^{(i)} = -p^{(i)} + 2\mu \frac{\partial u^{(i)}}{\partial r}.$$
(3)

2. Решение задачи. Введем следующие безразмерные переменные для областей I–III:

$$\bar{\psi}^{(i)} = a^2 U \psi^{(i)}, \quad \bar{p}^{(i)} = \frac{\mu U}{a} p^{(i)}, \quad i = 1, 2, 3, \qquad \bar{r} = \frac{r}{a}, \quad \eta = \cos \theta$$

(далее черта над безразмерными переменными опускается). С использованием этих переменных уравнение Бринкмана в областях I, II можно записать в виде

$$(\gamma^{(1)})^{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1 - \eta^{2}}{r^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right)^{2} \psi^{(1)} - (\sigma^{(1)})^{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1 - \eta^{2}}{r^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right) \psi^{(1)} = 0,$$

$$(\gamma^{(2)})^{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1 - \eta^{2}}{r^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right)^{2} \psi^{(2)} - (\sigma^{(2)})^{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1 - \eta^{2}}{r^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right) \psi^{(2)} = 0,$$
(4)

где $\sigma^{(1)} = b/\sqrt{\varkappa^{(1)}}, \ \sigma^{(2)} = a/\sqrt{\varkappa^{(2)}}$ — числа Дарси в областях I, II. Уравнение Навье — Стокса для области III имеет вид

$$\frac{1}{r^2} \frac{\partial \left(\psi^{(3)}, D^2 \psi^{(3)}\right)}{\partial \left(r, \eta\right)} + \frac{2D^2 \psi^{(3)}}{r^2} \left(\frac{\eta}{1-\eta^2} \frac{\partial \psi^{(3)}}{\partial r} + \frac{1}{r} \frac{\partial \psi^{(3)}}{\partial \eta}\right) \psi^{(2)} = \frac{1}{\text{Re}} D^4 \psi^{(3)}, \tag{5}$$

где Re = Ua/ν — число Рейнольдса; $\nu = \mu/\rho$ — кинематическая вязкость. Разрешая выражение (5) с использованием переменной Озеена, получаем выражение для функции тока в области Озеена $\psi^{(4)}(r,\eta)$ [17]

$$\psi^{(4)} = \frac{a^2 U}{2} \Big\{ \Big[\frac{a}{2r} + \Big(\frac{r}{a} \Big)^2 \Big] (1 - \eta^2) - \frac{4B}{\text{Re}} \, (1 + \eta) \big(1 - e^{-(\text{Re}\,r/(2a))(1 - \eta)} \big) \Big\}.$$

Здесь коэффициент *B* определяется из условия согласования с течением Стокса. Для непроницаемой пористой сферы B = 3/4, следовательно, сопротивление для твердой сферы равно $C_d = 1,5$. В работах [15, 16] получен коэффициент *B*, меньший 0,75. Для того чтобы найти решение уравнений (4), (5) для областей I–III, разложим функции тока $\psi^{(i)}$ и давления $p^{(i)}$ по степеням числа Рейнольдса Re:

$$\psi^{(i)} = \psi_0^{(i)} + \operatorname{Re} \psi_1^{(i)} + O(\operatorname{Re}^2), \qquad p^{(i)} = p_0^{(i)} + \operatorname{Re} p_1^{(i)} + O(\operatorname{Re}^2), \qquad i = 1, 2, 3.$$
(6)

3. Первое приближение. Приравнивая члены, не зависящие от Re, и подставляя (6) в (4), получаем следующие дифференциальные уравнения для $\psi_0^{(1)}$, $\psi_0^{(2)}$, $\psi_0^{(3)}$:

$$(\gamma^{(1)})^{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1 - \eta^{2}}{r^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right)^{2} \psi_{0}^{(1)} - (\sigma^{(1)})^{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1 - \eta^{2}}{r^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right) \psi_{0}^{(1)} = 0,$$

$$(\gamma^{(2)})^{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1 - \eta^{2}}{r^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right)^{2} \psi_{0}^{(2)} - (\sigma^{(2)})^{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1 - \eta^{2}}{r^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right) \psi_{0}^{(2)} = 0,$$

$$\left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1 - \eta^{2}}{r^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right)^{4} \psi_{0}^{(3)} = 0.$$

(7)

Предположим, что для функций $\psi_0^{(1)}, \, \psi_0^{(2)}, \, \psi_0^{(3)}$ справедливо следующее разделение переменных:

$$\psi_0^{(1)} = (1 - \eta^2) F_0^{(1)}(r), \qquad \psi_0^{(2)} = (1 - \eta^2) F_0^{(2)}(r), \qquad \psi_0^{(3)} = (1 - \eta^2) F_0^{(3)}(r).$$

Подставляя $\psi_0^{(1)}$, $\psi_0^{(2)}$, $\psi_0^{(3)}$ в уравнения (7) и разделяя члены, содержащие r, η , получаем обыкновенные дифференциальные уравнения для $F_0^{(1)}(r)$, $F_0^{(2)}(r)$, $F_0^{(3)}(r)$. Интегрируя эти уравнения по r, находим выражения для $F_0^{(1)}(r)$, $F_0^{(2)}(r)$, $F_0^{(3)}(r)$. Решение для области r < b (область I), не имеющее особенности в начале координат, имеет вид

$$F_0^{(1)}(r) = K^{(1)}r^2 + C^{(1)}\left(\frac{\operatorname{sh}\alpha^{(1)}r}{\alpha^{(1)}r} - \operatorname{ch}\alpha^{(1)}r\right).$$
(8)

Для области $b < r \leqslant a$ (область II) решение можно записать в виде

$$F_0^{(2)}(r) = K^{(2)}r^2 + \frac{L^{(2)}}{r} + C^{(2)}\left(\frac{\operatorname{sh}\alpha^{(2)}r}{\alpha^{(2)}r} - \operatorname{ch}\alpha^{(2)}r\right) + N^{(2)}\left(\frac{\operatorname{ch}\alpha^{(2)}r}{\alpha^{(2)}r} - \operatorname{sh}\alpha^{(2)}r\right), \tag{9}$$

где $\alpha^{(i)} = \sigma^{(i)} / \gamma^{(i)}, \, i = 1, 2.$ Для области III

$$F_0^{(3)}(r) = \frac{A}{r} - Br + Cr^2$$

Поскольку в этой области течения функция тока имеет вид

$$\psi_0^{(3)}(r) = (r^2 - 2Br)(1 - \eta^2)/2, \qquad r \to \infty,$$

постоянную интегрирования можно выбрать равной C = 1/2. Тогда

$$F_0^{(3)}(r) = \frac{A}{r} - Br + \frac{1}{2}r^2.$$
(10)

Постоянные A, B, $L^{(2)}$, $N^{(2)}$, $K^{(i)}$, $C^{(i)}$ вычисляются из условия согласования решений (8)–(10) на поверхности сферы и на поверхности раздела пористая среда — пористая среда. Подставляя (8), (9) в условие согласования (1), получаем следующие соотношения на поверхности раздела пористая среда — пористая среда при $\lambda = b/a$:

$$(\gamma^{(1)})^2 \Big(F_0^{(1)\prime\prime\prime} - \frac{6F_0^{(1)\prime\prime}}{r^2} + \frac{12}{r^3} F_0^{(1)} \Big) - \sigma_0^{(1)} F_0^{(1)\prime} = (\gamma^{(2)})^2 \Big(F_0^{(2)\prime\prime\prime} - \frac{6F_0^{(2)\prime}}{r^2} + \frac{12}{r^3} F_0^{(2)} \Big) - \sigma_0^{(2)} F_0^{(2)\prime},$$

$$(\gamma^{(1)})^2 \Big(F_0^{(1)\prime\prime\prime} - \frac{2F_0^{(1)\prime}}{r^2} + \frac{4}{r^3} F_0^{(1)} \Big) = (\gamma^{(2)})^2 \Big(F_0^{(2)\prime\prime\prime} - \frac{2F_0^{(2)\prime}}{r^2} + \frac{4}{r^3} F_0^{(2)} \Big).$$

4. Второе приближение. Сначала найдем решение во втором приближении в области III, согласовывая его с соответствующим решением в области IV, затем получим решение во втором приближении в области II, согласовывая его с соответствующим решением в области III, а также решение в области I, согласовывая его с решением в области II. Тогда выражение для функции тока $\psi^{(3)}$ записывается следующим образом:

$$\psi^{(3)} = -6B\left(\frac{2A}{r^5} - \frac{2B}{r^3} + \frac{1}{r^2}\right)\eta(1-\eta^2),$$

откуда следует, что эту функцию можно представить в виде

$$\psi_1^{(3)}(r,\eta) = F_1(r)(1-\eta^2) + G_1(r)(1-\eta^2)\eta,$$

где

$$F_1 = \frac{B}{2} F_0(r), \qquad G_1 = \frac{B}{4} \left(\frac{2A}{r} + 2Br - r^2 + C^{(2)} + \frac{E^{(2)}}{r^2}\right) F_0(r).$$

Получим второе приближение для уравнения Бринкмана в областях I и II. Решение в области II не зависит от Re, поэтому $\psi_1^{(1)}(r,\eta)$ и $\psi_1^{(2)}(r,\eta)$ удовлетворяют уравнению

$$(\gamma^{(2)})^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1 - \eta^2}{r^2} \frac{\partial^2}{\partial \eta^2}\right)^2 \psi^{(2)} - (\sigma^{(2)})^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1 - \eta^2}{r^2} \frac{\partial^2}{\partial \eta^2}\right) \psi^{(2)} = 0.$$

Выражение для $\psi_1^{(2)}(r,\eta)$ должно согласовываться с выражением для $\psi_1^{(3)}(r,\eta)$ при r=1. Следовательно, выражение для $\psi_1^{(2)}(r,\eta)$ имеет вид

$$\psi_1^{(2)}(r,\eta) = f_1^{(2)}(r)(1-\eta^2) + g_1^{(2)}(r)(1-\eta^2)\eta,$$

где

$$f_1^{(2)} = Bf_0^{(2)}(r)/2,$$

$$g_1^{(2)}(r) = r^3 + \frac{K^{(2)}}{r^2} + N^{(3)} \left(\frac{3 + (\alpha^{(2)})^2 r^2}{r^2} \operatorname{sh} \alpha^{(2)} r - \frac{3\alpha^{(2)}}{r} \operatorname{ch} \alpha^{(2)} r\right) + L^{(1)} \left(\frac{3\alpha^{(2)}}{r} \operatorname{sh} \alpha^{(2)} r - \frac{3 + (\alpha^{(2)})^2 r^2}{r^2} \operatorname{ch} \alpha^{(2)} r\right).$$
(11)

Решение в области I не зависит от Re, поэтому функции тока $\psi_1^{(1)}(r,\eta)$ и $\psi_1^{(2)}(r,\eta)$ удовлетворяют уравнению

$$(\gamma^{(1)})^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1 - \eta^2}{r^2} \frac{\partial^2}{\partial \eta^2}\right)^2 \psi_1^{(1)} - (\sigma^{(1)})^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1 - \eta^2}{r^2} \frac{\partial^2}{\partial \eta^2}\right) \psi_1^{(1)} = 0$$

Выражение для $\psi_1^{(1)}(r,\eta)$ должно согласовываться с выражением для $\psi_1^{(2)}(r,\eta)$ при r=1. Следовательно, выражение для $\psi_1^{(2)}(r,\eta)$ имеет вид

$$\psi_1^{(1)}(r,\eta) = f_1^{(1)}(r)(1-\eta^2) + g_1^{(1)}(r)(1-\eta^2)\eta,$$

где

$$f_1^{(1)} = \frac{B}{2} f_0^{(1)}(r), \qquad g_1^{(1)}(r) = M^{(2)} r^3 + N^{(2)} \left(\frac{3 + (\alpha^{(2)})^2 r^2}{r^2} \operatorname{sh} \alpha^{(2)} r - \frac{3\alpha^{(2)}}{r} \operatorname{ch} \alpha^{(2)} r\right).$$
(12)

Постоянные $A, B, M^{(2)}, N^{(2)}, M^{(3)}, N^{(3)}, K^{(2)}$ и $L^{(1)}$ вычисляются из условия согласования решений при r = 1 и $r = \lambda$. Записывая условие согласования для $\psi_1^{(1)}(r, \eta), \psi_1^{(2)}(r, \eta),$ получаем уравнения

$$\begin{split} &\frac{B}{4}\left(2A+2B-1-C^{(2)}+E^{(1)}\right)=M^{(3)}+K^{(2)}+N^{(3)}[(3+(\alpha^{(2)})^2)\sh\alpha^{(2)}-3\alpha^{(2)}\ch\alpha^{(2)}]+\\ &+L^{(1)}[-(3+(\alpha^{(2)})^2)\ch\alpha^{(2)}+3\alpha^{(2)}+3\alpha^{(2)}],\\ &\frac{B}{4}\left(-A+B-1+E^{(1)}\right)=3M^{(3)}-2K^{(2)}+N^{(3)}[(6+(\alpha^{(2)})^2)\alpha^{(2)}\ch\alpha^{(2)}-3(2+(\alpha^{(2)})^2)\sh\alpha^{(2)}]+\\ &+L^{(1)}[(6+(\alpha^{(2)})^2)\alpha^{(2)}\sh\alpha^{(2)}-3(2+(\alpha^{(2)})^2)\ch\alpha^{(2)}],\\ &\frac{B}{2}\left[(10-\beta\sigma^{(2)})A+(4+\beta\sigma^{(2)})B-(2+\beta\sigma^{(2)})-3C^{(2)}-(8-\beta\sigma^{(2)})E^{(1)}\right]=\\ &=(\gamma^{(2)})^2\{6M^{(3)}+16K^{(2)}+N^{(3)}[(48+21(\alpha^{(2)})^2+(\alpha^{(2)})^4)\sh\alpha^{(2)}-(48\alpha^{(2)}+5(\alpha^{(2)})^3)\ch\alpha^{(2)}]+\\ &+L^{(1)}[-(48+21(\alpha^{(2)})^2+(\alpha^{(2)})^4)\ch\alpha^{(2)}-(48\alpha^{(2)}+5(\alpha^{(2)})^3)\sh\alpha^{(2)}]\},\\ &3B(1+7A+4B-3C^{(1)}-3E^{(1)})=(\gamma^{(1)})^2\{6M^{(3)}+48K^{(2)}+\\ &+N^{(3)}[-(\alpha^{(2)})^5-36\alpha^{(2)}-72)\ch\alpha^{(2)}+(3(\alpha^{(2)})^4+36(\alpha^{(2)})^2-108)\sh\alpha^{(2)}]\}+\\ &+(\sigma^{(2)})^2\{3M^{(1)}+2K^{(1)}+N^{(3)}[(6+(\alpha^{(2)})^2)\alpha^{(2)}\ch\alpha^{(2)}-3(2+(\alpha^{(2)})^2)\sh\alpha^{(2)}]\}. \end{split}$$

Выражения для второго приближения для давления в областях I и II получаются в результате подстановки уравнений (11), (12) в (2) и интегрирования их:

$$\frac{1}{\mu} p^{(1)} = (\gamma^{(1)})^2 \left(g_1^{(1)\prime\prime\prime} + \frac{12}{r^3} g_1^{(1)} \right) \frac{\cos 2\theta}{4} - \frac{(\sigma^{(1)})^2 g_1^{(1)\prime} \cos 2\theta}{4},$$
$$\frac{1}{\mu} p^{(2)} = (\gamma^{(2)})^2 \left(g_1^{(2)\prime\prime\prime} + \frac{12}{r^3} g_1^{(2)} \right) \frac{\cos 2\theta}{4} - \frac{(\sigma^{(2)})^2 g_1^{(2)\prime} \cos 2\theta}{4} + L$$

Здесь L — постоянная интегрирования. На поверхности раздела пористая среда — пористая среда ($r = \lambda$) ставятся следующие условия:

— условия непрерывности скоростей

$$\begin{split} M^{(3)}\lambda^3 + \frac{K^{(2)}}{\lambda^2} + N^{(3)} \Big(\frac{3 + (\alpha^{(2)})^2 \lambda^2}{\lambda^2} \operatorname{sh} \alpha \lambda - \frac{3\alpha^{(2)}}{\lambda} \operatorname{ch} \alpha^{(2)} \lambda \Big) + \\ + L^{(1)} \Big(- \frac{3 + (\alpha^{(2)})^2 \lambda^2}{\lambda^2} \operatorname{ch} \alpha^{(2)} \lambda + \frac{2\alpha^{(2)}}{\lambda} \operatorname{sh} \alpha^{(2)} \lambda \Big) = \\ = M^{(2)}\lambda^3 + N^{(3)} \Big(\frac{3 + (\alpha^{(2)})^2 \lambda^2}{\lambda^2} \operatorname{sh} \alpha^{(2)} \lambda - \frac{3\alpha^{(2)}}{\lambda} \operatorname{ch} \alpha^{(2)} \lambda \Big), \end{split}$$

$$3M^{(3)}\lambda^{2} - \frac{N^{(3)}}{\lambda^{3}} [3(2 + (\alpha^{(2)})^{2}\lambda^{2}) \operatorname{sh} \alpha^{(2)}\lambda - \alpha^{(2)}\lambda(6 + (\alpha^{(2)})^{2}\lambda^{2}) \operatorname{ch} \alpha^{(2)}\lambda] - \frac{2K^{(2)}}{\lambda^{3}} - \frac{L^{(1)}}{\lambda^{3}} [-3(2 + (\alpha^{(2)})^{2}\lambda^{2}) \operatorname{ch} \alpha^{(2)}\lambda + \alpha^{(2)}\lambda(6 + (\alpha^{(2)})^{2}\lambda^{2}) \operatorname{sh} \alpha^{(2)}\lambda] = \\ = 3M^{(3)}\lambda^{2} - \frac{N^{(3)}}{\lambda^{3}} [3(2 + (\alpha^{(2)})^{2}\lambda^{2}) \operatorname{sh} \alpha^{(2)}\lambda - \alpha^{(2)}\lambda(6 + (\alpha^{(2)})^{2}\lambda^{2}) \operatorname{ch} \alpha^{(2)}\lambda];$$

— условия непрерывности напряжений

 $\langle \mathbf{n} \rangle$

5. Результаты исследования. Сопротивление на неоднородной пористой сфере определяется выражением

$$C_d = 2\pi\mu U a^2 \int_0^\pi (\tau_{rr}\cos\theta - \tau_{r\theta}\sin\theta) \Big|_{r=a}\sin\theta \,d\theta.$$
(13)

Подставляя значения τ_{rr} , $\tau_{r\theta}$ в уравнение (13) и интегрируя его, получаем

$$C_d = 4\pi\mu Ua(2B + B^2 \operatorname{Re})$$

В случае если оболочка представляет собой твердую сферу радиусом a, выражение для ее сопротивления имеет вид

$$C_d = 6\pi\mu Ua[1 + (3/8) \text{Re}].$$

При уменьшении проницаемости внутренней пористой сферы до нуля задача становится аналогичной задаче, рассмотренной в работе [16].

В табл. 1–5 приведены результаты исследования характеристик течения при различных значениях параметров задачи. Из табл. 1 следует, что в случае если проницаемость области I больше проницаемости области II, сопротивление сферы больше, чем в случае, если проницаемость области I меньше проницаемости области II. Из табл. 2, 3 следует, что с увеличением ($\gamma^{(i)}$)² сопротивление сферы уменьшается, а с увеличением λ — увеличивается. В табл. 4, 5 приведены значения постоянных интегрирования первой аппроксимации решения, в табл. 6 — значения углов входа и выхода в области I при различных значениях функции тока и числа Рейнольдса.

Результаты расчетов показывают, что при $\lambda = 0.85$ линии тока $\psi^{(1)} = 0.001$; 0.005; 0.009; 0.010; 0.020; 0.030 области I переходят в соответствующие линии тока $\psi^{(2)}$ области II с погрешностью, меньшей 0.05 %.

Таблица 1

 C_d Соотношение $\alpha^{(1)}$ $\alpha^{(2)}$ проницаемостей B = -0.3B = 0.3сфер $\lambda = 0.25$ $\lambda = 0,50$ $\lambda = 0.75$ $\lambda = 0.25$ $\lambda = 0.50$ $\lambda = 0.75$ 0,649107 0,647464 0,646767 0,578483 $0,566\,492$ 0,555462 56 570,699681 $0,697\,503$ 0,679067 0,672749 0,663 063 0,646214 $\varkappa^{(1)} > \varkappa^{(2)}$ 6 70,682760 0,679789 0,665440 0,639318 0,630 283 0,618539 6 8 0,730443 $0,716\,874$ 0,690 095 0,728097 $0,703\,546$ 0,660 821 6 5 $0,554\,579$ 0,565691 0,425 210 0,584105 0,353408 0,461 315 $7 \\ 7$ 50,484068 0,499156 $0,562\,131$ 0,095645 0,244 094 $0,392\,155$ $\varkappa^{(1)} < \varkappa^{(2)}$ 6 0,559426 0,586810 0,614082 0,368797 0,460358 0,510466 8 6 $0,297\,569$ $0,499\,154$ $0,595\,745$ 0,007140 $0,\!243\,280$ $0,454\,835$

Сопротивление сферы при
$$(\gamma^{(1)})^2 = (\gamma^{(2)})^2 = 1$$
 и различных значениях B , λ , $\alpha^{(1)}$, $\alpha^{(2)}$

_

Таблица 2

Сопротивление сферы при $lpha^{(1)}=5$, $lpha^{(2)}=6$ и различных значениях B, λ , $\gamma^{(i)}$

	C_d							
$(\gamma^{(i)})^2$	B = -0.5			B = 0.5				
	$\lambda=0{,}25$	$\lambda=0{,}50$	$\lambda=0{,}75$	$\lambda=0{,}25$	$\lambda=0{,}50$	$\lambda=0{,}75$		
5	$0,\!634974$	$0,\!665197$	$0,\!670137$	$0,\!368995$	$0,\!607506$	$0,\!627501$		
6	$0,\!630269$	$0,\!664485$	$0,\!670072$	$0,\!304189$	$0,\!607261$	$0,\!627495$		
7	$0,\!625411$	$0,\!663281$	$0,\!669354$	$0,\!214370$	$0,\!605115$	$0,\!626709$		
8	$0,\!620474$	0,661660	$0,\!668088$	$0,\!196190$	$0,\!601420$	$0,\!624311$		
9	$0,\!615529$	$0,\!659713$	$0,\!666350$	$0,\!172642$	$0,\!596397$	$0,\!620502$		
10	$0,\!610635$	$0,\!657482$	$0,\!664194$	$0,\!106032$	0,590191	$0,\!615383$		

Таблица З

Сопротивление сферы при $lpha^{(1)}=6$, $lpha^{(2)}=5$ и различных значениях B, λ , $\gamma^{(i)}$

	C_d							
$(\gamma^{(i)})^2$	B = -0.5			B = 0.5				
	$\lambda=0{,}25$	$\lambda = 0,50$	$\lambda = 0.75$	$\lambda = 0,25$	$\lambda = 0,50$	$\lambda = 0,75$		
5	$0,\!576408$	$0,\!612655$	$0,\!609549$	0,301448	0,382784	$0,\!442982$		
6	$0,\!561777$	$0,\!600870$	$0,\!607378$	$0,\!297411$	$0,\!343684$	$0,\!417404$		
7	$0,\!553161$	$0,\!594356$	$0,\!601995$	$0,\!204120$	$0,\!288350$	$0,\!381745$		
8	$0,\!544920$	0,588066	$0,\!595695$	$0,\!189420$	$0,\!214415$	$0,\!331936$		
9	$0,\!537158$	0,581449	0,588708	$0,\!154810$	$0,\!115921$	$0,\!263853$		
10	$0,\!529926$	$0,\!574679$	0,581231	$0,\!091420$	$0,\!017246$	$0,\!170281$		

Таблица 4

Значения постоянных интегрирования первой аппроксимации решения при $\alpha^{(1)}=5,\,\alpha^{(2)}=6,\,B=-0.5$ и различных значениях $(\gamma^{(i)})^2$

$(\gamma^{(i)})^2$	A	$L^{(2)}$	$K^{(2)}$	$-N^{(2)}$	$-C^{(2)}$	$-K^{(1)}$	$-C^{(1)}$
5	$0,\!213894$	0,002226	0,008923	$0,\!007241$	0,000891	$0,\!012534$	0,000719
6	$0,\!215045$	0,003483	0,009393	0,009995	0,000586	0,030684	0,000226
7	$0,\!215935$	$0,\!004964$	$0,\!010305$	$0,\!012876$	$0,\!001002$	$0,\!046096$	$0,\!011814$
8	0,216611	$0,\!006631$	$0,\!011582$	$0,\!015011$	0,001421	$0,\!064276$	0,029404
9	0,217107	$0,\!008455$	$0,\!013161$	$0,\!018751$	$0,\!001561$	$0,\!084676$	$0,\!052801$
10	0,217454	0,010402	$0,\!014987$	0,021652	0,001722	0,106 808	0,006721

Таблица 5

Значения постоянных интегрирования первой аппроксимации решения при $\alpha^{(1)}=5,\,\alpha^{(2)}=6,\,B=0,5$ и различных значениях $(\gamma^{(i)})^2$

	-			•		~ /	
$(\gamma^{(i)})^2$	A	$L^{(2)}$	$K^{(2)}$	$-N^{(2)}$	$-C^{(2)}$	$-K^{(1)}$	$-C^{(1)}$
5	$0,\!186331$	$0,\!004468$	0,000207	$0,\!014417$	0,001 006	$0,\!045938$	0,008441
6	$0,\!185508$	$0,\!006914$	$0,\!001200$	$0,\!019723$	0,001071	$0,\!047219$	0,008441
7	$0,\!187563$	0,009829	0,002961	$0,\!025376$	0,001096	$0,\!049593$	0,007443
8	$0,\!188795$	$0,\!005379$	$0,\!005379$	$0,\!031314$	0,001107	0,081299	0,005393
9	$0,\!189382$	$0,\!016955$	0,008386	0,037481	0,001130	$0,\!119039$	0,004231
10	$0,\!189439$	$0,\!021138$	$0,\!019356$	$0,\!043871$	0,001190	$0,\!162312$	0,003832
	-	-				-	

Таблица б

при $\lambda=0,5,~(\gamma^{(i)})^2=1,~lpha^{(2)}=5,~lpha^{(1)}=6$ и различных значениях $\psi^{(1)}$						
(1)	$\mathrm{Re} = 0$	$\mathrm{Re}=0,5$				
$\psi^{(1)}$	θ	$\theta_{\scriptscriptstyle \mathrm{BX}}$	$\theta_{\scriptscriptstyle \mathrm{B}\mathrm{b}\mathrm{I}\mathrm{X}}$			
0	0	0	0			
0,0010	$21,\!47$	20,02	$158,\!98$			
0,0020	$31,\!18$	28,96	149,04			
0,0040	47,07	43,22	$135,\!98$			
0,0060	63,75	57,00	120,00			
0,0070	$75,\!62$	64,95	110,90			
0,0074	84,85	$68,\!65$	$107,\!35$			

Значения углов входа и выхода при $\lambda=0,5,~(\gamma^{(i)})^2=1,~\alpha^{(2)}=5,~\alpha^{(1)}=6$ и различных значениях $\psi^{(1)}$

Автор выражает благодарность руководству Колледжа Амрита Вишва Видиапитхам (Бангалор) за поддержку данной работы.

ЛИТЕРАТУРА

- 1. Verma P. D., Bhatt B. S. Low Reynolds number flow past a heterogeneous porous sphere using matched asymptotic techniques // Appl. Sci. Res. 1974. V. 32. P. 61–72.
- Jones I. P. Low Reynolds number flow past a porous spherical shell // Proc. Cambridge Philos. Soc. 1973. V. 73. P. 231–238.
- Joseph D. D., Tao L. N. The effect of permeability in the slow motion of a porous sphere in a viscous liquid // Z. angew. Math. Mech. 1964. Bd 44. S. 361–364.
- Padmavathi B. S., Amarnath T., Palaniappan D. Stokes flow about a porous spherical particle // Arch. Mech. 1994. V. 46. P. 191–199.
- Vereshchagin A. S., Dolgushev S. V. Low-velocity viscous incompressible fluid flow around a hollow porous sphere // J. Appl. Mech. Tech. Phys. 2011. V. 52, N 3. P. 406–414.
- Shapovalov V. M. Viscous fluid flow around a semipermeable particle // J. Appl. Mech. Tech. Phys. 2009. V. 50, N 4. P. 584–588.
- 7. Grosan T., Postelnicu A., Pop I. Brinkman flow of a viscous fluid through a spherical porous medium embedded in another porous medium // Transport Porous Media. 2010. V. 81. P. 89–103.
- Brinkman H. C. Calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles // Appl. Sci. Res. 1947. V. A1. P. 27–34.
- Merikh A. A., Mohamad A. A. Non Darcy effects in buoyancy driven flows in an enclosure filled with vertically layered porous media // Intern. J. Heat Mass Transfer. 2002. V. 45. P. 4305–4313.
- Lundgren T. S. Slow flow through stationary random beds and suspensions of sphere // J. Fluid Mech. 1972. V. 51. P. 273–299.
- Givler R. C., Altobelli A. Determination of the effective viscosity for the Brinkman Forchheimer flow model // J. Fluid Mech. 1994. V. 258. P. 355–370.
- Ochoa-Tapia J. A., Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid. 1. Theoretical development // Intern. J. Heat Mass Transfer. 1995. V. 38. P. 2635–2646.
- 13. Whitaker S. The method of volume averaging. Dordrecht: Kluwer Acad. Publ., 1999.

- Ochoa-Tapia J. A., Whitaker S. Momentum transfer at the boundary between a porous medium and a homorogeneous fluid. 2. Comparison with expirement // Intern. J. Heat Mass Transfer. 1995. V. 38. P. 2647–2655.
- Srivastava A. C., Srivastava N. Flow past a porous sphere at small Reynolds number // Z. angew. Math. Phys. 2005. Bd 56. S. 821–835.
- Srivastava A. C., Srivastava N. Flow of a viscous fluid at small Reynolds number past a porous sphere with a solid core // Acta Mech. 2006. V. 186. P. 161–172.
- 17. Langlois W. E. Hydrodynamics. N. Y.: Macmillan, 1964. P. 131–153.

Поступила в редакцию 21/XI 2013 г., в окончательном варианте — 5/XI 2014 г.