УДК 532.135

ВЛИЯНИЕ МОЛЕКУЛЯРНОЙ МАССЫ НА СДВИГОВУЮ И ПРОДОЛЬНУЮ ВЯЗКОСТЬ ЛИНЕЙНЫХ ПОЛИМЕРОВ

И. Э. Головичева, С. А. Зинович, Г. В. Пышнограй

Алтайский государственный технический университет им. И. И. Ползунова, 656099 Барнаул

Изучается влияние молекулярной массы полимерного образца на зависимость стационарной вязкости от градиента скорости при простом сдвиге и одноосном растяжении. Используется модель динамики суспензии невзаимодействующих гантелей в анизотропной среде. Полученные теоретические результаты показывают независимость асимптотического поведения сдвиговой вязкости от молекулярной массы и соответствуют экспериментальным данным.

Изучение технологических процессов переработки полимеров является важной практической задачей, для решения которой необходима математическая формулировка законов поведения полимерных жидкостей. При математическом моделировании течений растворов и расплавов линейных полимеров наибольшие трудности связаны с нелинейными эффектами. Для их описания необходимо получить реологическое определяющее соотношение и проверить его соответствие реальным течениям полимерных жидкостей. В настоящее время [1, 2] сформулировано реологическое определяющее соотношение и проведены расчеты простого стационарного сдвигового течения, результаты которых согласуются с экспериментальными данными [3]. Указанное соотношение получено как нулевое приближение более общего реологического определяющего соотношения по малым параметрам, связанным с последействием окружения макромолекулярной цепи и внутренней вязкостью [4, 5], поэтому требует дополнительного обоснования. Построим реологическую модель нулевого приближения другим методом и исследуем влияние молекулярной массы и концентрации полимера на ее параметры.

Реологическое определяющее соотношение. Используем микроструктурный подход, позволяющий установить связь между макро- и микрохарактеристиками полимерной системы [6, 7]. В теории вязкоупругости полимера наиболее результативным является одномолекулярное приближение, при котором вместо совокупности макромолекул в объеме рассматривается одна макромолекула, движущаяся в эффективной среде, образованной растворителем и другими макромолекулами. Для изучения сравнительно медленных движений можно использовать модель Каргина — Слонимского — Рауза. В этой модели динамика макромолекулы моделируется движением N+1 центров трения (бусинок), связанных последовательно упругими силами (пружинками), и уравнения динамики макромолекулы имеют вид

$$m \frac{d}{dt} u_i^{\alpha} = P_i^{\alpha} + Q_i^{\alpha} + \Phi_i^{\alpha}, \qquad (1)$$

где m — масса бусинки; u_i^{α} — скорость частицы с номером α ; P_i^{α} — сила гидродинамического увлечения; Q_i^{α} — упругая сила; Φ_i^{α} — случайная (броуновская) сила.

154

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 99-15-96014).

Следует отметить, что применение такого подхода приводит к реологическим определяющим соотношениям различной сложности (см. обзор работ в [6, 7]). Наиболее простая реологическая модель [1, 2] позволяет моделировать стационарные вискозиметрические течения растворов и расплавов линейных полимеров не только качественно, но и количественно. Рассмотрим ее более подробно. Динамику макромолекулы будем моделировать упругой гантелью, что соответствует самому медленному релаксационному процессу полимерной цепи.

В безынерционном случае (m = 0) уравнения динамики макромолекулы (1) в лабораторной системе координат имеют вид

$$\dot{r}'_{i} = \nu_{ij}r'_{j} - 2T\mu\zeta_{ij}^{-1}(r'_{j} - r''_{j}) + \zeta_{ij}^{-1}f'_{j}, \quad \dot{r}''_{i} = \nu_{ij}r''_{j} - 2T\mu\zeta_{ij}^{-1}(r''_{j} - r'_{j}) + \zeta_{ij}^{-1}f''_{j}.$$
(2)

Здесь $r'_i, r''_i - i$ -я декартова координата радиус-вектора первой и второй бусинок соответственно; $2T\mu$ — коэффициент упругости; T — температура в энергетических единицах; μ — коэффициент пропорциональности; ζ_{ij} — тензорный коэффициент трения; $\nu_{ij} = \partial v_i / \partial x_j$ — тензор градиентов скорости; $v_i - i$ -я компонента вектора скорости; f'_i , f''_i — i-я компонента вектора случайной силы (для первой и второй бусинок), статистические свойства которой определяются из соответствующего флуктуационно-диссипативного соотношения.

Если анизотропия полимерной системы определяется симметричным тензором второго ранга a_{ij} , то для тензора трения ζ_{ij} будем использовать выражение [2]

$$\zeta_{ij} = B\zeta(\delta_{ij} + 3\beta(a_{ij} - (a_{ll}/3)\delta_{ij}) + a_{ll}\delta_{ij})^{-1}.$$
(3)

Здесь ζ — коэффициент трения бусинок в «мономерной» жидкости (для сферических частиц $\zeta = 6\pi R\eta_p$, R — радиус частицы, η_p — вязкость растворителя); B — мера усиления коэффициента трения; β , x — скалярные коэффициенты анизотропии, учитывающие соответственно изотропный и анизотропный вклады в зависимость ζ_{ij} от a_{ij} ; δ_{ij} — символ Кронекера.

Перейдем к новым координатам

$$\rho_i = (r'_i - r''_i)/\sqrt{2}, \qquad \rho_i^0 = (r'_i + r''_i)/\sqrt{2}. \tag{4}$$

Координата ρ_i^0 описывает движение центра тяжести гантели, а ρ_i — относительное движение бусинок. Тогда уравнения (2) в координатах (4) примут вид

$$\dot{\rho}_i = \nu_{ij}\rho_j - 4T\mu\zeta_{ij}^{-1}\rho_j + f_i, \qquad \dot{\rho}_i^0 = \nu_{ij}\rho_j^0 + f_i^0.$$
(5)

Получим уравнения для корреляционного момента $y_{ik} = \langle \rho_i \rho_k \rangle$, где осреднение производится по всем реализациям случайной силы **f**. Дифференцируя y_{ik} по времени и используя (5), имеем

$$\frac{d}{dt}y_{ik} = \nu_{ij}y_{jk} + \nu_{kj}y_{ji} - 4T\mu\zeta_{ij}^{-1}y_{jk} - 4T\mu\zeta_{kj}^{-1}y_{ji} + \langle f_i\rho_k \rangle + \langle f_k\rho_i \rangle.$$
(6)

Неизвестные корреляционные моменты $\langle f_i \rho_k \rangle$ могут быть найдены из соответствующего флуктуационно-диссипативного соотношения, однако существует другой метод. Равновесное ($\nu_{ik} = 0$) значение корреляционного момента y_{ik} определено ранее [7]: $y_{ik}^0 = \delta_{ik}/(4\mu)$. Кроме того, уравнения (6) линейны по y_{ik} , поэтому в слагаемых, не содержащих сомножителем тензор градиентов скорости, нужно заменить y_{ik} на ($y_{ik} - y_{ik}^0$). В результате получим

$$\frac{d}{dt}y_{ik} = \nu_{ij}y_{jk} + \nu_{kj}y_{ji} - 4T\mu \Big[\zeta_{ij}^{-1}\Big(y_{jk} - \frac{1}{4\mu}\,\delta_{jk}\Big) + \zeta_{kj}^{-1}\Big(y_{ij} - \frac{1}{4\mu}\,\delta_{ij}\Big)\Big].$$
(7)

Заметим, что тензор y_{ik} описывает форму и размеры макромолекулярного клубка. Поскольку анизотропные свойства полимерной среды определяются размерами и формой макромолекулярных клубков, то тензор анизотропии a_{ik} , описывающий отклонение статистически неравновесной системы от состояния равновесия, можно определить следующим образом:

$$a_{ik} = \frac{\langle \rho_i \rho_k \rangle}{\langle \rho^2 \rangle_e} - \frac{1}{3} \,\delta_{ik} = \frac{4\mu}{3} \,y_{ik} - \frac{1}{3} \,\delta_{ik},\tag{8}$$

где $\langle \rho^2 \rangle_e$ — равновесное значение выражения $\langle \rho_1^2 \rangle + \langle \rho_2^2 \rangle + \langle \rho_3^2 \rangle$. Используя (3), уравнения (7) запишем в виде

$$\frac{d}{dt}a_{ik} - \nu_{ij}a_{jk} - \nu_{kj}a_{ji} + \frac{1 + (x - \beta)I}{\tau_0}a_{ik} = \frac{2}{3}\gamma_{ik} - \frac{3\beta}{\tau_0}a_{ij}a_{jk},\tag{9}$$

где $\tau_0 = B\zeta/(8T\mu)$ — начальное время релаксации; γ_{ik} — симметризованный тензор градиентов скорости; $I = a_{jj}$.

Для сравнения (9) с экспериментальными данными потребуется выражение для тензора напряжений полимерной системы, которое может быть получено стандартным образом [7] и в обобщенных координатах (4) имеет вид

$$\sigma_{ik} = -p\delta_{ik} + 4nT\mu \langle \rho_i \rho_k \rangle$$

Здесь *р* — гидростатическое давление; *n* — число макромолекул в единице объема.

С учетом (8) данное выражение перепишется в виде

$$\sigma_{ik} = -p\delta_{ik} + 3\eta_0 a_{ik}/\tau_0,\tag{10}$$

где $\eta_0 = nT\tau_0$ — начальное значение коэффициента сдвиговой вязкости.

Таким образом, выражения (9), (10) образуют реологическое определяющее соотношение нелинейной анизотропной вязкоупругой жидкости с параметрами τ_0 , η_0 , \mathfrak{E} , β , которые в свою очередь должны зависеть от молекулярной массы полимера M и его концентрации c. Размерные параметры τ_0 , η_0 оцениваются по формулам [1]

$$\eta_0 = \eta_0(c^*, M^*) \left(\frac{c}{c^*}\right)^{4,5} \left(\frac{M}{M^*}\right)^{3,4}, \qquad \tau_0 = \frac{\eta_0}{nT},\tag{11}$$

где c^*, M^* — некоторые постоянные.

Параметры наведенной анизотропии æ и β , очевидно, не зависят ни от молекулярной массы, ни от концентрации [1, 2]. Для проверки этого утверждения рассмотрим решения системы уравнений (9), (10) в случаях стационарного сдвигового течения и стационарного течения одноосного растяжения.

Стационарное сдвиговое течение. Исследуем нелинейные эффекты в стационарном сдвиговом течении, когда тензор градиентов скорости имеет вид

$$[\nu_{ij}] = \begin{bmatrix} 0 & \nu_{12} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Из уравнений (9), (10) получаем систему алгебраических уравнений

$$a_{11} = 2\tau_N S a_{12} - 3\beta \tau_N (a_{11}^2 + a_{12}^2), \qquad a_{22} = -3\beta \tau_N (a_{22}^2 + a_{12}^2), a_{12} = \frac{\tau_N}{3} S + \tau_N S a_{22} - 3\beta \tau_N a_{12} (a_{11} + a_{22}),$$
(12)

где $\tau_N = 1/(1 + (a - \beta)I); I = a_{11} + a_{22}; S = \tau_0 \nu_{12}$. В этом случае поведение полимерной системы характеризуется сдвиговой вязкостью η , первой N_1 и второй N_2 разностями нормальных напряжений:

$$\eta = \frac{\sigma_{12}}{\nu_{12}} = \frac{3\eta_0 a_{12}}{S}, \quad N_1 = \sigma_{11} - \sigma_{22} = \frac{3\eta_0}{\tau_0} (a_{11} - a_{22}), \quad N_2 = \sigma_{22} - \sigma_{33} = \frac{3\eta_0}{\tau_0} (a_{22} - a_{33}).$$

()Enonorr						
Ооразец	Рис. 3	Рис. 5	Рис. 3	Рис. 5	Рис. 3	Рис. 5
1	200	327	$2,8\cdot 10^2$	$9 \cdot 10^3$	0,33	0,84
2	350	467	$1,75\cdot 10^3$	$5\cdot 10^4$	$3,\!66$	$6,\!64$
3	517	687	$8,2\cdot 10^3$	$1,\!4\cdot 10^5$	$25,\!32$	27,4
4	813	805	$4,7\cdot 10^4$	$6 \cdot 10^5$	$288,\!25$	137,4

Решения системы (12) определяются значениями параметров x и β , влияние которых на вид вискозиметрических функций η , N_1 , N_2 исследовано в [3, 8]. Из экспериментов известно, что при больших скоростях сдвига значения $\eta(\nu_{12})$ не зависят от молекулярной массы:

$$\eta(\nu_{12}) = k\nu_{12}^{\alpha}, \quad \tau_0\nu_{12} \gg 1, \quad k \sim M^0 \quad (0 < \alpha < 1,5).$$
(13)

Проанализируем условия (13), подбирая соответствующие значения \mathscr{E} и β . При проведении расчетов значение концентрации c/c^* принималось равным 1, значения молекулярной массы M/M^* — равными $\sqrt{10}$, $\sqrt[4]{10}$, 1 и $\eta_0(c^*, M^*) = 1$. Рис. 1 иллюстрирует влияние параметров \mathscr{E} и β на зависимость стационарной сдвиговой вязкости η/η_0 от скорости сдвига ν_{12} и молекулярной массы (кривые 1 соответствуют $M/M^* = \sqrt{10}$, кривые $2 - M/M^* = \sqrt[4]{10}$, кривые $3 - M/M^* = 1$). На рис. 1 видно, что для больших ν_{12} в случае $\mathscr{E} = 0,3, \beta = 0,1$ (штриховые кривые) значения η при различной молекулярной массе различаются, а в случае $\mathscr{E} = 0,3, \beta = 0,2$ (сплошные кривые) совпадают. Другим значениям \mathscr{E} соответствуют другие значения β . Следовательно, существует функциональная зависимость между параметрами \mathscr{E} и β , которая может быть определена из условия независимости асимптотического поведения стационарной сдвиговой вязкости от молекулярной массы полимера. При варьировании \mathscr{E} от 0 до 1 получены соответствующие значения β (точки на рис. 2). Видно, что зависимость $\mathscr{E}(\beta)$ можно достаточно точно описать линейной функцией

$$x = 1,2\,\beta.\tag{14}$$

Теоретические зависимости сравнивались с экспериментальными данными работы [8], где получены зависимости η , N от ν_{12} для растворов линейного полибутадиена различной молекулярной массы при T = 298 К. Молекулярные характеристики и реологические параметры растворов, соответствующие рис. 3, приведены в таблице. Концентрация образцов одинакова (c = 6,76%). Значение параметра τ_0 определялось из соотношения (11). На рис. 3, *a*, *б* представлены зависимости сдвиговой вязкости η и первой разности нормальных напряжений N_1 от скорости сдвига ν_{12} при $\mathscr{X} = 0,07$, $\beta = 0,05$. Видно, что теоретические кривые согласуются с экспериментальными данными. Это позволяет сделать вывод о применимости реологической модели нулевого приближения для описания стационарного сдвигового течения в достаточно широком диапазоне скоростей сдвига. В этой модели параметры \mathscr{X} и β слабо зависят от молекулярной массы.

Стационарное течение одноосного растяжения. Тензоры градиентов скорости и напряжения имеют диагональный вид

$$\begin{bmatrix} \nu_{ij} \end{bmatrix} = \begin{bmatrix} \nu_{11} & 0 & 0 \\ 0 & -\nu_{11}/2 & 0 \\ 0 & 0 & -\nu_{11}/2 \end{bmatrix}, \qquad \begin{bmatrix} \tau_{ij} \end{bmatrix} = \begin{bmatrix} 2\sigma/3 & 0 & 0 \\ 0 & -\sigma/3 & 0 \\ 0 & 0 & -\sigma/3 \end{bmatrix},$$

где σ — растягивающее напряжение; τ_{ij} — девиатор тензора растяжений.

Будем искать продольную вязкость как функцию $\sigma: \lambda(\sigma) = \sigma/\nu_{11}$. Из реологического определяющего соотношения (9), (10) получаем

$$a_{22} = -\frac{3\beta a_{22}^2 + S/3}{1 + (\varpi - \beta)I + S}, \quad S = \frac{a_{11}(1 + (\varpi - \beta)I) + 3\beta a_{11}^2}{2a_{11} + 2/3},$$

$$a_{11} = a_{22} + \sigma^*/3, \qquad I = a_{11} + 2a_{22},$$
(15)

где $S = \tau_0 \nu_{11}$ — безразмерная скорость растяжения; $\sigma^* = (\tau_0 / \eta_0) \sigma$ — безразмерное растягивающее напряжение.

Система уравнений (15) представляет собой нелинейную систему, которая решалась методом последовательных приближений и для проверки модифицированным методом Ньютона.

Исследуем влияние параметров наведенной анизотропии \mathfrak{E} и β на зависимость $\lambda(\sigma)$. С ростом σ продольная вязкость стремится к предельным значениям, которые увеличиваются с уменьшением \mathfrak{E} и β . Результаты расчетов для $\beta = 0.05$ приведены на рис. 4.

На рис. 5 представлена зависимость продольной вязкости λ от растягивающего напряжения σ для полимеров различной молекулярной массы и экспериментальные данные работы [9] (точки), где исследовались расплавы полиэтилена при T = 423 K. Молекулярные характеристики и реологические параметры расплавов, соответствующие рис. 5, приведены в таблице.

Параметры реологической модели оценивались по формулам (11), а значения æ и β (с учетом (14)) выбирались так, чтобы теоретические зависимости соответствовали экспериментальным данным.

Рис. 3

На рис. 5 теоретические кривые согласуются с экспериментальными данными, а расхождения в области $10^2 < \sigma < 10^5$ можно объяснить достаточно большими значениями полидисперсности используемых в работе [9] образцов.

Известно, что с ростом полидисперсности нелинейные свойства полимера проявляются в области меньших σ (или в области ν_{12} для сдвига). В силу использования одномолекулярного приближения данная модель представляет собой модель монодисперсного полимера и поэтому не описывает эффекты, связанные с полидисперсностью. Возможно, применение микроструктурного подхода при выводе уравнений (9), (10) позволит описать эти эффекты. Действительно, зависимости параметров модели от молекулярной массы полимера можно считать достоверными, и дальнейшая процедура будет состоять в усреднении получаемых результатов с использованием молекулярно-массового распределения.

Таким образом, применяемые ранее только для стационарного сдвига зависимости (11) и полученное соотношение (14) остаются справедливыми и для течений одноосного растяжения, что свидетельствует об универсальности данного подхода и возможности использования реологической модели (9), (10) при описании более сложных течений растворов и расплавов линейных полимеров, например течений со свободной поверхностью, и исследовании вторичных течений, когда существенную роль играют нелинейные эффекты.

ЛИТЕРАТУРА

- Алтухов Ю. А., Пышнограй Г. В. Микроструктурный подход в теории течения линейных полимеров и нелинейные эффекты на его основе // Высокомолекуляр. соединения. 1996. Т. 36, № 7. С. 1185–1193.
- Пышнограй Г. В. Начальное приближение в теории микровязкоупругости линейных полимеров и нелинейные эффекты на его основе // ПМТФ. 1996. Т. 37, № 1. С. 145–151.
- Kulicke W.-M., Wallbam U. Determination of first and second normal strees differences in polymer solutions in steady shear flow and similations caused by flow irregularities // Chem. Engng Sci. 1985. V. 40, N 6. P. 961–972.
- Пышнограй Г. В. Структурно-кинетический подход в теории течения растворов и расплавов линейных полимеров // ПМТФ. 1997. Т. 38, № 3. С. 122–130.
- Покровский В. Н., Пышнограй Г. В. Нелинейные эффекты в динамике концентрированных растворов и расплавов полимеров // Изв. АН СССР. Механика жидкости и газа. 1990. № 4. С. 88–96.

- Pokrovski V. N., Altukhov Yu. A., Pyshnograi G. V. The mesoscopic approach to the dynamics of polymer melts: consequeces for the constitutive equation // J. Non-Newtonian Fluid Mech. 1998. V. 76. P. 153–181.
- 7. Покровский В. Н. Динамика слабосвязанных линейных макромолекул // Успехи физ. наук. 1992. Т. 162, № 5. С. 87–121.
- Meneses E. V., Graessley W. W. Nonlinear rheologicial behavior of polymer systems for several shear-flow histories // J. Polym. Sci. 1982. V. 20. P. 1817–1833.
- 9. Wobbe H. Das rheologische Verhalten von Dehnstromungen polimer Fluide: Diss. ... Doktor Ingenieurs. Hamburg, 1984. S. 89–92.

Поступила в редакцию 29/I 1999 г., в окончательном варианте — 16/III 1999 г.