2013

<u>№</u> 4

УДК 622.772.001:662.346.3

ПРОГНОЗИРОВАНИЕ ЭФФЕКТИВНОСТИ ПРЕДВАРИТЕЛЬНОЙ МЕХАНОАКТИВАЦИИ ЛОПАРИТОВОГО КОНЦЕНТРАТА С ПРИМЕНЕНИЕМ РЕНТГЕНОСТРУКТУРНОГО АНАЛИЗА

Е. В. Богатырева, А. Г. Ермилов, О. В. Хохлова

Национальный исследовательский технологический университет "МИСиС" E-mail: Helen Bogatureva@mail.ru, 119049, г. Москва, Россия

Показана возможность прогнозирования эффективных режимов механоактивации (МА) лопаритового концентрата для интенсификации его последующего азотнокислотного выщелачивания по данным рентгеноструктурного анализа. Установлено влияние вида запасенной энергии на изменение энергии активации и реакционную способность лопарита. Предложены зависимости извлечения РЗЭ в азотнокислый раствор от энергии структурных изменений в лопарите после МА и режимов выщелачивания.

Лопаритовый концентрат, механоактивация, азотнокислотное выщелачивание, рентгеноструктурный анализ

По запасам редкоземельных руд Россия занимает одно из ведущих мест в мире. Однако структура минерально-сырьевой базы России и качество редкоземельного сырья существенно отличаются от зарубежных. При отсутствии собственно редкоземельных месторождений, основные запасы редких земель сосредоточены главным образом в комплексных редкометалльных рудах, как правило, не имеющих аналогов в мире.

Лопарит в настоящее время — единственный рудный материал в России, из которого в промышленном масштабе методом прямого хлорирования извлекаются РЗЭ легкой группы. Наиболее значимый элемент легкой группы РЗЭ — неодим, который является важным элементом конструкции автомобилей с гибридными двигателями и устройств альтернативной энергетики [1, 2].

Прямому хлорированию наряду с высокими технологическими показателями присущи следующие недостатки:

— хлор, расходуемый на хлорирование оксидов редкоземельных металлов, переходит в плав, а затем в сточные воды после извлечения РЗМ;

— из-за наличия в лопаритовом концентрате оксидов P3M температуру хлорирования необходимо поддерживать на уровне 950-1050°C, что приводит к повышенной энергоемкости производства, значительному уменьшению срока службы хлоратора и увеличению количества отработанной футеровки, загрязненной радиоактивными продуктами, подлежащими захоронению в спецхранилищах [3].

Работа выполнена в рамках договора между НИТУ "МИСиС" и ОАО "ВНИИХТ" № 1/2012 от 20.11.2012 . реализуемого при финансовой поддержке по постановлению Правительства Российской Федерации № 218 от 09.04.2010 г.

Более перспективной при расширении объемов производства РЗЭ и более экологически чистой является кислотно-хлоридная технология. Однако приемлемые для производства показатели по извлечению РЗЭ в азотнокислый раствор при температурах ~100°С обеспечивает предварительная механоактивация (МА) лопаритового концентрата [4], но отсутствие методики прогнозирования свойств веществ после МА сдерживает применение этого мощного процесса интенсификации химических и металлургических процессов.

Для выбора эффективных условий механоактивации различных по природе материалов и выбора активатора необходимы критерии оценки степени механического воздействия и его эффективности.

Использование методики оценки количества усвоенной энергии обрабатываемым материалом может не только сократить объемы исследования, но и обеспечить контроль за степенью (условиями) активации для уже разработанных процессов. Контроль может осуществляться с помощью PCA [5] на периодически отбираемых пробах активированного материала по зависимости, разработанной на кафедре редких металлов МИСиС для простой системы W–C:

$$\Delta E_{\Sigma} = \underbrace{K \cdot E_{\text{latt}}}_{\Delta E_{d}} + \underbrace{6E_{\text{surf}} \cdot V_{\text{mol}} (1/D_{i} - 1/D_{o})}_{\Delta E_{s}} + \underbrace{3/2E_{\text{Y}}(\varepsilon_{i}^{2} - \varepsilon_{o}^{2})V_{\text{mol}}}_{\Delta E_{\varepsilon}}, \tag{1}$$

где ΔE_{Σ} — количество запасенной при МА энергии, кДж/моль; K — коэффициент относительного изменения объема элементарной ячейки $K = \left| \frac{V_i - V_o}{V_o} \right|$ (V_o , V_i — объемы элементарной ячейки до и после механообработки соответственно, Å³); E_{latt} — энергия кристаллической решетки исходного материала, кДж/моль; E_{surf} — поверхностная энергия исходного материала, кДж/моль; D_i , D_o — размеры областей когерентного рассеяния активированного и исходного материала, кДж/моль; E_{surf} — среднеквадратичные микродеформации для активированного и исходного материала; ΔE_d — количество энергии, затраченное на изменение межплоскостных расстояний кристаллической решетки, кДж/моль; ΔE_s — количество аккумулированной энергии, связанное с изменением размеров области когерентного рассеивания (ОКР), кДж/моль; ΔE_{ε} — количество аккумулированной энергии, связанное с изменением размеров области когерентного рассеивания (ОКР), кДж/моль; ΔE_{ε} — количество аккумулированной энергии, связанное с изменением размеров области когерентного рассеивания (ОКР), кДж/моль; ΔE_{ε} — количество аккумулированной энергии, связанное с изменением размеров области когерентного рассеивания (ОКР), кДж/моль; ΔE_{ε} — количество аккумулированной энергии, связанное с изменением размеров области когерентного рассеивания (ОКР), кДж/моль;

Уникальность этого подхода состоит в возможности оценки изменения энергосодержания системы и соответственно прогнозирования реакционной способности веществ с помощью PCA без применения химических и физических методов, разрушающих образец и требующих значительного количества активированного материала.

Однако применимость этого прямого метода для прогнозирования не только простых, но и сложных систем после МА при последующей гидрометаллургической переработке требовало экспериментального подтверждения.

Цель работы — установить взаимосвязь между количеством энергии, аккумулируемой фазой лопарита лопаритового концентрата при МА, реакционной способностью минерала и показателями рентгеноструктурного анализа (РСА) активированного материала.

Механоактивации подвергали лопаритовый концентрат крупностью 89.9 % фракции (-0.100 + 0.010) мм, содержащего, % (масс.): 36.12 TiO₂, 32.14 P3Э₂O₃, 8.20 Nb₂O₅, 0.60 Ta₂O₅, 7.40 CaO, 6.90 Na₂O, 2.19 SiO₂, 1.72 Fe₂O₃, 0.49 ThO₂, 0.08 ZrO₂, 4.16 прочих.

Активацию проводили в "сухом" режиме в центробежной планетарной мельнице марки ЛАИР-0.015 с развиваемым ускорением 25g; мелющие тела — стальные шары диаметром 5-8 мм.

Структурные характеристики фаз концентратов редких металлов определяли методом PCA на установке ДРОН-4 с компьютерной расшифровкой дифрактограмм с помощью данных ASTM [6].

В табл. 1 приведены режимы МА лопаритового концентрата, результаты РСА исходного и активированного концентрата и результаты расчета количества запасенной при МА энергии ΔE_{Σ} .

Номер	Режим МА-обработки	Период решетки	Размер ОКР	Микро- деформация,	ΔE_d	ΔE_s	ΔE_{ε}	ΔE_{Σ}	$\Delta E_a^{\mathfrak{skcn}}$	ΔЕ ^{расч} по (2)
		Å		%	кДж/моль					
0	Исходный	a = 5.494 c = 7.783	> 5000	0.10						_
1	$M_{\rm k}: M_{\rm m} = 10: 200,$ $Z_{\rm m} = 0.15,$ $\tau_a = 0.5$ мин	<i>a</i> = 5.495 <i>c</i> = 7.772	3510 ± 100	0.11	18	1	0	19	48.75	49.92
2	$M_{\rm k}: M_{\rm m} = 10: 200,$ $Z_{\rm m} = 0.15,$ $\tau_a = 2.5$ мин	<i>a</i> = 5.484 <i>c</i> = 7.777	633 ± 30	0.28	73	5	1	79	67.09	66.81
3	$M_{\rm k}: M_{\rm m}$ = 10 : 800; $Z_{\rm m}$ = 0.60, τ_a = 0.5 мин	<i>a</i> = 5.495 <i>c</i> = 7.782	1093 ± 60	0.14	4	3	0	7	55.72	40.44
4	$M_{\rm k}: M_{\rm m} = 10:800,$ $Z_{\rm m} = 0.60,$ $\tau_a = 2.5$ мин	<i>a</i> = 5.486 <i>c</i> = 7.771	381 ± 20	0.39	74	8	2	84	71.31	70.28
5	$M_{\rm k}: M_{\rm m} = 40: 200,$ $Z_{\rm m} = 0.15,$ $\tau_a = 0.5$ мин	<i>a</i> = 5.497 <i>c</i> = 7.773	2099 ± 160	0.10	3	2	0	5	35.73	29.34
6	$M_{\rm k}: M_{\rm m} = 40:200,$ $Z_{\rm m} = 0.15,$ $\tau_a = 2.5$ мин	<i>a</i> = 5.493 <i>c</i> = 7.780	1571 ± 80	0.14	13	2	0	15	53.75	49.42
7	$M_{\rm k}: M_{\rm m}$ =40:800, $Z_{\rm m} = 0.60,$ $\tau_a = 0.5$ мин	<i>a</i> = 5.494 <i>c</i> = 7.777	1157 ± 65	0.12	13	3	0	16	41.95	51.94
8	$M_{\rm k}: M_{\rm III} = 40: 800,$ $Z_{\rm III} = 0.60,$ $\tau_a = 2.5$ мин	a = 5.493 c = 7.776	857 ± 50	0.17	21	4	0	25	54.76	59.28

ТАБЛИЦА 1. Режимы МА-обработки и результаты РСА лопаритового концентрата

Примечание. Для расчета приняты следующие значения: $E_{\text{latt}} = 16700 \text{ кДж/моль}$ (определена методом Ферсмана при допущении, что лопарит — координационный оксид), $E_{\text{sufr}} = 1.39 \text{ Дж/м}^2$ [7], $E_{\text{Y}} = 199.26 \text{ ГПа}$ [7], $V_{\text{mol}} = 37.91 \text{ см}^3$ /моль.

Из табл. 1 видно, что образцы 2 и 4 обладают максимальной ΔE_{Σ} и только образец 4 имеет максимальное значение ΔE_s . На основании предыдущих исследований с вольфрамитовым концентратом [8] можно предположить, что именно образец 4 и будет обладать максимальной реакционной способностью.

Для проверки выдвинутого предположения и установления взаимосвязи между расчетными и экспериментальными значениями количества запасенной при МА энергии проведены кинетические и технологические исследования.

Кинетические исследования выщелачивания* исходного лопаритового концентрата и механически активированных образцов выполняли по методике [9]. На основании экспериментальных данных построены кинетические зависимости степени выщелачивания α от времени τ и по начальным участкам кинетических кривых рассчитаны зависимости $\ln d\alpha/d\tau$ от $1/T_i \cdot 10^{-3}$ (рис. 1). Определены количества энергии, усвоенные лопаритом, по изменению энергии активации процесса азотнокислотного выщелачивания исходного и активированного материала ($\Delta E_a = E - E_a^*$) (см. табл. 1).

Рис. 1. Зависимость $\ln d\alpha/d\tau$ от $1/T_i \cdot 10^{-3}$ для исходного концентрата и механически активированного при различных режимах (образцы 1–8)

На основании результатов расчета по уравнению (1) и кинетических исследований получены полуэмпирическая зависимость и поверхность отклика изменения энергии активации процесса азотнокислотного выщелачивания лопарита ΔE_a от структурных изменений в минерале на основании данных РСА (ΔE_d и ($\Delta E_s + \Delta E_{\varepsilon}$)) после МА в "сухом" режиме (рис. 2):

$$\Delta E_a = \frac{\Delta E_{\Sigma}}{0.0146\Delta E_d + 0.1133}.$$
(2)

Из рис. 2 видно, что в области $\Delta E_d \leq 35$ кДж/моль и $(\Delta E_s + \Delta E_{\varepsilon}) \leq 6.5$ кДж/моль наблюдается рост количества запасенной при МА энергии ΔE_a с 10 до 60 кДж/моль. Две значительные области поверхности характеризуются практически постоянными значениями ΔE_a (60–70 и 70–80 кДж/моль). Максимальные значения ΔE_a достигаются при $(\Delta E_s + \Delta E_{\varepsilon}) > 9$ кДж/моль при минимальных значениях ΔE_d .

^{*}Режимы кинетических исследований: Т:Ж = 1:100; *t* = 80-99°С; [HNO₃] = 30 %.

(5)

Таким образом, на основании данных РСА лопарита до и после МА возможно контролировать энергетическое состояние активированного минерала.

Рис. 2. Поверхность отклика изменения энергии активации процесса азотнокислотного выщелачивания лопарита ΔE_a от структурных изменений в минерале на основании данных PCA (ΔE_d и ($\Delta E_s + \Delta E_{\varepsilon}$)) после MA в "сухом" режиме

Однако данные технологических исследований, режимы и результаты которых приведены в табл. 2, показали большее влияние на реакционную способность лопарита после МА при последующем низкотемпературном азотнокислотном выщелачивании суммы энергий $\Delta E_s + \Delta E_{\varepsilon}$. Следует отметить, что необходимые значения $\Delta E_s + \Delta E_{\varepsilon}$ наблюдаются только после достижения энергии ΔE_d более 70 кДж/моль. Это свидетельствует о решающем влиянии диффузионной составляющей на процессы низкотемпературного выщелачивания лопаритового концентрата. Соответствующие зависимости приведены на рис. 3, а их математическое описание дано ниже.

Так, для режимов выщелачивания:

•
$$t = 99^{\circ}\text{C}$$
, $\mathcal{K}: T = 6$, $[\text{HNO}_{3}] = 30\%$, $\tau = 6$ ч,
 $\ln(1 - \alpha_{P33}) = -0.0288(\Delta E_{s} + \Delta E_{\varepsilon})e^{\frac{0.1011(\mathcal{K}:T)C_{\text{HNO}_{3}} \cdot \tau \cdot \Delta E_{d}}{RT}};$
(3)
• $t = 99^{\circ}\text{C}$, $\mathcal{K}: T = 6$, $[\text{HNO}_{3}] = 30\%$, $\tau = 4$ ч

$$\ln(1 - \alpha_{P3\Im}) = -0.0299(\Delta E_s + \Delta E_\varepsilon)e^{\frac{0.1007(\text{K:T})C_{HNO_3} \cdot \tau \cdot \Delta E_d}{RT}};$$
(4)

•
$$t = 99^{\circ}\text{C}$$
, $\mathcal{K}: T = 10$, $[\text{HNO}_3] = 63\%$, $\tau = 4$ ч,
 $\ln(1 - \alpha_{P33}) = -0.0428(\Delta E_s + \Delta E_{\varepsilon})e^{\frac{0.0316(\mathcal{K}:T)C_{\text{HNO}_3}\cdot\tau\cdot\Delta E_d}{RT}}$,

где *α*_{РЗЭ} — степень выщелачивания РЗЭ в раствор. 170 Установлено, что приемлемое для производства извлечение РЗЭ в раствор достигается при низкотемпературном выщелачивании (Т:Ж = 1:6; [HNO₃] = 30 %; $t = 99^{\circ}$ С; $\tau = 6$ ч) лопаритового концентрата, активированного в течение 2.5 мин.

		Режимы вы	щелачиван	ия	Извлечение РЗЭ в раствор, %			
Образец	Т:Ж	t, °C	τ,ч	[HNO ₃], %	Эксперимент	Расчет по уравнениям (3)-(5)		
0 (исходный)	1:6	99	4	30	1.52	_		
· · · ·	1:6	99	4	30	5.09	4.46		
1	1:6	99	6	30	5.06	5.29		
	1:10	99	4	63	6.64	6.58		
	1:6	99	4	30	68.78	56.32		
2	1:6	99	6	30	76.13	89.74		
	1:10	99	4	63	51.36	81.43		
	1:6	99	4	30	11.19	9.38		
3	1:6	99	6	30	11.31	9.47		
	1:10	99	4	63	19.69	13.27		
	1:6	99	4	30	72.76	81.66		
4	1:6	99	6	30	99.70	98.04		
	1:10	99	4	63	99.7	94.38		
	1:6	99	4	30	3.62	6.21		
5	1:6	99	6	30	4.13	6.20		
	1:10	99	4	63	3.51	8.83		
	1:6	99	4	30	9.75	7.79		
6	1:6	99	6	30	9.59	8.71		
	1:10	99	4	63	12.10	11.28		
	1:6	99	4	30	6.19	11.46		
7	1:6	99	6	30	8.07	12.78		
	1:10	99	4	63	7.47	16.43		
	1:6	99	4	30	22.46	17.78		
8	1:6	99	6	30	26.53	21.48		
	1:10	99	4	63	32.87	25.48		

ТАБЛИЦА 2. Результаты технологических исследований

Рис. 3. Зависимость извлечения РЗЭ в раствор от $\Delta E_s + \Delta E_{\varepsilon}$

выводы

Показана возможность прогнозирования изменения энергии активации процессов выщелачивания и реакционной способности лопаритового концентрата по данным PCA без применения химических и физических методов, разрушающих образец и требующих значительного количества активированного материала. Определены оптимальные режимы MA и обеспечено извлечение P3M при азотнокислом выщелачивании на уровне 99.7% с использованием низкоконцентрированных растворов реагента при температуре 99°C.

СПИСОК ЛИТЕРАТУРЫ

- Казанцев В. В. О перспективе рационального освоения редкоземельных объектов России // Сб. науч. тр. междунар. конф. "Редкоземельные элементы: геология, химия, производство и применение". — М., 2012.
- **2.** Носовский А. М. Обсуждение развития производства РЗЭ в России // Сб. науч. тр. междунар. конф. "Редкоземельные элементы: геология, химия, производство и применение". — М., 2012.
- **3.** Фундаментальные проблемы Российской металлургии на пороге XXI в. Т. 3: Металлургия редких и рассеянных элементов / отв. ред. Д. В. Дробот. М.: Изд-во РАН, 1999.
- 4. Медведев А. С. Выщелачивание и способы его интенсификации. М.: МИСиС, 2005.
- 5. Ермилов А. Г., Сафонов В. В., Дорошко Л. Ф. и др. Оценка доли запасенной при предварительной механической активации энергии с помощью рентгенографии // Изв. вузов. Цв. металлургия. 2002. № 3.
- 6. Шелехов Е. В., Свиридова Т. А. Программы для рентгеновского анализа поликристаллов // Ми-ТОМ. — 2000. — № 8.
- 7. Зуев В. В., Аксенова Г. А., Мочалов Н. А. и др. Исследование величин удельных энергий кристаллических решеток минералов и неорганических кристаллов для оценки их свойств // Обогащение руд. — 1999. — № 1–2.
- Богатырева Е. В., Ермилов А. Г., Свиридова Т. А., Савина О. С., Подшибякина К. В. Влияние продолжительности механоактивации на реакционную способность вольфрамитовых концентратов // Неорганические материалы. — 2011. — Т. 47. — № 6.
- 9. Вольдман Г. М., Зеликман А. Н. Теория гидрометаллургических процессов. М.: Металлургия, 1993.

Поступила в редакцию 14/V 2013