2016

УДК 539.4

О ВЛИЯНИИ КОНТАКТНЫХ УСЛОВИЙ НА ОЦЕНКИ ПРЕДЕЛЬНЫХ ПАРАМЕТРОВ, МОДУЛЕЙ УПРУГОСТИ И ХАРАКТЕРА РАЗРУШЕНИЯ СЖИМАЕМЫХ ОБРАЗЦОВ

Ю. А. Костандов

Крымский федеральный университет им. В. И. Вернадского, E-mail: yuakos@mail.ru, просп. Академика Вернадского, 4, 295007, г. Симферополь, Россия

Исследовано влияние контактного трения в экспериментах при сжатии образцов горных пород на характер разрушения, значения предельного напряжения, модулей упругости. Установлено, что зависимости этих величин от коэффициента трения являются возрастающими. Обнаружено существование двух зон: полного контакта и проскальзывания.

Сжатие, разрушение, коэффициент контактного трения, параметры предельного состояния, контактные поверхности, зона полного контакта, зона проскальзывания

Решение проблемы разрушения хрупких и квазихрупких твердых тел и сред, которыми являются и многие горные породы, — актуальная задача механики деформируемого твердого тела и современной геомеханики. Однако ни одна из существующих моделей разрушения [1–4] не учитывает в полной мере влияния внешнего (контактного) трения на распределение контактных нормальных и касательных напряжений, определяющих формирование в материале напряженнодеформированного состояния, а следовательно, и развитие в нем разрушения. Так, в работе [5] показано, что в массивах горных пород горизонтальные нормальные напряжения, растягивающие и сжимающие, в том числе и превышающие вертикальные, определяются преодолением контактного трения на границах раздела "образец – пресс". Вместе с тем известно о проявлении различных форм разрушения горных пород [6], в том числе и специфических в условиях интенсивных сжимающих нагрузок [7], чему до сих пор не дано убедительного объяснения.

Распределение контактных нормальных напряжений получено аналитически в задаче о давлении жесткого штампа на упругую полуплоскость при полном отсутствии сил трения (проскальзывании) [8]. В [9] аналитически установлено, что наличие сил трения мало влияет на характер распределения нагрузки под штампом. Распределение контактных нормальных и касательных напряжений получено при аналитическом решении задачи о сжатии пластины между жесткими плитами при идеальном контакте между ними (прилипании) [10].

На примерах решения ряда задач [11–14] установлено, что начало разрушения образца горных пород, сжимаемого на прессе, определяется соответствующими граничными условиями, возникающими под плитами нагружающего устройства. На основе анализа результатов испытаний образцов каменной соли при сжатии [15] предложен вариант механизма их разруше-

№ 1

ния, объясняющий аномальную зависимость предельного напряжения сжатия от формы образцов при наличии сухого трения и при смазке. В работе [16] исследовано влияние свойств контакта целика с вмещающими породами на его устойчивость.

При рассмотрении касательной контактной задачи Герца при заданном распределении касательных напряжений и существовании трения согласно закону трения Кулона в [17] показана возможность образования зон полного контакта в его внутренних областях и проскальзывания на краю области контакта, где проскальзывание происходит всегда и даже при малых касательных нагрузках.

К настоящему времени развита теория нормального контакта твердых тел с трением Кулона и представлены основные концепции, лежащие в основе формулировок и методов решения плоских контактных задач статической теории упругости [18–21].

В [22] рассмотрено сжатие жесткими плитами пластины, на контактных поверхностях которой заданы условия трения. Аналитическими методами установлено распределение контактных нормальных и касательных напряжений при использовании закона трения Амантона– Кулона, на контактных поверхностях определены границы зоны идеального контакта, находящейся в срединной части пластины, и зон скольжения, примыкающих к свободным поверхностям. Сделан вывод о том, что при росте коэффициента контактного (внешнего) трения *k* границы раздела зон смещаются от центра к краям пластины и при $k \ge k^*$ на контактных поверхностях существует зона — зона идеального контакта.

Для решения вопроса о возможности проскальзывания части или частей контактных поверхностей образца относительно сжимающих его плит пресса в случае, когда коэффициент контактного трения имеет определенное отличное от нуля значение, выполнено экспериментальное исследование параметров предельного состояния образцов и характера их разрушения при сжатии между плитами пресса при различных условиях трения на контактных поверхностях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ, РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При проведении исследований использовались образцы, изготовленные из горных пород (габбро и гранит) и искусственного песчано-цементного материала (ПЦМ). Изготовление образцов из ПЦМ проводилось по методике [23], что позволило получить образцы в виде прямоугольных параллелепипедов с размерами $\{x \cdot y \cdot z\} = \{a \cdot h \cdot b\} = 55 \times 55 \times 20$ мм, где *a*, *h* и *b* — соответственно ширина, высота и толщина.

Значения статических коэффициентов контактного трения k_s определялись по методике, состоящей в установлении экспериментальных зависимостей усилия F_c , которое следует приложить к образцу в виде прямоугольного параллелепипеда для его сдвига относительно плит пресса, сжимающего образец силой N_c , действующей по нормали к усилию F [24]. Статический коэффициент контактного трения, т. е. коэффициент трения в момент перехода пары контактирующих поверхностей от состояния покоя к скольжению, определяют по формуле

$$k_s = \frac{F_c}{2N_c},$$

где коэффициент 2 в знаменателе учитывает то, что сдвигающая сила *F* приложена к двум поверхностям образца, контактирующим с плитами пресса.

Установлены значения статических коэффициентов контактного трения k_s для рассмотренных контактирующих пар материалов: ПЦМ-сталь: 0.24; гранит-сталь: 0.14; габбро-сталь: 0.11; сталь-фторопласт: 0.02.

Примем следующие обозначения величин статических коэффициентов контактного трения: k_{ss} — при непосредственном контакте нагружаемых граней образца со стальными плитами пресса, k_{sf} — при размещении между нагружаемыми гранями образца и плитами пресса тонких фторопластовых пластин. Кроме того, для всех экспериментов, в которых между гранями образца и плитами пресса размещались тонкие фторопластовые пластины, будем считать, что $k_{sf} = 0.02$.

Методика экспериментального исследования влияния контактного трения на параметры предельного состояния образцов состоит в определении предельной сжимающей нагрузки P^* и соответствующей ей продольной деформации ε^* образца. Нагружение образцов одноосным сжатием осуществлялось вдоль оси *OY*. Регистрация нагрузки *P* и абсолютной продольной деформации Δh проводилась с помощью аппаратно-программного комплекса [23].

Проведены три серии экспериментов: при непосредственном контакте нагружаемых граней образца со стальными плитами пресса, что задавало контактное трение между ними ($k_s = k_{ss}$); при размещении между нагружаемыми гранями образца и плитами пресса тонких фторопластовых пластин, что снижало контактное трение между ними практически до нуля ($k_s = k_{sf} = 0.02$),

и при приклеивании цианакрилатным клеем нагружаемых граней образца к стальным пластинам, жестко закрепленным на плитах пресса. В каждой из этих серий исследовалось по 5–7 образцов одинаковых размеров и, в случае ПЦМ, полученных в одинаковых условиях.

Определение количественной характеристики k_s^g зависимости сопротивляемости сдвигу F клеевого соединения от нормальной сжимающей нагрузки P (рис. 1) проводилось практически по той же методике, что и для статических коэффициентов контактного трения k_s . Разница состояла в том, что при определении зависимости сопротивляемости сдвигу F клеевого соединения от нормальной сжимающей нагрузки P к стальной пластине приклеивалась только одна грань образца, а между второй гранью образца и второй стальной пластиной размещалась тонкая фторопластовая пластина. Поэтому величину k_s^g можно считать аналогом величины k_s для клеевого соединения.

Рис. 1. Зависимость сопротивляемости клеевого соединения сдвигу *F* от нормальной сжимающей нагрузки *P*: *I* — разрушение по склейке; *2* — разрушение по материалу

Из рис. 1 следует, что зависимость сопротивляемости клеевого соединения сдвигу F от нормальной нагрузки P может быть с достаточно высокой достоверностью аппроксимируема двумя линейными зависимостями в диапазонах нормальных нагрузок $P \le 3$ и P > 3 кH, для которых $k_s^{g'} = 1.84$ и $k_s^g = 1.04$ соответственно. Последнее следует из уравнений линий тренда этих зависимостей и достоверности их аппроксимации R^2 , также приведенных на рис. 1.

Линейную зависимость в диапазоне $P \le 3$ кН с $k_s^{g'} = 1.84$ следует понимать как возрастание прочности на сдвиг клеевого соединения при увеличении нормальной нагрузки P. При $P \approx 1$ кН сдвиг образца относительно стальной пластины происходил за счет разрушения клеевого соединения с его отделением от поверхности стальной пластины, при P > 3 кН — за счет разрушения материала образца, прилегающего к зоне контакта. В диапазоне $1 < P \le 3$ кН сдвиг образца относительной пластины происходил как за счет разрушения материала образца, прилегающего к зоне контакта. В диапазоне $1 < P \le 3$ кН сдвиг образца относительной пластины происходил как за счет разрушения материала образца, прилегающего к зоне контакта, так и за счет разрушения клеевого соединения с его отделением от поверхности стальной пластины. Это демонстрируют фотографии поверхностей разрушения образцов из ПЦМ в результате их сдвига относительно стальной пластины (рис. 2).

Рис. 2. Поверхности разрушения образцов из ПЦМ, приклеенных к стальной пластине, в результате их относительного сдвига при различных значениях нормальной нагрузки *P*: *1* — образец из ПЦМ; *2* — стальная пластина; *3* — разрушение клеевого соединения; *4* — разрушение материала образца

Определение параметров предельного состояния образцов происходило при нагрузках, значительно превосходящих 3 кН. Поэтому в качестве количественной характеристики зависимости сопротивляемости сдвигу *F* клеевого соединения от нормальной сжимающей нагрузки *P*, аналогичной статическому коэффициенту контактного трения k_s , следует принять $k_s^g = 1.04$, определенный по линейной зависимости при P > 3 кН (см. рис. 1). В случае приклеивания к стальной пластине грани образца из габбро $k_s^g = 0.47$.

Примеры результатов определения напряжения сжатия $\sigma = P/s = P/a \cdot b$, увеличивающегося во времени *t* вплоть до его предельного значении σ^* , при котором происходило разрушение образцов из ПЦМ, а также их абсолютной продольной деформации Δh , соответствующей текущему значению напряжения сжатия, и их деформации ε^* при различных значениях коэффициентов контактного трения представлены на рис. 3.

Полученные на основе этих данных зависимости напряжения сжатия σ от деформации $\varepsilon = |\Delta h|/h$ образцов из ПЦМ приведены на рис. 4. Зависимости $\sigma = \sigma(\varepsilon)$ соответствуют зоне упругой деформации образцов и позволяют определить их модуль упругости $E^s = \Delta \sigma / \Delta \varepsilon$. Следует особо подчеркнуть, что здесь и в дальнейшем имеется в виду модуль упругости образца, а не материала, из которого он изготовлен.

Для определения значений предельных деформаций ε^* на рис. 3 проведены вертикальные штриховые линии через точки резкого изменения производных $d\Delta h/dt$, пересечение которых с зависимостями $\sigma = \sigma(t)$ и $\Delta h = \Delta h(t)$ определяет соответствующие им предельные значения напряжения σ^* и деформации Δh^* .

Рис. 3. Зависимости напряжения сжатия и деформации образцов из ПЦМ при различных значениях коэффициентов контактного трения: $a - k_{sf} = 0.02$; $\overline{b} - k_{ss} = 0.24$

Рис. 4. Зависимости напряжения сжатия σ от деформации $\varepsilon = |\Delta h|/h$ образцов из ПЦМ при различных значениях коэффициентов контактного трения: $a - k_{sf} = 0.02$; $\delta - k_{ss} = 0.24$

На рис. 4 приведены также линии тренда зависимостей $\sigma = \sigma(\varepsilon)$, которые практически совпадают с ними, и их уравнения в виде $y = bx + y_0$, где $b = E^s \cdot 10^{-3}$. Достоверность аппроксимации R^2 при этом во всех случаях не хуже 0.99.

Аналогично определены предельные значения σ^* , при которых происходило разрушение образцов из габбро с размерами 20.5×53×25 мм ($s = 512.5 \text{ мм}^2$) и гранита с размерами 20×58.3×23 мм ($s = 460 \text{ мм}^2$), а также соответствующих им деформаций ε^* при различных значениях коэффициентов контактного трения. Оказалось, что увеличение коэффициента контактного трения k_s между плитами пресса и нагружаемыми гранями образцов, изготовленных из ПЦМ, габбро и гранита, приводит к повышению значений предельных напряжений сжатия σ^* , соответствующих им деформаций ε^* и модулей упругости E^s . Средние значения этих величин представлены в таблице.

Значения предельных напряжений сжатия образцов σ^* , соответствующих им деформаций ε^* и модулей упругости E^s при различных коэффициентах контактного трения k_s

Показатель	Габбро			Гранит		ПЦМ		
k _s	0.02	0.11	0.47	0.02	0.14	0.02	0.24	1.04
σ^* , МПа	89.9	138	167	87.3	133	27.9	35.6	43.7
$\varepsilon^* \cdot 10^3$	4.4	5.7	5.3	2.2	2.7	2.3	2.4	2.6
E^* , ГПа	20.5	24.1	32.0	40.3	49.2	12.2	15.0	17.0

86

Фотографии разрушенных образцов из габбро, гранита и ПЦМ показаны на рис. 5–7 соответственно. Анализ картин разрушения, а также образовавшихся в разрушенных образцах трещин и отдельностей позволяет сделать вывод о преобладании продольного характера разрушения, когда образование и развитие трещин происходит преимущественно в направлении действия нагрузки.

Рис. 5. Фотографии разрушенных образцов из габбро

При нагружении образцов из габбро (рис. 5) в случае $k_{sf} = 0.02$ отмечалось в основном их раскалывание на две части по вертикальной срединной плоскости, что соответствует предельному случаю формы III по Л. И. Барону [5]. Увеличение коэффициента контактного трения до $k_{ss} = 0.11$ приводило к столбчатому разрушению образцов, что также соответствует форме III [5] и происходит в результате действия растягивающих напряжений.

В случае приклеивания граней образца к нагружающим стальным пластинам, когда $k_s^g = 0.47$, наблюдалось пирамидальное разрушение образца с частичным откалыванием материала вдоль его боковых (свободных) граней в средней по высоте части образца, что соответствует форме I [5].

Рис. 6. Фотографии разрушенных образцов из гранита: 1-3 — боковая, верхняя и нижняя грани образца соответственно

При нагружении образцов из гранита (рис. 6) в случае $k_{sf} = 0.02$ происходило их продольное разрушение, соответствующее форме III [6]. Увеличение коэффициента контактного трения до $k_{ss} = 0.14$ приводило к диагональному разрушению образцов, соответствующему II форме разрушения [6], которая реализуется под действием напряжений сдвига. Изменение в данном случае характера разрушения от формы III к форме II при увеличении коэффициента контактного трения в отличие от разрушения образцов из габбро, когда форма разрушения III не изменялась, можно объяснить различием значений k_{ss} для габбро (0.11) и гранита (0.14).

В случае приклеивания граней образца из гранита к нагружающим стальным пластинам (значение k_s^g не устанавливалось) происходило пирамидальное разрушение образца (см. рис. 6), соответствующее форме I [6]. Однако в этом случае откалывание материала вдоль его боковых граней отмечалось практически по всей высоте образца. Различие в характере разрушения образцов из габбро и гранита в случае приклеивания их граней к нагружающим пластинам можно объяснить тем, что у габбро размер зерен значительно меньше, чем у гранита.

Рис. 7. Фотографии разрушенных образцов из ПЦМ

При нагружении образцов из ПЦМ при $k_{sf} = 0.02$ (рис. 7) в них образуются трещины, исходящие из углов образца, с откалыванием материала вдоль боковых (свободных) граней. В средней части образцов разрушение происходит по диагоналям вертикальных сечений *YOZ*, параллельных свободным боковым граням образца (диагональное разрушение). Такой характер разрушения можно отнести к комбинации I и II форм разрушения.

При нагружении образцов из ПЦМ при $k_{ss} = 0.24$ и $k_s^g = 1.04$ превалирует диагональное разрушение в сечении *YOZ*, а откалывание материала вдоль боковых граней практически не происходит. Это соответствует II форме разрушения [6], которая реализуется под действием напряжений сдвига.

Из анализа картин разрушения образцов из ПЦМ следует, что увеличение трения между их поверхностями, контактирующими с плитами пресса, приводит к развитию диагонального разрушения образцов в сечении YOZ. Объяснить это можно тем, что при наличии трения между контактирующими поверхностями затрудняется поперечная деформация образца из ПЦМ в плоскости XOZ вблизи нагруженных граней, что сдерживает образование трещин в направлении действия нагрузки. Это в полной мере соответствует полученным результатам (см. рис. 3, 4, таблицу) о росте предельного напряжения σ^* и модуля упругости образцов E^s при увеличении контактного трения. Вместе с этим проявляется известная зависимость призменной прочности от соотношения h/a [25], состоящая в том, что прочность высокого образца ниже прочности широкого. Это приводит к тому, что разрушить образец из ПЦМ по диагональным или близким к ним плоскостям в сечении YOZ легче, чем в сечении XOY.

Полученные результаты свидетельствуют о существенном влиянии коэффициента контактного трения на параметры предельного состояния и характер (форму) разрушения сжимаемых образцов.

Зависимости предельных напряжений сжатия σ^* и модулей упругости E^s от коэффициента контактного трения k_s для образцов из габбро и ПЦМ (таблица) показаны на рис. 8.

Оказывается, что предельные напряжения сжатия σ^* и модулей упругости E^s образцов из габбро и ПЦМ связаны с коэффициентами контактного трения k_s возрастающими с увеличением k_s зависимостями, аппроксимируемыми, например, логарифмическими зависимостями, что следует из уравнений их линий тренда, а также достоверности аппроксимации R^2 , приведенных на рис. 8. Так, для габбро $\sigma^* = 24.51 \ln(k_s) + 187.69$ МПа и $E^s = 3.59 \ln(k_s) + 33.74$ ГПа, а для ПЦМ $\sigma^* = 4.44 \ln(k_s) + 43.08$ МПа и $E^s = 1.38 \ln(k_s) + 17.00$ ГПа.

Рис. 8. Зависимости предельных напряжений сжатия σ^* и модулей упругости E^s от коэффициента контактного трения k_s для образцов из габбро (*a*) и ПЦМ (δ)

Из полученных данных следует, что изменение условий трения на контактных поверхностях от практически проскальзывания ($k_{sf} = 0.02$) до полного контакта ($k_s^g = 0.47$ для образцов из габбро и $k_s^g = 1.04$ для образцов из ПЦМ) приводит к повышению значений предельных напряжений сжатия образцов σ^* на 100 и 55 %, а их модулей упругости E^s на 37 и 55 % соответственно.

Необходимо отметить, что возрастание величин σ^* и E^s при увеличении коэффициента контактного трения от k_{ss} до k_s^g можно объяснить тем, что в случае приклеивания нагружаемых граней образца к стальным плитам пресса ($k_s = k_s^g$) на контактных поверхностях существует только одна зона полного контакта, а при непосредственном контакте нагружаемых граней образца со стальными плитами пресса без приклеивания ($k_s = k_{ss}$) на контактных поверхностях возникают две зоны: полного контакта и проскальзывания. Это качественно соответствует результатам работы [22] и может оказаться полезным для решения вопросов, связанных с устойчивостью и долговечностью целиков, началом и характером их разрушения, в том числе и при наклонном залегании пластов.

выводы

В результате экспериментальных исследований получены значения предельных параметров σ^* , ε^* и модулей упругости E^s сжимаемых образцов из габбро, гранита и ПЦМ в зависимости от условий на контактных поверхностях. Показано, что зависимости предельных напряжений сжатия σ^* и модулей упругости E^s образцов из габбро и ПЦМ от коэффициента контактного трения k_s являются возрастающими с увеличением k_s и могут быть аппроксимируемыми логарифмическими зависимостями.

Установлено, что изменение контактных условий приводит к трансформации характера (формы) разрушения образцов при одноосном сжатии. В случае приклеивания нагружаемых граней образца к стальным плитам пресса ($k_s = k_s^g$) на контактных поверхностях существует

только одна зона полного контакта, а при контакте нагружаемых граней образца со стальными плитами пресса без приклеивания ($k_s = k_{ss}$) на контактных поверхностях возникают две зоны: полного контакта и проскальзывания.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гузь А. Н. Основы механики разрушения композитов при сжатии: в 2 т. Киев: Литера ЛТД, 2008. Т. 1.
- 2. Слепян Л. И. Механика трещин. Л.: Судостроение, 1990.
- 3. Качанов Л. М. Основы механики разрушения. М.: Наука, 1974.
- 4. Бартенев Г. М. Прочность и механизм разрушения полимеров. М.: Химия, 1984.
- 5. Васильев Л. М., Васильев Д. Л. Теоретическое обоснование формирования горизонтальных нормальных напряжений в массивах горных пород // ФТПРПИ. — 2013. — № 2.
- 6. Барон Л. И. Экспериментальное определение коэффициентов крепости горных пород по шкале М. М. Протодьяконова путем испытания буровых кернов на раздавливание // Разрушение углей и горных пород. М.: Углетехиздат, 1958.
- 7. Гольдштейн Р. В. Структуры в процессах разрушения // Изв. РАН. МТТ. 1999. № 5.
- 8. Штаерман И. Я. Контактные задачи теории упругости. М.: Гостехиздат, 1949.
- 9. Галин Л. А. Контактные задачи теории упругости. М.: Гостехиздат, 1953.
- 10. Тимошенко С. П. Курс теории упругости. Киев: Наук. думка, 1972.
- **11. Муздакбаев М. М., Никифоровский В. С.** О прочности материалов на сжатие // ПМТФ. 1978. — № 2.
- **12. Бейсетаев Р. Б., Никифоровский В. С.** К вопросу прочности твердых тел на одноосное сжатие // ФТПРПИ. 1976. № 3.
- 13. Черепанов Г. П. Механика хрупкого разрушения. М.: Наука, 1974.
- **14.** Миренков В. Е., Красновский А. А. К вопросу накопления повреждений в кусочно-однородном блоке пород при сжатии // ФТПРПИ. 2012. № 4.
- 15. Аптуков В. Н., Константинова С. А., Мерзляков А. Ф. Особенности разрушения образцов перистой каменной соли при испытаниях на сжатие // ФТПРПИ. 2009. № 3.
- **16.** Назарова Л. А., Назаров Л. А. Оценка устойчивости целиков на основе вязкоупругой модели // ФТПРПИ. — 2005.— № 5.
- Popov V. L. Contact Mechanics and Friction: Physical Principles and Applications, 1-st ed. Springer-Verlag: Berlin, Heidelberg, 2010, No. 25.
- 18. Fridriksson B. Finite elements solutions of surface nonlinearities in structural mechanics with special emphasis to contact and fracture mechanics problems, Corn-put. and Struct., 1976.
- 19. Fridriksson B., Rejdholm G., Sjoblom P. Variational inegualities in structural mechanice with emphasis on contact problems, Finite elements in non linear mechanics, 1978, No. 2.
- **20.** Солодовников В. Н. К теории нормального контакта твердых тел // Прикл. механика и техн. физика. 2000. Т. 41. № 1.
- **21.** Александров В. М., Чебаков М. И. Введение в механику контактных взаимодействий. Ростовна-Дону: ЦВВР, 2007.
- 22. Алексеев А. Е. Нелинейные законы сухого трения в контактных задачах линейной теории упругости // Прикл. механика и техн. физика. — 2002. — Т. 43. — № 4.
- 23. Костандов Ю. А., Медведев В. С. Исследование предельного состояния хрупких тел с трещинами при одноосном сжатии // Завод. лаб. 2011. № 3.
- 24. Костандов Ю. А. Определение коэффициентов внешнего и внутреннего трения материалов // Завод. лаб. 2011. № 2.
- 25. Баженов Ю. М. Технология бетона: учеб. пособие. 2-е изд. М.: Высш. шк., 1987.