2010. Том 51, № 6

Ноябрь – декабрь

C. 1103 – 1108

УДК 541.5:547.022.1:54.03:547.672.1

К МЕХАНИЗМУ МЕХАНОХИМИЧЕСКОЙ ДИМЕРИЗАЦИИ АНТРАЦЕНА. КРИСТАЛЛИЧЕСКИЙ ФЕНАНТРЕН В УСЛОВИЯХ ВЫСОКОГО ДАВЛЕНИЯ И СДВИГА

© 2010 А.А. Политов^{1,2}, А.П. Чупахин²*, В.М. Тапилин³, Н.Н. Булгаков^{2,3}, А.Г. Друганов^{2,4}

¹Учреждение Российской академии Институт химии твердого тела и механохимии СО РАН, Новосибирск

²Новосибирский государственный университет

³Учреждение Российской академии наук Институт катализа им. Г.К. Борескова СО РАН, Новосибирск ⁴Учреждение Российской академии наук Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН

Статья поступила 10 февраля 2010 г.

С доработки — 15 апреля 2010 г.

Расчеты в приближении теории функционала плотности показывают, что для фенантрена, в отличие от антрацена, не существует устойчивых димерных структур. Исследование спектров поглощения и фотолюминесценции кристаллического фенантрена при давлении до 30 кбар и одновременном сдвиге показывают обратимые изменения в спектрах: смещение полос поглощения и люминесценции в длинноволновую область, уменьшение интенсивности, исчезновение колебательной структуры. В отличие от антрацена, димеризации (и иных необратимых превращений) фенантрена при одновременном воздействии высокого давления и сдвига не наблюдается.

Ключевые слова: антрацен, фенантрен, димер, электронная структура, механохимия, высокое давление, сдвиг, фотолюминесценция.

введение

В предыдущих работах [1,2] показано, что связанный по центральным атомам углерода центральных колец (9, 10-9', 10') димер отделен от невзаимодействующих молекул антрацена энергетическим барьером величиной 55 ккал/моль (в обратном направлении 45 ккал/моль). При сближении параллельно расположенных друг над другом молекул (конфигурация "сэндвича") по направлению, перпендикулярному плоскости ароматических колец, энергия верхнего заполненного состояния растет, а нижнего вакантного понижается, почти пересекаясь при расстоянии между молекулами 2,3 Å. На таком расстоянии для преодоления барьера достаточно давления ~10 кбар, давление ~60 кбар позволяет полностью преодолеть энергетический барьер при сближении с бесконечного расстояния. Указанная область давлений совпадает с экспериментом — кристаллический антрацен димеризуется при одновременном воздействии сдвига и давления 15—30 кбар [3]. Димеризация антрацена может служить модельным процессом для исследования реакций присоединения (прежде всего [4+4]-циклоприсоединения) при механическом воздействии, но остается невыясненным, является ли она типичной. В литературе отсутствуют сведения о превращениях и поведении других полициклических углеводородов при высоком давлении и сдвиге. Цель работы — теоретическое (квантово-химический расчет) и экспериментальное (спектроскопическое) исследование при давлении до 30 кбар и одновременном сдвиге изомерного антрацену и близкого к нему по строению кристаллического фенантрена C₁₄H₁₀.

^{*} E-mail: gchem@fen.nsu.ru

МЕТОДИКА ЭКСПЕРИМЕНТА И РАСЧЕТА

Электронную структуру изолированной молекулы фенантрена и его возможных димеров рассчитывали программным пакетом ESPRESSO 3.1.3. Этот пакет основан на теории функционалом электронной плотности, в котором обменно-корреляционная энергия представляется функционалом электронной плотности в приближении локальной плотности (LDA). Решение уравнений Кона—Шэма находят через разложение одноэлектронных волновых функций по плоским волнам. В разложении учитывали плоские волны, соответствующие электронным состояниям с кинетической энергией не выше 20 Ry. Учтенные функции достаточны для описания атомных валентных состояний, а функции с более высокими кинетическими энергиями необходимы для описания резко изменяющихся в пространстве волновых функций остовных электронов. Поскольку последние описывались с помощью ультрамягких псевдопотенциалов, принятое ограничение кинетической энергии является оправданным. Для атома углерода использовали псевдопотениал С.pbe-rrkjus.UPF из библиотеки пакета ESPRESSO.

Программный пакет ESPRESSO написан для расчета структур кристаллов. Однако его можно использовать и для расчета изолированных атомов и молекул, если размеры элементарной ячейки, в которую помещен рассчитываемый объект, сделать достаточно большими, чтобы взаимодействием между ними можно было пренебречь. Корректность и успешность применения этого метода показана при расчете электронной структуры антрацена, его димеров и переходного комплекса при образовании димера из изолированных молекул [1, 2]. При отсутствии взаимодействия между объектами, принадлежащими различным элементарным ячейкам, одноэлектронные энергии перестают зависеть от величины волнового вектора электрона и структуры кристалла. Поэтому расчет проводили для простой кубической решетки и только в центре зоны Бриллюэна.

Для экспериментов использовали алмазные наковальни со специальным устройством конструкции А.А. Политова и Б.А. Фурсенко, позволяющие сжимать образец до 50 кбар с одновременным сдвигом посредством вращения нижней наковальни вокруг своей оси [3]. Сжатие производили без запирающей прокладки, поэтому давление в образце не являлось гидростатическим. Образец под давлением имеет форму чечевицы около 700 мкм в диаметре с толщиной 5—20 мкм. Спектры поглощения и люминесценции *in situ* регистрировали с помощью микроскопа-спектрофотометра МСФУ-6 производства ЛОМО, СПб. Возбуждение люминесценции осуществляли полосой излучения $\lambda = 365$ нм, вырезаемой светофильтрами из полосы излучения ртутной лампы. Конструкция микроскопа-спектрофотометра позволяла регистрировать спектры люминесценции с пространственным разрешением 10—100 мкм; выбор участка образца под высоким давлением для съемки спектра люминесценции контролировали визуально под окуляром микроскопа. Остальные детали методики и предварительные результаты экспериментов опубликованы в [4]. Поликристаллический фенантрен, на котором были проведены эксперименты, предварительно очищали методом сублимационной перегонки под вакуумом.

РЕЗУЛЬТАТЫ РАСЧЕТОВ И ИХ ОБСУЖДЕНИЕ

В рассчитанной молекуле фенантрена большинство длин связей С—С совпадают с определенными по РСА [5] с точностью 0,01 Å, хотя есть отличия до 0,05 Å. Рассчитанная молекула более "правильная", что особенно заметно проявляется в длинах связей С—Н, одинаковых (с точностью 0,01 Å) по расчету и варьирующихся от 0,87 до 1,19 Å по данным [5]. Видимо, это связано с наличием в элементарной ячейке ($P2_1$) двух молекул, "поджимающих" друг друга, что приводит к сжатию одних и растяжению других связей С—Н и разбросу их длин. В целом сравнение расчетных длин связей и валентных углов с экспериментальными показало, как и в случае антрацена [1], достаточную для поставленной задачи точность использованной методики расчетов (рис. 1).

Для расчета полной энергии димера из двух молекул фенантрена проводили расчеты полной энергии двух молекул с оптимизацией геометрии при замороженной степени свободы некоторых атомов для того, чтобы воспрепятствовать разбеганию молекул при оптимизации

Рис. 1. Расположение атомов и длины связей в молекуле фенантрена. Рентгеноструктурные данные [5] (*a*) и результаты расчета (б)

геометрии. Изначально молекулы располагались друг над другом на расстоянии 5 Å в плоскостях, параллельных плоскости *xz* (рис. 2). Далее рассматривались три варианта сближения молекул, в которых принимали за ноль компоненты силы, действующей по нормали к плоскости молекулы для:

III) атомов C4, C28, C5 и C29; IV) атомов C4—C28 и C14—C38.

Номера атомов второй молекулы образованы увеличением на 24 соответствующих номеров первой молекулы. Наименее энергетически затратными оказались варианты II и I, изменение энергии для которых, отсчитанное от энергии разведенных молекул, приведено на рис. 3.

Изменения строения молекул при сближении приведены на рис. 2. Принципиальное различие между этими структурами состоит в том, что в структуре a молекулы остаются друг над другом, сильно при этом деформируясь, в то время как в структуре δ недеформируемые молекулы по мере сближения скользят относительно друг друга, уменьшая площадь перекрывания проекции одной молекулы на другую. Сближение по первому сценарию энергетически затратно и по мере уменьшения расстояния отталкивание между молекулами увеличивается. Это же, но в более сильной степени, наблюдается и для сценариев III и IV, в которых молекулы фенантрена также сильно деформируются при сближении. Для сценария II энергетические затраты на сближение малы. Более того, на зависимости полной энергии от расстояния наблюдаются не-

Рис. 2. Изменения строения молекул фенантрена при сближении по варианту I (*a*) и II (*б*). Остальные пояснения в тексте

Рис. 3. Полная энергия системы из двух молекул фенантрена в зависимости от расстояния между молекулами. Пояснения в тексте

Рис. 4. Спектр поглощения фенантрена в алмазных наковальнях при атмосферном давлении (1) и 20 кбар (2)

глубокие (менее 1 ккал) минимумы. Однако при таком малом изменении энергии можно только предположить существование слабосвязанной димерной структуры при весьма низких температурах.

Для изомерного трициклического антрацена квантово-химический расчет показал наличие нескольких устойчивых изомерных димеров. Наиболее устойчивый из них отделен от изолированных молекул энергетическим барьером 45 ккал/моль [1, 2].

РЕЗУЛЬТАТЫ СПЕКТРОСКОПИЧЕСКИХ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Все спектры регистрировались *in situ* в алмазных наковальнях. Полосы в спектре поглощения поликристаллического фенантрена уширены по сравнению с раствором, тем не менее, колебательная структура при атмосферном давлении сохраняется (максимумы при 367 и 387 нм, рис. 4, 1), что соответствует литературным данным [6, 7]. При увеличении давления исчезает колебательная структура, максимум и центр масс полосы поглощения смещается в длинноволновую область (см. рис. 4, 2). Изменения спектра обратимы, при снятии нагрузки исходный спектр восстанавливается. Визуально под микроскопом фиксируется потемнение всего объема образца при увеличении давления, что согласуется с изменением спектров поглощения.

Еще более чувствительны к давлению спектры фотолюминесценции. Увеличение давления без сдвига наковален относительно друг друга приводит к обратимым изменениям спектра: максимум и центр масс полосы люминесценции смещается в длинноволновую область, уменьшается интенсивность, исчезает колебательная структура (рис. 5, 6). Визуально также фиксирует-

Рис. 5. Изменение максимума полосы люминесценции фенантрена (*a*) и ее интенсивности (*б*) от величины давления

Рис. 6. Спектры фотолюминесценции в алмазных наковальнях: 1 — исходный, 1 бар; 2 — 30 кбар; 3 — 30 кбар и сдвиг 50°; 4 — после разгрузки до 1 бар

ся, что с увеличением давления голубая окраска фенантрена, освещаемого УФ-лампой, меняется на зеленую и даже желтую. Изменение окраски фиксируется почти во всем объеме образца. Подобные изменения в спектрах кристаллического фенантрена при действии высокого давления (без сдвига) ранее наблюдали в [8] и интерпретировали в рамках экситонного механизма. Сдвиг при фиксированном давлении приводит к уменьше-

нию интенсивности полос люминесценции [4]. Для антрацена, как было показано ранее [3], такие изменения в спектре люминесценции, вызванные комбинированным воздействием высокого давления и сдвига, необратимы и обусловлены димеризацией. Однако поведение фенантрена при сдвиге отличается от антрацена — при полной разгрузке наковален после воздействия давления и сдвига спектр фотолюминесценции восстанавливается (см. рис. 5).

Смещение полос поглощения и люминесценции фенантрена и антрацена с ростом давления в сторону больших длин волн и их уширение описано в литературе [8,9]. Для поставленной здесь цели детали интерпретации изменения спектров при высоком давлении и сдвиге не существенны. Важно то, что в случае антрацена изменения спектра после воздействия давление+сдвиг необратимы, а в случае фенантрена обратимы, исходный спектр восстанавливается.

Итак, главный вывод из проведенных спектроскопических исследований в рамках поставленной задачи: димеризации фенантрена (и иных необратимых превращений) в указанных условиях (давление 20—30 кбар, сдвиг посредством вращения нижней наковальни вокруг своей оси до 50 °) с заметным выходом не происходит.

Почему при аналогичных (и даже более мягких) условиях (давление 15—30 кбар и сопоставимые величины сдвига) антрацен димеризуется со значительным выходом, 10—50 %, а фенантрен нет? Потому что в системе "две молекулы антрацена—диантрацен" имеется достаточно глубокий (45 ккал/моль) энергетический минимум [1, 2], а для фенантрена такой минимум отсутствует. В химических терминах — при димеризации фенантрена, причем не только по девятому и десятому атомам углерода, должен образоваться более напряженный углеродный цикл, чем в случае антрацена.

Фенантрен не димеризуется не только механохимически, но и фотохимически, тогда как антрацен димеризуется в парообразном состоянии [10], в растворах [7] или в окрестностях выхода дислокаций на поверхность кристаллов [11]. Легко димеризуются в твердом состоянии под действием света замещенные антрацены [12], в структуре которых имеется возможность реализации благоприятных ориентаций молекул (параллельно ориентированных) и/или свободный объем. В связи с этим представляет интерес исследование возможности механохимической димеризации замещенных антраценов.

выводы

Спектры поглощения и фотолюминесценции кристаллического фенантрена при высоком (до 30 кбар) давлении и сдвиге обратимо изменяются: максимумы поглощения смещаются в длинноволновую область при увеличении давления, исчезает их колебательная структура, увеличение величины сдвига уменьшает интенсивность люминесценции. В отличие от кристаллического антрацена, который при одновременном действии высокого давления и сдвига в этих условиях необратимо димеризуется, фенантрен при уменьшении давления до атмосферного возвращается в исходное состояние. Причины такого отличия объясняются энергетикой. Квантово-химические расчеты показывают в системе "два антрацена—диантрацен" наличие

энергетического минимума глубиной 45 ккал/моль, для фенантрена такого минимума и устойчивого димера нет.

Авторы благодарят В.А. Резникова за полезные обсуждения и П.А. Заикина за предоставление фенантрена.

Работа поддержана Российским фондом фундаментальных исследований (проект № 07-03-00879а).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Тапилин В.М., Булгаков Н.Н., Чупахин А.П., Политов А.А. //* Журн. структур. химии. 2008. **49**, № 4. С. 609 615.
- 2. *Тапилин В.М., Булгаков Н.Н., Чупахин А.П. и др.* // Журн. структур. химии. 2010. **51**, № 4. С. 664 670.
- 3. Политов А.А., Фурсенко Б.А., Болдырев В.В. // Докл. АН. 2000. **371**. С. 59 62.
- 4. Политов А.А., Чупахин А.П. // Вестн. НГУ. Сер. Физика. 2009. 4, № 4. С. 55 58.
- 5. Jones D.W., Yerkess J. // J. Cryst. Mol. Struct. 1971. 1. P. 17.
- 6. Крейг Д., Уолмсли С. Физика и химия твердого состояния органических соединений. М.: Мир, 1967.
- 7. Клар Э. Полициклические углеводороды. М.: Химия, 1971.
- 8. Mizuno Ken-ichi, Furukava Mitsuhiro, Matsu Atsuo // J. Phys. Soc. Jpn. 1991. 60. P. 2768 2777.
- 9. Dreger Z.A., Lucas H., Gupta Y.M. // J. Phys. Chem. B. 2003. 107. P. 9268 9274.
- 10. Аптекарь И.Л., Галашин А.Е. // Письма в ЖЭТФ. 1978. **28**. С. 421 424.
- Tomas J.M., Williams J.O. Progress in Solid State Chemistry. Oxford; N.Y.: Pergamon, 1971. 6. P. 119 154.
- 12. Ramdas S., Parkinson G.M., Tomas J.M. // Nature. 1980. 284. P. 153 154.