2015. Том 56, № 4

Июль

C. 715 – 720

УДК 544.3:547.466.22:54-145.2

ТЕРМОДИНАМИКА И СТРУКТУРА ВОДНО-ЭЛЕКТРОЛИТНЫХ РАСТВОРОВ ГЛИЦИНА ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ

В.П. Королёв¹, О.А. Антонова^{1,2}, А.Л. Серебрякова^{1,2}

¹Институт химии растворов РАН им. Г.А. Крестова, Иваново, Россия E-mail: korolev@isuct.ru ²Ивановский государственный химико-технологический университет, Россия

Статья поступила 30 мая 2014 г.

Калориметрическим методом при 288, 298 и 313 К измерены энтальпии растворения глицина в водных растворах электролитов в интервале моляльностей от 0,25 до 6 моль/кг NaCl и до 4,5 моль/кг KCl. Определены энтальпийные и теплоемкостные параметры парного и тройного взаимодействия глицина с электролитом в воде. Обнаружены особые (сингулярные) точки на концентрационных зависимостях теплот растворения глицина в водных растворах исследованных электролитов, а также растворах мочевины при различных температурах. В этих точках такая структурная характеристика, как энтропия растворения, не зависит от температуры, а парциальная теплоемкость глицина равна теплоемкости кристаллической аминокислоты. Положение сингулярной точки на концентрационной оси идентично в случае растворов NaCl и KCl, а в случае растворов мочевины сингулярная точка достигается при значительно более высокой ее концентрации.

DOI: 10.15372/JSC20150409

Ключевые слова: термодинамика, энтальпия растворения, параметры парного и тройного взаимодействия, двухкомпонентный растворитель, глицин, хлорид калия, хлорид натрия, мочевина.

Эта статья продолжает изучение термодинамики некоторых аминокислот в воде [1—4] и в водных растворах неэлектролитов [5—8] и электролитов [9] при различных температурах. Такие исследования помогают более глубоко понять природу гидрофобных, структурных эффектов, роль гидрофильных взаимодействий и т.д. [10—14].

Глицин (purity grade) был высушен в вакууме при 348 К в течение 72 ч. NaCl (Fluka, analytical, purum p.a.; ≥99,5 %) и KCl (Merck "GR for analysis", ≥99,5 %) были высушены при 373 К. Водные растворы электролитов, содержащие 0,25—6 моль (NaCl)/кг (воды) или 0,25—4,5 моль (KCl)/кг (воды), были приготовлены взвешиванием, используя свежую бидистиллированную воду.

Энтальпии растворения глицина измеряли с помощью изопериболического калориметра, снабженного 60 см³ титановым стаканом [1, 14, 15]. Температурная чувствительность составляла $4 \cdot 10^{-5}$ К, и температурная стабильность термостата была лучше, чем 10^{-3} К. Точность измерения ~1%. Стандартные энтальпии растворения $\Delta_p H^0$ глицина были вычислены как средние величины результатов 2—3 независимых измерений в пределах концентрационного ряда m = 0,01-0,03 моль глицина/кг водно-электролитного растворителя. Стеклянные ампулы, со-

[©] Королёв В.П., Антонова О.А., Серебрякова А.Л., 2015

Таблица 1

Таблица 2

Энтальпии растворения (Д_рH⁰, кДж/моль) глицина в водных растворах NaCl при различных температурах

288,	15 K	298,15 K		313,15 K	
$m_{\rm NaCl}$	$\Delta_{\rm p} H^0$	m _{NaCl}	$\Delta_{\rm p} H^0$	m _{NaCl}	$\Delta_{\rm p} H^0$
0	14,74	0	14,21	0	13,49
0,251	14,30	0,251	13,94	0,251	13,41
0,504	13,75	0,505	13,70	0,502	13,34
1,008	13,36	1,004	13,22	1,005	13,19
1,504	12,95	1,502	12,92	1,503	13,08
2,063	12,54	2,005	12,60	2,001	12,98
2,519	12,29	2,508	12,37	2,526	12,93
3,021	11,97	3,014	12,22	3,005	12,87
3,981	11,76	4,031	11,97	4,000	12,81
4,908	11,83	4,530	12,00	4,902	12,90
		4,914	12,03		
		5,535	12,24		
		6,000	12,42		

Энтальпии растворения (Д_рH⁰, кДж/моль) глицина в водных растворах KCl при различных температурах

288,15 K		298,15 K		313,15 K	
n _{KCl} , моль/кг	$\Delta_{\rm p} H^0$	m _{KCl}	$\Delta_{\rm p} H^0$	$m_{\rm KCl}$	$\Delta_{\rm p} H^0$
0 0,251 0,503 1,008 1,505 2,013 2,510 3,008 4,055	14,74 14,38 14,08 13,51 12,99 12,58 12,16 11,78 11,47	0 0,246 0,501 1,006 1,505 2,004 2,505 3,013 3,543 4,057	14,21 14,00 13,75 13,44 13,04 12,73 12,50 12,27 12,09 12,04	0 0,246 0,500 1,006 1,490 2,008 2,505 3,027 4,002	13,49 13,39 13,29 13,09 12,91 12,76 12,61 12,48 12,31
		4,479	11,96		

т — моляльность, моль/кг.

держащие растворенное вещество, были заполнены в сухом боксе и взвешены с помощью электронных аналитических весов (OKB Vesta) с точностью 0,1 мг.

Стандартные энтальпии растворения глицина в водных растворах NaCl или KCl при различных температурах приведены в табл. 1 и 2. Энтальпии растворения глицина в воде находятся в хорошем согласии с величинами 14,65, 14,16 и 13,48 кДж/моль при 288, 298 и 313 К соответственно, рассчитанными по уравнению (1) [5] с одним параметром подгонки в интервале температур 278—323 К

$$\Delta_{\rm p} H^0(W) = 4221/T, \text{ sd} = 0.03 \text{ кДж/моль}, R = 0.997.$$
 (1)

На основе стандартных энтальпий растворения определены энтальпии переноса глицина из воды в водный раствор электролита (Е):

$$\Delta_{\rm nep}H^0(W \to W + E) = \Delta_{\rm p}H^0(W + E) - \Delta_{\rm p}H^0(W), \qquad (2)$$

где $\Delta_p H^0(W+E)$ — стандартная энтальпия растворения глицина в водном растворе электролита.

Рис. 1 и 2 показывают зависимости $\Delta_{nep}H^0$ глицина от моляльностей NaCl и KCl при стандартной температуре. Величины $\Delta_{nep}H^0$ глицина при 298,15 К находятся в хорошем согласии с аналогичными литературными данными [16, 17].

Для того чтобы количественно оценить характер взаимодействия глицина (G) с электролитом, в рамках формализма МакМиллана—Майера [18, 19] были рассчитаны энтальпийные параметры парного и тройного взаимодействия глицина с хлоридом натрия или калия. Для определения этих параметров концентрационная зависимость энтальпии переноса записана уравнением:

$$\Delta_{\text{Hep}} H^0(W \rightarrow W + E) = 2h_{\text{GE}} \cdot m_{\text{E}} + 3h_{\text{GEE}} \cdot m_{\text{E}}^2, \qquad (3)$$

где *h*_{GE} и *h*_{GEE} — энтальпийные параметры парного и тройного взаимодействия.

Рис. 1. Энтальпии переноса глицина из воды в водные растворы NaCl при 298,15 К: данные [16] (1), данные [17] (2), данные настоящей работы (3). Линия — уравнение (3)

Рис. 2. Энтальпии переноса глицина из воды в водные растворы КСІ при 298,15 К: данные [17] (1), данные настоящей работы (2). Линия — уравнение (3)

Предполагая линейную зависимость параметров взаимодействия от температуры, можно записать:

$$h(T) = h(298,15) + c(T - 298,15), \tag{4}$$

где h — энтальпийный параметр парного (h_{GE}) или тройного (h_{GEE}) взаимодействия; T — абсолютная температура; c — теплоемкостный параметр парного или тройного взаимодействия. Параметры уравнения (4) представлены в табл. 3 и 4. Энтальпийные параметры взаимодействия, рассчитанные нами, находятся в хорошем согласии с аналогичными литературными данными при стандартной температуре.

Таблица	3
---------	---

Энтальпийные параметры парного (h_{GE}, Дж·кг/моль²) и тройного (h_{GEE}, Дж·кг²/моль³) взаимодействия глицина (G) с электролитами (E) в водных растворах

	H ₂ O—1	NaCl	H ₂ O—KCl		
1, К	$h_{ m GE}$	$h_{ m GEE}$	$h_{ m GE}$	$h_{ m GEE}$	
273,15	-1023(55)	80,4(2,6)	-949(55)	66,2(1,8)	
298,15	-497(20) -480*	39,7(1,0)	-486(20) -470*	32,0(0,7)	
	-504(8)**	43(25)**	-490(10)**		
323,15	29(49)	-1,0(2,3)	-23(49)	-2,1(1,6)	

^{*} Данные [17].

Теплоемкостные параметры парного (с_{GE}, Дж·кг/(моль²·K)) и тройного (с_{GEE}, Дж·кг²/(моль³·K)) взаимодействия глицина (G) с электролитами (E) в водных растворах

Растворитель	$c_{ m GE}$	$c_{ m GEE}$	
W+NaCl	21,0(1,9)	-1,63(0,09) 1 37(0,06)	

Величины в скобках — стандартные отклонения.

 $\stackrel{\Delta}{\bullet} \begin{array}{c} 1 \\ \bullet \end{array} 2$

4

Таблица 4

^{**} Данные [20].

Величины в скобках — стандартные отклонения.

Рис. 3. Зависимость *h*_{PE} от *h*_{GE} при 273, 298 и 323 К: (W+NaCl) (*1*), (W+KCl) (*2*)

Энтальпийный параметр $h_{\rm GE}$ включает в себя энтальпию взаимодействия между компонентами в водном растворе и вклад от дегидратации компонентов. Из табл. 3 видно, что $h_{\rm GE}$ большие отрицательные величины при 273 К. Это означает, что преобладает сильный экзотермический эффект притяжения между глицином и электролитом. Взаимодействие притяжения становится более слабым с ростом температуры. Имеет место линейная корреляция между $h_{\rm PE}$ пролина [9] и $h_{\rm GE}$ глицина (рис. 3).

Энтальпии растворения глицина в системах W—Е и W—U (U — мочевина) при различных температурах показаны на рис. 4 и 5.

Из рисунков видно, что на термодинамических характеристиках растворения глицина в водных растворах хлоридов натрия и калия, а также мочевины есть особые (сингулярные) точки. Из термодинамики следует, что

$$\partial \Delta_{\mathbf{p}} S^0 / \partial T = \Delta_{\mathbf{p}} C_{\mathbf{p}}^0 / T.$$
⁽⁵⁾

Из рис. 4 и 5 видно, что в воде и водной области вплоть до сингулярной точки теплоемкость растворения $\Delta_p C_p^0 = \partial \Delta_p H^0 / \partial T$ меньше нуля (вследствие предразрушения структуры воды действием температуры). В соответствии с (5) это означает, что такая структурно-чувствительная характеристика, как энтропия растворения, уменьшается с повышением температуры (система становится более упорядоченной).

При концентрациях, соответствующих сингулярным точкам (в случае водного NaCl и KCl $\sim 1,5m$ и в случае мочевины $\sim 8m$), энтальпия растворения глицина не зависит от температуры, т.е. теплоемкость растворения равна нулю, и энтропия растворения не зависит от температуры

Рис. 4. Энтальпии растворения глицина в водных растворах NaCl (*a*) и KCl (*б*) при различных температурах: 288 (*1*), 298 (2), 313 К (*3*). Линии — уравнения в тексте

Рис. 5. Энтальпии растворения глицина [5] в водных растворах мочевины при различных температурах: 298 (1); 313 К (2). Линии — уравнения в тексте

(температура не влияет на упорядоченность в растворе). Парциальная теплоемкость глицина в растворе в этом случае равна теплоемкости кристаллической аминокислоты. Более высокую концентрацию мочевины в обсуждаемых точках можно связать с ее более слабым разрушающим влиянием на структуру воды.

Из рис. 4 и 5 также видно, что при концентрациях, превышающих концентрации в сингулярных точках, теплоемкость растворения больше нуля, и энтропия растворения растет с повышением температуры (система становится менее упорядоченной).

Положение сингулярной точки на концен-

трационной оси идентично в случае растворов NaCl и KCl. Аналогичный результат был получен в литературе при анализе энтальпийного параметра парного взаимодействия глицина с электролитами в водном растворе при 298 К в работе [17], где было показано, что указанный параметр не зависит от природы катиона. Исключение составляет ион лития.

Таким образом, в холодной воде парное взаимодействие глицина с NaCl и KCl — энтальпийно притягивательное. При повышении температуры взаимодействие притяжения становится слабее. Обнаружены сингулярные точки в термодинамических характеристиках растворения глицина в водных растворах хлоридов натрия и калия, а также растворах мочевины. При соответствующих концентрациях (в случае водных NaCl и KCl ~1,5*m* и в случае водных растворов мочевины ~8*m*) энтальпия растворения глицина не зависит от температуры, т.е. теплоемкость растворения равна нулю, и парциальная теплоемкость глицина в растворе равна теплоемкости кристаллического глицина. При указанных концентрациях энтропия растворения глицина не зависит от температуры. Сделан вывод о более сильном по сравнению с мочевиной разрушающем влиянии исследованных электролитов на структуру воды.

Работа частично поддержана Российским фондом фундаментальных исследований (грант № 12-03-97508-г center a).

СПИСОК ЛИТЕРАТУРЫ

- 1. Kustov A.V., Korolev V.P. // Thermochim. Acta. 2006. 447. P. 212 214.
- 2. Королев В.П., Батов Д.В., Смирнова Н.Л. и др. // Изв. РАН. Сер. химич. 2007. 4. С. 711 714. [Russ. Chem. Bull. Int. Ed. 2007. 4. Р. 739 742].
- 3. Королев В.П., Антонова О.А., Смирнова Н.Л. // Журн. физ. химии. 2010. **84**, № 11. С. 2005 2009. [Russ. J. Phys. Chem. A. 2010. **84**, N 11. P. 1827 1831].
- 4. *Королев В.П.* // Журн. структур. химии. 2010. **51**, № 3. С. 509 517. [J. Struct. Chem. 2010. **51**, N 3. Р. 491 499].
- 5. *Королев В.П., Батов Д.В., Смирнова Н.Л. и др.* // Журн. структур. химии. 2007. **48**, № 4. С. 717 723. [J. Struct. Chem. 2007. **48**, N 4. Р. 666 672].
- 6. Королев В.П., Антонова О.А., Смирнова Н.Л. // Журн. физ. химии. 2010. **84**, № 12. С. 2250 2254. [Russ. J. Phys. Chem. A. 2010. **84**, N 12. P. 2056 2060].
- 7. Korolev V.P., Antonova O.A., Smirnova N.L. // J. Thermal. Anal. Calorim. 2012. 108. P. 1 7.
- 8. *Королев В.П., Антонова О.А., Смирнова Н.Л.* // Журн. структур. химии. 2014. **55**, № 2. С. 344 349. [J. Struct. Chem. 2014. **55**, N 2. P. 376 381].
- 9. Korolev V.P., Antonova O.A. // J. Thermal Anal. Calorim. 2014. 115. P. 955 960.

- 10. Кесслер Ю.М., Зайцев А.Л. Сольвофобные эффекты. Л.: Химия, 1989.
- 11. Korolev V.P., Smirnova N.L., Kustov A.V. // Thermochim. Acta. 2005. 427. P. 43 50.
- 12. Korolev V.P., Kustov A.V. // Thermochim. Acta. 2005. 437. P. 190 195.
- 13. *Королев В.П.* // Журн. структур. химии. 2006. **47**, № 4. С. 715 726. [J. Struct. Chem. 2006. **47**, N 4. Р. 699 710].
- 14. Kustov A.V., Korolev V.P. // J. Phys. Chem. B. 2008. 112. P. 2040 2044.
- 15. *Кустов А.В., Емельянов А.А., Сыщенко А.Ф. и др.* // Журн. физ. химии. 2006. **80**, № 9. С. 1724 1728. [Russ. J. Phys. Chem. A. 2006. **80**, N 9. P. 1532 1536].
- 16. Kelley B.P., Lilley T.H. // J. Chem. Thermodyn. 1978. 10. P. 703 704.
- 17. Palecz B. // Thermochim. Acta. 1991. 180. P. 199 202.
- 18. McMillan W.G., Mayer J.E. // J. Chem. Phys. 1945. 13. P. 276 305.
- 19. Desnoyers J.E., Perron G., Avédikian L. et al. // J. Solut. Chem. 1976. 5. P. 631 644.
- 20. Lilley T.H., Moses E., Tasker I.R. // J. Chem. Soc. Faraday I. 1980. 76. P. 906 914.