УДК 532.529.5:536.24

Методы измерения полей скорости в задаче исследования течения в канале с периодическими холмами^{*}

Л.А. Козинкин, М.Н. Карчевский

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск Новосибирский государственный университет

E-mails: leon7archer@gmail.com; karchevskymi@gmail.com

В настоящей работе проводится исследование характеристик потока в канале с периодическими холмами на основе трех алгоритмов расчета поля скорости потока по изображениям: Particle Image Velocimetry, Particle Tracking Velocimetry и Pyramid Correlation. Представлены описания алгоритмов, детальная информация об эксперименте, параметрах обработки полученных данных, а также приведены результаты расчетов мгновенных полей скорости в некоторые моменты времени, полученные соответствующими методами. Кроме того, проведено сравнение представленных техник на основе экспериментальных данных.

Ключевые слова: Particle Image Velocimetry (PIV), Particle Tracking Velocimetry (PTV), Pyramid Correlation, поле скорости, пульсации скорости.

Введение

Существенную роль в дальнейшем развитии науки и техники играет ряд факторов, одним из которых является повышение точности оборудования, в особенности этот фактор важен в измерительных технологиях. Метод Particle Image Velocimetry (PIV, цифровая трассерная визуализация) [1] был изобретен в конце 70-х годов прошлого столетия и сейчас уже является практически эталонным инструментом для измерения скорости в потоках жидкости и газа. PIV-методики продолжают развиваться и по сей день, возникают новые направления их использования и новые модификации, такие как томографический способ восстановления объема или исследования движения потоков в микроканале. Наряду с этим развивается и традиционный трековый метод Particle Tracking Velocimetry (PTV, алгоритмы слежения за частицами) [2], который в чем-то дополняет PIV-метод, а в некоторых случаях решает задачи, непосильные для последнего. Оба эти метода применяются в экспериментальной механике жидкости и газа для измерения локальных характеристик потока, давая возможность измерения целого ряда физических величин бесконтактным методом, который позволяет получать информацию о типе и структуре потока, не оказывая на него при этом прямого влияния [3].

^{*} Работа выполнена при финансовой поддержке РНФ (грант № 14-19-01685, под руководством Д.М. Марковича).

[©] Козинкин Л.А., Карчевский М.Н., 2016

Развитие технологий фото- и видеоаппаратуры привело к появлению высокоскоростных камер, отличительной чертой которых является достаточно высокое разрешение, порядка 1024×1024 пикселей, с частотой съемки более $1000~\Gamma \mu$ [4]. В то же время, постепенно увеличиваются вычислительные мощности компьютеров. Все это в совокупности предоставляет новые возможности в сфере цифровой трассерной визуализации, в частности, открывает новые горизонты для экспериментов, позволяющих отследить высокие скорости потоков.

Таким образом, получили развитие новые, ранее невозможные в силу недостатка данных или процессорных мощностей, алгоритмы обработки. Возможность получения в ходе эксперимента набора высоко разрешенных во времени изображений течения привела к появлению методов, использующих для расчета поля мгновенных скоростей в данный момент времени результаты некоторого набора измерений как в предыдущие, так и в последующие моменты. К таким техникам относятся, например, метод локально оптимизированного временного разложения (Locally Optimized Temporal Separation) [5], корреляция на основе скользящего среднего (Sliding Average Correlation) [6], многокадровая пирамидальная корреляция (Multi-Frame Pyramid Correlation — MFPC) [7], корреляция траекторий жидкости (Fluid Trajectory Correlation) [8].

1. Алгоритмическая теория

В настоящей работе был использован ряд хорошо зарекомендовавших себя алгоритмов. В частности, были применены методики Particle Image Velocimetry, Particle Tracking Velocimetry и Multi-Frame Pyramid Correlation. Представленные методы имеют как двумерные, так и трехмерные реализации; в настоящей статье используются только двухмерные.

1.1. Метод PTV

Схема стандартного метода слежения за частицами, использующего два последовательных кадра, выглядит следующим образом. На первом этапе изображения с частицами анализируются для определения положений центров частиц. На втором этапе проводится слежение за частицами, т.е. для каждой идентифицированной частицы первого кадра отыскивается соответствующая частица на втором кадре. Основываясь на информации о положении частицы в оба момента времени (на двух кадрах), строится вектор смещения частицы. На следующем этапе отсеиваются вектора, неверно определенные на этапе слежения

Для определения положения центров частиц использовался метод корреляции с маской (Particle Mask Correlation), который обладает хорошей точностью определения положения центра частицы и не зависит от интенсивности образа частицы. Единственное ограничение, допускаемое методом, это форма пика образа.

Для идентификации частиц предварительно строится маска [9] (шаблон) частицы в форме двумерного распределения Гаусса:

$$G(x, y) = a \cdot \exp \left[-\frac{(x - x_0)^2 + (y - y_0)^2}{2\sigma^2} \right].$$

Затем, в каждой точке изображения производится свертка области вокруг текущей точки (области рассмотрения) с гауссовой маской, результатом которой является нормализованный коэффициент корреляции. Чем больше текущая область рассмотрения подобна куполообразной Гауссовой маске, тем больше результирующий коэффициент корреляции (от -1 до 1):

$$C(x_0,\,y_0) = \frac{\sum_{i=x_0-m/2}^{x_0+m/2} \sum_{i=y_0-n/2}^{y_0+n/2} (I(i,j)-\hat{I}) (G(i,j)-\hat{G})}{\sqrt{\sum_{i=x_0-m/2}^{x_0+m/2} \sum_{j=y_0-n/2}^{y_0+n/2} (I(i,j)-\hat{I})^2 \sqrt{\sum_{i=x_0-m/2}^{x_0+m/2} \sum_{j=y_0-n/2}^{y_0+n/2} (G(i,j)-\hat{G})^2}}\,.$$

Таким образом, из поля интенсивности (т.е. из цифрового изображения) рассчитывается поле корреляций, и каждому куполообразному пику интенсивности будет соответствовать куполообразный пик значений корреляций. Однако высота пика в поле корреляций не зависит ни от высоты, ни от ширины пика (размера частицы) в поле интенсивности, а зависит исключительно от формы пика интенсивности. К преимуществам этого метода можно отнести его способность с большой точностью различать две или несколько близко расположенных частиц, образы которых частично перекрываются. К тому же, время расчета мало зависит от размера маски и параметров функции Гаусса. К недостаткам метода следует отнести высокую чувствительность к шуму.

Для поиска пар частиц использовался релаксационный метод. Этот метод, описанный в работе [10], основывается на оценке вероятности каждой из возможных пар. Для каждой частицы на первом кадре ведется поиск пары на втором кадре в пределах окружности с радиусом, равным максимально возможному перемещению T_m . Каждому из возможных исходов присваивается одна и та же начальная вероятность P_{ij} , кроме того, рассматривается отдельная вероятность для состояния потери пары P_i^* , которая также равна начальной вероятности остальных вариантов.

Сумма вероятностей всех исходов равна единице. Допустим, на втором кадре в пределах радиуса T_m от положения текущей частицы на первом кадре оказалось r частиц, тогда:

$$\sum_{r} P_{ij} + P_i^* = 1, \quad P_{ij} = P_i^* = 1/(r+1).$$

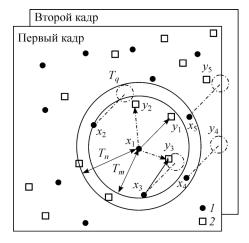
Вероятность каждого исхода итерационно пересчитывается. При оценке вероятности одного из исходов рассматриваемой частицы у соседних частиц на первом кадре ведется поиск пар, которые соответствуют близкому к рассматриваемому исходу смещению, и, в случае нахождения, вероятности соответствующих исходов соседей, посчитанные на предыдущей (s-1)-ой итерации, дают вклад в вероятность текущей пары на (s)-ой итерации.

Соседними частицами являются те, что находятся в пределах радиуса T_n от текущей частицы. Критерий достаточной близости смещения соседних частиц, который также называется критерием жесткости, определяется радиусом T_q (см. рис. 1). Вектора смещения соседних частиц, находящиеся в пределах T_n , не должны отличаться больше чем на вектор $\overline{T_q}$ от рассматриваемого смещения для текущей частицы, который удовлетворяет условию жесткости: $\|\overline{T_q}\| < T_q$.

$$\begin{split} \tilde{P}_{ij}^{(s)} &= A \cdot P_{ij}^{(s-1)} + B \cdot Q_{ij}^{(s-1)}, \quad Q_{ij}^{(s-1)} = \sum_{k} \sum_{l} P_{kl}^{(s-1)}, \\ P_{ij}^{(s)} &= \frac{\tilde{P}_{ij}^{(s)}}{\sum_{j} P_{ij}^{(s)} + P_{i}^{*(s-1)}}, \\ P_{i}^{*(s)} &= \frac{P_{i}^{*(s-1)}}{\sum_{j} P_{ij}^{(s)} + P_{i}^{*(s-1)}}, \end{split}$$

здесь $\tilde{P}_{ij}^{(s)}$ — ненормализованное значение вероятности, A < 1, B > 1 — коэффициенты сходимости итерационного ряда, $Q_{ii}^{(s-1)}$ — сумма

Рис. 1. Принципиальная схема расчета поля скорости методом PTV.
1, 2 — частицы из первого и второго кадров соответственно.



всех вероятностей соседей, удовлетворяющих условию жесткости, $P_{ij}^{(s)}$ — вероятность перехода i-ой частицы из первого кадра в j-ую частицу во втором кадре на (s)-ом шаге итерации, $P_i^{*(s)}$ — вероятность потери пары на (s)-ом шаге итерации.

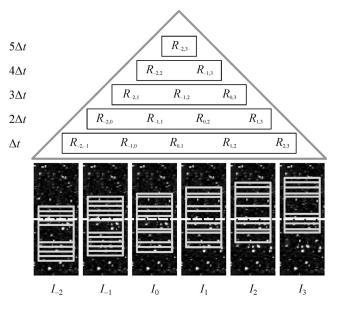
Описанный метод позволяет определять пары частиц без дополнительных предварительных расчетов и может быть применен для обработки потоков с высокой концентрацией частиц (вплоть до 0.05 частиц/пиксель²). Процесс слежения регулируется тремя параметрами: значением максимального перемещения T_m , радиусом окрестности текущей частицы T_n , в которой соседние частицы показывают схожее движение с небольшими отклонениями, и величиной такого отклонения T_q .

1.2. **Метод PIV**

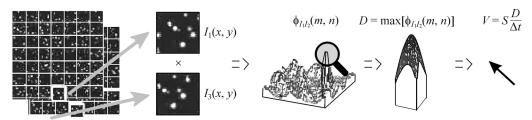
Принципиально другой в отличие от PTV способ построения поля скорости потока, основанный на цифровой трассерной визуализации, представляет собой алгоритм кросскоррелирования двух последовательных изображений (PIV) [11] (см. рис. 2). Изображение, поступившее с камеры, охватывает измерительную область, которая разбивается на более мелкие ячейки размером $d_x \times d_y$ (расчетные ячейки), в которых будет проводиться кросс-корреляция. Интенсивность, распределенную в ячейках, можно представить в виде функций I_1 (x, y) и I_2 (x, y) для первого и второго кадров соотвественно. Корреляционная функция в точке (x, x) вычисляется по формуле:

$$\Phi_{I_1I_2}(m,n) = \sum_{I=-d_x/2}^{d_x/2} \sum_{k=-d_y/2}^{d_y/2} I_1(k,l) \cdot I_2(k+m,l+n).$$

Максимум полученной корреляционной функции соответствует наиболее вероятному значению смещения D в измерительной ячейке с предположением, что скорость потока во всей элементарной ячейке примерно одинакова. Средняя скорость потока в данной ячейке может быть получена из формулы $\bar{V} = S \cdot D/(\Delta t)$, где Δt — время задержки между кадрами.



Puc. 2. Принципиальная схема расчета поля скорости методом PIV.



Puc. 3. Принципиальная схема вычисления корреляционных функций по набору изображений в алгоритме Pyramid Correlation.

1.3. Метод Multi-Frame Pyramid Correlation

Одним из обобщений вышеприведенного метода PIV является многокадровый пирамидальный кросскорреляционный алгоритм [7] с хорошим разрешением по времени. Суть методики заключается в использовании короткой последовательности эквидистантных по времени изображений для расчета кросскорреляционной функции в каждый момент времени, что позволяет существенно повысить соотношение сигнал/шум и, как следствие, улучшить точность определения пика (см. рис. 3).

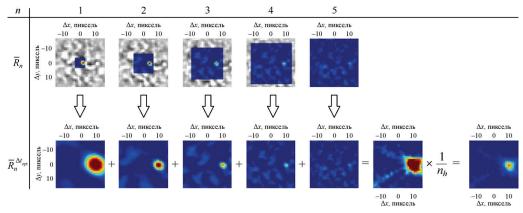
Пусть N — длина последовательности изображений, используемой в алгоритме. Тогда положим $n_{\rm opt}=N-1$ — число всевозможных корреляционных функций между соседними кадрами, другими словами, основание пирамиды. Полагая без потери общности $n_{\rm opt}$ нечетным числом, найдем последовательность кросс-корреляционных функций, упорядоченных по временным интервалам:

$$\overline{R}_n(\Delta x) = \frac{1}{n_{\text{opt}} - n + 1} \frac{\binom{n_{\text{opt}} + 1}{2}}{\binom{n_{\text{opt}} - 1}{2}} R_{ii+n}(\Delta x), \quad n = 1, 2, ..., n_{\text{opt}},$$

где $\Delta x = (\Delta x, \Delta y) \in D$ — координаты корреляционной функции в дискретной области смещений D некоторой элементарной ячейки, $R_{i,i+n}$ — корреляционная функция между i-ым и (i+n)-м кадрами.

С ростом временного интервала между кадрами (увеличивая параметр *n*), можно получить более точный вектор смещения отдельной частицы. Однако при этом высота настоящего корреляционного пика значительно уменьшается вследствие эффектов потери пары, движения вне корреляционной плоскости и изменения формы пика, связанного с неучтенными локальными вариациями скорости.

Полученные кросскорреляционные функции \overline{R}_n нельзя просто просуммировать, т.к. они соответствуют различным временным смещениям. Поэтому используется преобразование гомотетии, которое служит для масштабирования всех функций по времени (см. рис. 4):



Puc. 4. Преобразование геометрии и расчет итоговой корреляционной функции в алгоритме Pyramid Correlation.

 $\overline{R}_{n}^{\Delta t_{\mathrm{opt}}}(\Delta x) = \overline{R}_{n}\left(n\Delta x/n_{\mathrm{opt}}\right)$, где Δt_{opt} — временной интервал между крайними кадрами последовательности (т.е. наибольший). Далее выполняется суммирование преобразованных таким образом функций: $R_{\mathrm{ens}}^{\Delta t_{\mathrm{opt}}}(\Delta x) = \frac{1}{n_{h}} \sum_{n=1}^{n_{h}} \overline{R}_{n}^{\Delta t_{\mathrm{opt}}}(\Delta x)$, где $n_{h} \leq n_{\mathrm{opt}}$ — так называемая высота пирамиды, которая выбирается из соображения зашумленности усредненных кросскорреляционных функций \overline{R}_{n} с большим интервалом между кадрами.

Дальнейший поиск пика и расчет скорости в элементарной ячейке на основе корреляционной функции $R_{\rm ens}^{\Delta t_{\rm opt}}(\Delta x)$ выполняется аналогично описанному в методе PIV.

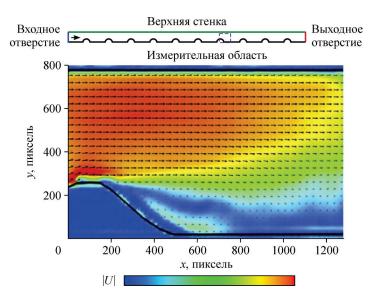
2. Описание эксперимента и параметры обработки

2.1. Общие сведения

В рамках международного симпозиума International PIV Challenge [12] был представлен эксперимент, где моделировалось турбулентное течение, которое возникало в результате протекания жидкости в канале с периодическими холмами вдоль нижней стенки. Течения такого специального вида нередко применяются при тестировании систем численного моделирования потоков. Схема канала и среднее значение скорости приведены на рис. 5. Скорость достигает своего максимума на вершине холма, затем происходит отрыв потока и за счет этого образуется множество когерентных структур в сдвиговом слое. Вследствие гладкой геометрии как отрыв, так и присоединение пограничного слоя не фиксированы ни во времени, ни в пространстве. Таким образом, данное течение характеризуется выраженным сдвиговым слоем и сильной завихренностью.

2.2. Параметры измерительной системы

С целью изучения описанного течения были проведены скоростные PIV-измерения с хорошим временным разрешением на базе Технического университета Мюнхена в рамках проекта «FP 7 EU AFDAR» (Advanced Flow Diagnostics for Aeronautical Research) [13]. Представленные данные содержат эквидистантный по времени набор изображений частиц (1280×800 пикселей) в центральном сечении канала. Засев течения



Puc. 5. Схема измерительной области в эксперименте случая В и пример скалярного поля модуля средней скорости и векторного поля в области измерения.

производился полыми стеклянными сферическими частицами диаметром d=10 мкм. Для подсветки использовался Spectra Physics 5 W сw-Nd:YAG лазер. Съемка выполнялась посредством камеры Phantom v12. Частота съемки составляла 2000 Γ ц, давление — 200 бар, длительность экспозиции — 200 мкс. Участникам эксперимента предоставлялось 1044 изображения из 5000. Отличительные черты эксперимента — широкий динамический диапазон скорости, влияние эффектов вне плоскости измерений и малый размер отдельной частицы относительно пикселя сенсора камеры.

2.3. Предварительная обработка данных для PIV

Чтобы воспользоваться преимуществом разрешения по времени результатов измерений была произведена предварительная фильтрация изображений по времени, а также заключительная временная фильтрация полей скорости. Использованная схема предварительной фильтрации аналогична представленной в работе [14] за исключением типа использованного высокочастотного фильтра. Поскольку применение обычного фильтра может способствовать появлению эффекта Гиббса, был разработан и использован кусочно-определенный высокочастотный фильтр, оптимизированный для минимизации соответствующего эффекта. Частота среза равнялась 56 Гц.

В качестве другой процедуры предобработки, нацеленной на устранение преобладания одиночных интенсивных выбросов кросскорреляционной функции, была использована коррекция интенсивности: интенсивность каждого пикселя масштабировалась

в соответствии с функцией
$$y(x) = \begin{cases} 2,8x^{1/3}, & x > 4, \\ x, & x \le 4, \end{cases}$$

где х и у — исходная и модифицированная интенсивности пикселя.

2.4. Кросскорреляционный метод PIV

В настоящей работе использовался итерационный многосеточный кросскорреляционный алгоритм расчета полей скорости с непрерывной оконной деформацией областей, корреляционная функция рассчитывалась при помощи быстрого преобразования Фурье. Обработка происходила в четыре итерации по следующей схеме: $64^275\% \rightarrow 32^275\% \rightarrow 32^287,5\% \rightarrow 32^293,75\%$ (пары обозначают «кросскорреляционное окно-процент перекрытия кросскорреляционных областей»).

С целью интерполяции интенсивности изображения в ходе деформации и интерполяции скорости в ходе переразбиения расчетной сетки применялся В-сплайн третьего порядка. Корреляционные окна деформировались линейно. Был применен локальный подход без сглаживания предиктора.

Валидация скорости базировалась на пороговом методе, использующем локальное значение концентрации частиц [15]. Согласно этому методу корреляционный анализ выполняется лишь для областей с концентрацией частиц выше определенного значения. Стандартная схема обнаружения частиц была реализована путем корреляции с гауссовой маской [9].

Для валидации ошибочных векторов был применен адаптивный медианный фильтр с ядром размером 5×5 пикселей и пороговым значением, равным 1 [13]. Ошибочные вектора заменялись посредством скользящего среднего фильтра 5×5 пикселей после каждой итерации, за исключением финальной. В качестве техники обнаружения пика использовался трехточечный метод Гаусса по обеим осям координат. Процедуре быстрого преобразования Фурье предшествовало применение весовой оконной функции в форме двумерной функции Гаусса (σ = 16 пикселей).

2.5. Заключительная обработка результатов для PIV

После корреляционного анализа дополнительно был использован адаптивный медианный фильтр с ядром размером 7×7 пикселей и пороговым значением, равным 1,5, а затем — маскирование поля скорости. Далее, одномерная модификация этого адаптивно-медианного алгоритма применялась для временной фильтрации. Следует заметить, что данный фильтр использовал полученные на предыдущем шаге статусы векторов скорости.

В заключение процедуры валидации была выполнена интерполяция всех ошибочных векторов по временной оси с применением весовых оконных коэффициентов гауссова распределения. Чтобы предотвратить чрезмерную интерполяцию в областях, где наблюдался недостаток достоверных данных, были интерполированы только короткие последовательности ошибочных векторов (до трех подряд идущих ошибочных векторов, при условии, что до и после такого набора следовало более двух правильно вычисленных векторов скорости), а во всей последовательности был установлен порог ошибочных векторов в 15 %.

В качестве финального шага пространственно-временной заключительной обработки результатов был применен низкочастотный фильтр последовательности полей скорости. Поскольку известно, что частота среза и, таким образом, частота PIV-расчета для окна смещения размером 32×32 должна быть ниже, чем измеряемая частота рассматриваемого случая [16], оценка частоты среза фильтра основывалась на частоте среза PIV-расчета и была установлена равной вдвое большей величине (300 Гц).

2.6. Предварительная обработка данных для PTV

Идентификация координат отдельных частиц проводилась с помощью метода маскированной корреляции частиц (Particle Mask Correlation, PMC) [9]. Маска центрировалась на каждом пикселе в плоскости изображения, а затем выполнялась кросскорреляция этой маски и области изображения соответствующего размера. Маска выбиралась в соответствии с коэффициентами двумерного гауссова распределения в узлах расчетной сетки при следующих параметрах: размер окна — 5×5 , дисперсия распределения — $\sigma = 1,65$, пороговое значение — 10%.

2.7. Релаксационный метод PTV

В настоящей работе применялся классический релаксационный PTV-алгоритм [10] с некоторыми модификациями. Поиск соседних частиц проводился в области радиусом 80 пикселей. Максимальное смещение полагалось равным 7 пикселям для интервала между i-ым и (i + 2)-м кадрами. Каждое поле скорости рассчитывалось в три итерации. Для валидации векторов скорости применялся пространственный фильтр скользящего усреднения. Для интерполяции на финальную сетку использовался метод Кригинга.

2.8. Заключительная обработка результатов для PTV

На первом шаге поля скорости валидировались двумя последовательными итерациями с применением пространственного адаптивного медианного фильтра с окнами размером 5×5 и 7×7 соответственно. Затем тот же адаптивный медианный фильтр использовался для валидации данных по времени. Следует заметить, что рассматриваемый фильтр использовал полученные на предыдущем шаге статусы векторов скорости. В заключение процедуры валидации была выполнена средневзвешенная интерполяция всех ошибочных векторов по временной оси. Финальный шаг пространственновременной заключительной обработки результатов был идентичен вышеописанному случаю для PIV-расчета.

2.9. Алгоритм МГРС

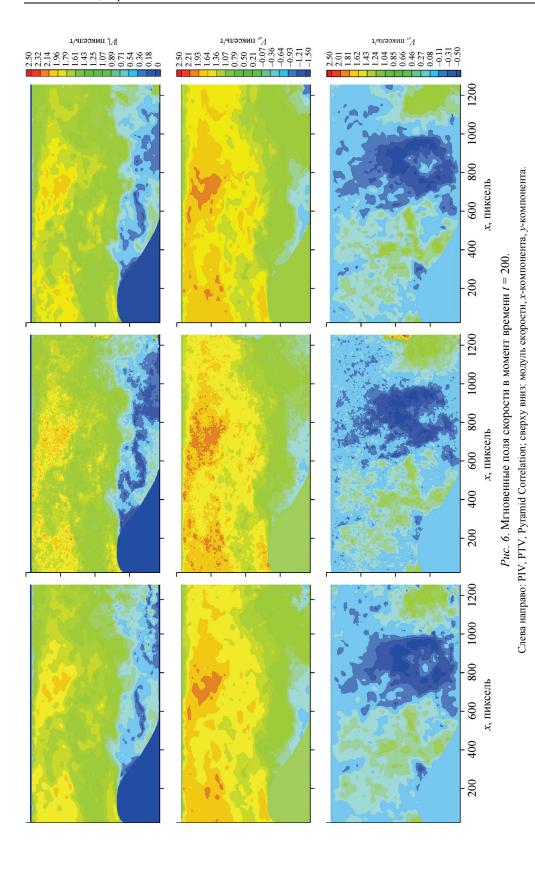
Поскольку метод пирамидального кросскорреляционного анализа представляет по своей сути обобщение стандартного кросскорреляционного PIV-алгоритма, то как для предварительной обработки, так и для заключительной обработки данных в этом случае используются процедуры, идентичные приведенным выше для PIV-метода. Характерной чертой этого случая является комбинирование двух техник: оптимизация размера корреляционного окна соответственно локальной концентрации частиц [17] и использование многокадровой пирамидальной корреляции [7]. Размеры корреляционного окна были ограничены четными числами от 16 до 48 пикселей. Для расчетов использовался многокадровый пирамидальный кросскорреляционный алгоритм с весовыми коэффициентами Гаусса и основанием пирамиды $n_{\rm opt} = 4$ (скользящий расчет по пяти кадрам на временной оси).

3. Результаты и выводы

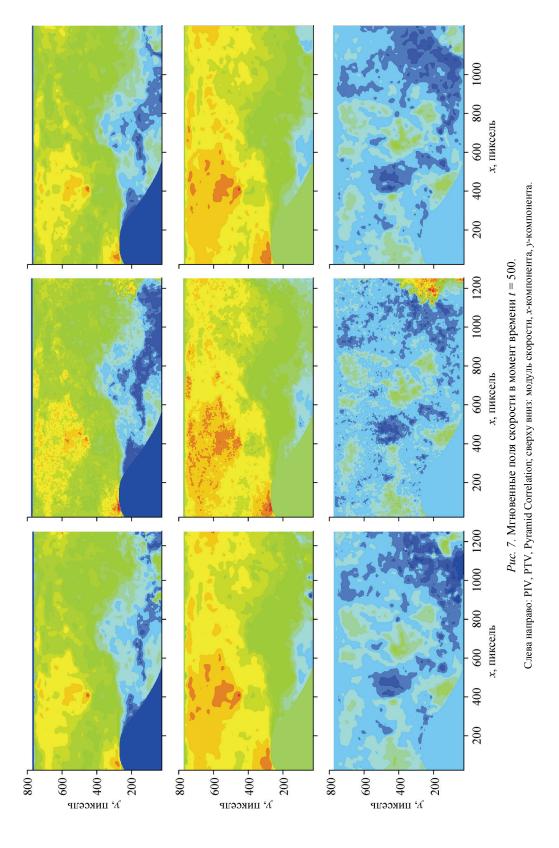
В ходе обработки эксперимента алгоритмами PIV, PTV и Pyramid Correlation были получены три набора по 1024 полей скорости, разрешенных по времени. На рис. 6 и 7 приведены модуль и соответствующие компоненты скорости для каждого из методов в моменты времени t = 200 и 500 соответственно. На основе полученных данных можно наблюдать динамику структуры потока в зависимости от времени. В частности, четко прослеживается распространение пульсаций скорости, а также резкое падение величины скорости потока за холмом. Все это сочетается с физическими представлениями о течении в данном канале.

Наибольшую ошибку при определении поля скорости можно наблюдать вблизи границы исследуемой области канала. Она возникает в результате неравномерности засветки рабочего участка. При анализе этой части изображения было выявлено заметное ухудшение качества проекции в данной области, что, в свою очередь, привело к меньшему числу найденных частиц при использовании алгоритма PTV. Как следствие нехватки найденных частиц в этой области, векторное поле имеет значительное отклонение от ожидаемого результата. Алгоритмы PIV и Pyramid Correlation также обнаруживают проблемы в указанной области, однако в некоторой степени снизить ошибку позволяет адаптивный выбор корреляционного окна в зависимости от числа попавших в него частии.

Сравнение представленных данных позволяет сделать заключение о преимуществах тех или иных методов: если PTV позволяет получать более точное представление о структуре потока за счет того, что каждая частица отслеживается индивидуально, то PIV и Pyramid Correlation лучше работают в проблемных областях, где концентрация частиц мала или неравномерна. Кроме того, Pyramid Correlation позволяет вычислять корреляционные функции точнее и, как следствие, правильнее определять вектор скорости в каждой корреляционной ячейке, что, однако, требует существенно больших затрат вычислительных ресурсов по сравнению с PIV.



862



Список литературы

- 1. Elsinga G.E., Wieneke B., Scarano F., van Oudheusden B.W. Tomographic particle image velocimetry // Experiments in Fluids. 2006. Vol. 41, No. 6. P. 933–947.
- Nishino K., Kasagi N., Hirata M. Three-dimensional particle tracking velocimetry based on automated digital image processing // J. of Fluids Engng, 1989. Vol. 111, No. 4. P. 384–391.
- 3. Alekseenko M.V., Bilsky A.V., Dulin V.M., Kozinkin L.A., Markovich D.M., Tokarev M.P. Diagnostics of jet flows by using tomographic particle image velocimetry // Optoelectronics, Instrumentation and Data Processing. 2014. Vol. 50, No. 5. P. 457–465.
- 4. Hain R., Kähler C.J., Tropea C. Comparison of CCD, CMOS and intensified cameras // Experiments in Fluids. 2007. Vol. 42, No. 3. P. 403–411.
- 5. Pereira F., Ciarravano A., Romano G.P., Di Felice F. Adaptive multi-frame PIV // Proc. of 12th Intern. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 12–15 July 2004.
- 6. Scarano F., Moore P. An advection-based model to increase the temporal resolution of PIV time series // Experiments in Fluids. 2012. Vol. 52, No. 4. P. 919–933.
- Sciacchitano A., Scarano F., Wieneke B. Multi-frame pyramid correlation for time-resolved PIV // Experiments in Fluids. 2012. Vol. 53, No. 4. P. 1087–1105.
- Jeon Y.J., Chatellier L., David L. Evaluation of fluid trajectory in time-resolved PIV // PIV13; 10th Intern. Symp. on Particle Image Velocimetry, Delft, The Netherlands. July 1–3, 2013.
- Joshi B., Ohmi K., Nose K. Particles detection scheme for tomographic particle tracking velocimetry // Proc. 16th Intern. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal. 9–12 July 2012. Vol. 1, No. 4. 10 p.
- **10. Back S.J., Lee S.J.** A new two-frame particle tracking algorithm using match probability // Experiments in Fluids. 1996. Vol. 22, No. 1. P. 23–32.
- 11. Meinhart C.D., Wereley S.T., Santiago J.G. A PIV algorithm for estimating time-averaged velocity fields. // J. of Fluids Engng, 1999. Vol. 122, No. 2. P. 285–289.
- 12. Kähler C.J., Astarita T., Vlachos P.P., Sakakibara J., Hain R., Discetti S., La Foy R., Cierpka C. Main results of the 4th International PIV Challenge // Experiments in Fluids. 2016. Vol. 57, Iss. 6. P. 97-1-97-71.
- Westerweel J., Scarano F. Universal outlier detection for PIV data // Experiments in Fluids. 2005. Vol. 39, No. 6. P. 1096–1100.
- 14. Scarano F., Sciacchitano A. Robust elimination of light reflections in PIV // 9th Inter. Symp. on Particle Image Velocimetry. Kobe, Japan. July 21–23 2011.
- 15. Alekseenko S.V., Dulin V.M., Kozorezov Y.S., Markovich D.M. Effect of axisymmetric forcing on the structure of a swirling turbulent jet // Intern. J. of Heat and Fluid Flow. 2008. Vol. 29, No. 6. P. 1699–1715.
- 16. Lavoie P., Avallone G., De Greforio F., Romano G.P., Antonia R.A. Spatial resolution of PIV for the measurement of turbulence // Experiments in Fluids. 2007. Vol. 43, No. 1. P. 39–51.
- 17. Theunissen R., Scarano F., Riethmuller M.L. An adaptive sampling and windowing interrogation method in PIV // Measurement Sci. and Technology. 2007. Vol. 18, No. 1. P. 275–287.

Статья поступила в редакцию 31 августа 2015 г., после доработки 5 ноября 2015 г.