2016. Том 57, № 5

Июнь – июль

C. 1012 – 1019

### УДК 546.78:546.224:548.73:541.49

## СТРОЕНИЕ И ТЕРМИЧЕСКИЕ СВОЙСТВА СУЛЬФИДНОГО КЛАСТЕРА ВОЛЬФРАМА, КООРДИНИРОВАННОГО ТИОМОЧЕВИНОЙ

# Ю.А. Ларичева<sup>1</sup>, А.Л. Гущин<sup>1,2</sup>, П.А. Абрамов<sup>1</sup>, М.Н. Соколов<sup>1,2</sup>

<sup>1</sup>Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия E-mail: gushchin@niic.nsc.ru

<sup>2</sup>Новосибирский национальный исследовательский государственный университет, Россия

Статья поступила 18 декабря 2015 г.

Взаимодействием солянокислого раствора кластерного аква-комплекса  $[W_3S_4(H_2O)_9]^{4+}$  с тиомочевиной (tu) получено новое соединение  $[W_3S_4(tu)_8(H_2O)]Cl_4 \cdot 2H_2O$ , содержащее координированные молекулы тиомочевины. Соединение охарактеризовано элементным и термогравиметрическим анализами, а также ИК, ЯМР, ЭСП и масс-спектрами. Определена его кристаллическая структура методом РСА. Термическое разложение  $[W_3S_4(tu)_8(H_2O)]Cl_4 \cdot 2H_2O$  в интервале 20—700 °С в токе гелия приводит к образованию WS<sub>2</sub>, идентифицированного с помощью РФА. Проведены теоретические расчеты для  $[W_3S_4(tu)_8(H_2O)]^{4+}$ , которые показывают смешанную металл/лиганд центрированную природу высших занятых молекулярных орбиталей.

DOI: 10.15372/JSC20160516

Ключевые слова: трехъядерный сульфидный кластер, вольфрам, тиомочевина, кристаллическая структура, квантово-химические расчеты.

### введение

В химии соединений четырехвалентных молибдена и вольфрама важное место занимают трехъядерные халькогенидные кластеры молибдена и вольфрама. Это обширное и хорошо изученное семейство координационных соединений [ 1—6 ]. Можно выделить два основных структурных типа треугольных кластеров молибдена и вольфрама: халькоген-"насыщенные" кластеры, содержащие группировку  $\{M_3Q_7\}^{4+}$  с дихалькогенидными мостиковыми лигандами, и халькоген-"ненасыщенные" кластеры  $\{M_3Q_4\}^{4+}$  с монохалькогенидными лигандами. В обоих случаях реализуется прямое связывание металл—металл, атомы металла образуют искаженный треугольник с халькогенидными мостиками между атомами металла.

В нашей лаборатории проводятся исследования по функционализации этих кластеров с помощью гетероциклических дииминов — производных 2,2'-бипиридила и *орто*-фенантролина [7—9]. Кластеры  $Mo_3S_7$  образуют с ними гетеролептические нейтральные комплексы типа [ $Mo_3S_7(Cl/Br)_4(диимин)$ ], которые обладают интересными оптическими и фотокаталитическими свойствами [9—11]. В случае кластеров  $Mo_3S_4$  образуются гомолептические катионные комплексы типа [ $Mo_3S_4Cl_3(диимин)_3$ ]<sup>+</sup>, в которых каждый атом металла связан с одной молекулой диимина [12]. Эти комплексы катализируют восстановление ароматических нитросоединений в соответствующие анилины с высокой селективностью. В качестве удобного исходного соединения для синтеза комплексов [ $Mo_3S_4Cl_3(диимин)_3$ ]<sup>+</sup> было предложено соединение с тиомочевиной состава [ $Mo_3S_4(tu)_8(H_2O)$ ] $Cl_4 \cdot 4H_2O$  в силу высокой лабильности молекул тиомочевины по отношению к замещению на другие лиганды, а также растворимости этого соединения в орга-

<sup>©</sup> Ларичева Ю.А., Гущин А.Л., Абрамов П.А., Соколов М.Н., 2016

нических растворителях. Этот комплекс получен с высоким выходом из аква-комплекса  $[Mo_3S_4(H_2O)_9]^{4+}$ . В данной работе мы сообщаем о синтезе нового кластерного комплекса вольфрама(IV) с тиомочевиной состава  $[W_3S_4(tu)_8(H_2O)]Cl_4 \cdot 2H_2O$ . Этот комплекс вольфрама аналогичен ранее описанному комплексу молибдена  $[Mo_3S_4(tu)_8(H_2O)]Cl_4 \cdot 4H_2O$  и был охарактеризован различными методами, включая рентгеноструктурный анализ монокристалла. Были изучены термические свойства и электроннное строение полученного соединения, которые также обсуждаются в данной работе.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

**Реактивы и оборудование.** Все эксперименты проводили на воздухе. Исходный раствор  $[W_3S_4(H_2O)_9]^{4+}$  в соляной кислоте (2 М) получали по известной методике, его концентрацию определяли спектрофотометрически согласно литературным данным [13].

ИК спектр в области 4000—400 см<sup>-1</sup> записывали на спектрометре Scimitar FTS 2000 в таблетке KBr. Характеристичные полосы колебаний для тиомочевины соотносили на основе литературных данных [12, 14]. Электронный спектр поглощения (ЭСП) в интервале 200—900 нм снимали на спектрофотометре Helios у (Thermo Scientific). Электроспрей-масс-спектры были получены на жидкостном хроматографе — масс-спектрометре фирмы Agilent (6130 Quadrupole MS, 1260 infinity LC). Анализ проводили в диапазоне масс 300—3000 а.е.м, в качестве источника ионизации использовали многорежимный источник ионизации (multimode source). В качестве подвижной фазы использовали метиловый спирт марки ОСЧ (скорость подачи — 0,4 мл/мин). Температура газа-осушителя 250 °С, скорость потока 5 л/мин. Температура испарителя 150 °C. Давление на распылителе 60 psig (фунты на кв. дюйм). Напряжение на капилляре 2000 В. Напряжение на заряжающем электроде — 200 В. При анализе вводили 5 мл раствора анализируемого соединения с концентрацией порядка 10<sup>-4</sup> г/мл в подвижную фазу. Время записи хроматограммы по общему ионному току 5 мин. Элементный анализ на С, H, N, S выполнен на приборе Euro EA 3000. Данные термогравиметрического анализа (ТГА) были получены на приборе Netzsch TG 209 F1 Iris thermobalance для образцов массой 10 мг. Разложение образцов проходило в атмосфере Не (скорость потока 30 мл/мин) в открытых алюминиевых тиглях при скорости нагрева 10 К/мин в диапазоне температур 20—875 °C. Обработку экспериментальных данных проводили с использованием стандартного пакета программного обеспечения Proteus Analysis [15]. Рентгенофазовый анализ порошка проводили на дифрактометре Shimadzu XRD-7000 (Си $K_{\alpha}$ -излучение, Ni фильтр, диапазон 5—60° 2 $\theta$ , шаг 0,03° 2 $\theta$ , накопление 1 с). Образец для исследования готовили следующим образом: порошок растирали в агатовой ступке в присутствии гептана; полученную суспензию наносили на полированную сторону стандартной кварцевой кюветы; после высыхания гептана образец представлял собой тонкий ровный слой (толщина ~100 мкм). Индицирование дифрактограммы проводили по данным картотеки PDF [16].

Синтез  $[W_3S_4(tu)_8(H_2O)]Cl_4 \cdot 2H_2O$ . К 30 мл 0,031 М раствора  $[W_3S_4(H_2O)_9]^{4+}$  в 2 М НСl добавили избыток (5,6 г, 0,074 моль) кристаллической тиомочевины. Постепенно цвет раствора менялся с темного сине-фиолетового на темно-зеленый. Раствор оставили на 3 дня для завершения реакции и образования кристаллического продукта. Слабоокрашенный маточный раствор декантировали, а темно-зеленый кристаллический осадок быстро промывали холодной водно-этанольной смесью (1:1), изопропанолом и диэтиловым эфиром и высушивали. Выход 92 % (1,27 г).

В расчете на C<sub>8</sub>H<sub>38</sub>N<sub>16</sub>Cl<sub>4</sub>O<sub>3</sub>S<sub>12</sub>W<sub>3</sub>: С 6,5, Н 2,6, N 15,1 %; найдено С 6,4, Н 2,5, N 15,0 %.

ИК (КВг, v, см<sup>-1</sup>): 3396 (ср, пл.), 3279 (ср), 3165 (ср), 1610 (с), 1499 (сл), 1423 (сл, пл), 1386 (с), 1093 (сл), 700 (ср), 550 (ср, пл), 469 (ср).

ЭСП (ДМСО):  $\lambda = 314$  нм ( $\epsilon = 9200 (M \cdot cm)^{-1}$ ); 608 нм ( $\epsilon = 450 (M \cdot cm)^{-1}$ ). ТГА (20—875 °С):  $\Delta m = 49,7$  %. <sup>13</sup>С ЯМР (500 МГц) твердого образца:  $\delta = 177,45, 174,26$  м.д.

Рентгеноструктурный анализ. Строение соединения [W<sub>3</sub>S<sub>4</sub>(tu)<sub>8</sub>(H<sub>2</sub>O)]Cl<sub>4</sub>·2H<sub>2</sub>O установлено методом рентгеноструктурного анализа монокристалла. Все измерения проведены по

Таблица 1

| Кристаллографические характеристики | и детали               | дифракционного   | эксперимента | соединения |
|-------------------------------------|------------------------|------------------|--------------|------------|
| [W <sub>3</sub> S <sub>2</sub>      | $_{4}(tu)_{8}(H_{2}O)$ | $)] \cdot 2H_2O$ |              |            |

| C <sub>8</sub> H <sub>38</sub> Cl <sub>4</sub> N <sub>17</sub> O <sub>3</sub> S <sub>12</sub> W <sub>3</sub> |
|--------------------------------------------------------------------------------------------------------------|
| 1442103                                                                                                      |
| 1498,62                                                                                                      |
| 150                                                                                                          |
| Μο <i>K</i> <sub>α</sub> (0,71073)                                                                           |
| Триклинная                                                                                                   |
| <i>P</i> -1                                                                                                  |
| 10,5147(3), 14,6767(4), 15,3334(4)                                                                           |
| 72,384(1), 82,891(1), 82,882(1)                                                                              |
| 2228,60(11)                                                                                                  |
| 2                                                                                                            |
| 2,233                                                                                                        |
| 8,57                                                                                                         |
| 1422                                                                                                         |
| 0,12×0,08×0,04                                                                                               |
| 1,7—27,56                                                                                                    |
| $-13 \le h \le 13, -19 \le k \le 19, -19 \le l \le 19$                                                       |
| 37458 / 10270                                                                                                |
| 8660                                                                                                         |
| 427                                                                                                          |
| 1,028                                                                                                        |
| 0,04 / 0,106                                                                                                 |
| 11,41 / -1,15                                                                                                |
|                                                                                                              |

стандартной методике на дифрактометре Bruker Apex Duo, при *T* 150 К (Мо $K_{\alpha}$ ,  $\lambda = 0,71073$  Å). Интенсивности отражений измерены методом  $\varphi$ - и  $\omega$ -сканирования узких (0,5°) фреймов. Поглощение учтено эмпирически по программе SADABS [17]. Структура расшифрована прямым методом и уточнена полноматричным МНК в программе ShelXle [18] с использованием алгоритма SHELX 2014/7. Атомы водорода уточнялись в геометрически рассчитанных позициях. Кристаллографические данные, результаты уточнения и депозитарный код ССDС структуры приведены в табл. 1, основные длины связей — в табл. 2.

При расшифровке структуры Фурье-синтез распределения электронной плотности дает пик

Таблица 2 Основные средние длины связей в структуре [W<sub>3</sub>S<sub>4</sub>(tu)<sub>8</sub>(H<sub>2</sub>O)]·2H<sub>2</sub>O и соотнесение с расчетными данными для [W<sub>3</sub>S<sub>4</sub>(tu)<sub>8</sub>(H<sub>2</sub>O)]<sup>4+</sup>

| Связь             | Длина, Å  |        |  |  |
|-------------------|-----------|--------|--|--|
|                   | PCA       | Расчет |  |  |
| W—W               | 2,7762(4) | 2,8144 |  |  |
| W-(µ3-S)          | 2,356(2)  | 2,3734 |  |  |
| $W - (\mu_2 - S)$ | 2,302(2)  | 2,3241 |  |  |
| W—S(tu)           | 2,5751(2) | 2,6037 |  |  |
| $W - O(H_2O)$     | 2,229(7)  | 2,2672 |  |  |

электронной плотности, соответствующей 11 электронам, под кластерным фрагментом. Анализ окружения этого пика показывает, что он может соответствовать атому азота или углерода. Однако на основе имеющихся знаний о химии треугольных кластеров и тиомочевины появление лиганда  $SNH_2^{2-}$  в таких условиях не представляется реальным. Кроме того, проведенные исследования другими физико-химическими методами доказывают отсутствие такого типа лигандов в структуре. На основании этого данный пик электронной плотности был проигнорирован при уточнении структуры.

В кристаллической структуре  $[W_3S_4(tu)_8(H_2O)]Cl_4 \cdot 2H_2O$ две молекулы тиомочевины имеют ориентационное разупорядочение (кратности позиций этих молекул 0,5/0,5), связанное с близкими контактами кластерных комплексов в кристаллической упаковке. Такие кратности позиций не позволяют уточнить атомы азота и углерода в анизотропном приближении. Молекулы воды, кроме молекулы воды, непосредственно координированной к атому вольфрама, имеют сильное позиционное разупорядочение с малыми кратностями позиций. По этой причине атомы кислорода этих молекул были уточнены в изотропном приближении. Суммарно было найдено две молекулы кристаллизационной воды на формульную единицу, что согласуется с данными ТГА и элементного анализа.

**Теоретические расчеты.** Квантово-химические расчеты проводились с использованием программного обеспечения ADF (Amsterdam density functional) [19]. Расчеты выполнялись методом DFT с использованием полноэлектронного базиса TZ2P и функционалов VWN (приближение локальной плотности) и Becke-Perdew (обобщенного градиентного приближения) [20]. Учет релятивистских эффектов проводили методом скалярной аппроксимации нулевого поряд-ка ZORA [21].

### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В предыдущей работе [12] мы сообщали о получении комплекса молибдена(IV) с тиомочевиной [Mo<sub>3</sub>S<sub>4</sub>(tu)<sub>8</sub>(H<sub>2</sub>O)]Cl<sub>4</sub>·4H<sub>2</sub>O, который является лабильным к дальнейшему замещению тиомочевины и может служить удобным прекурсором для получения других комплексов с фрагментом Mo<sub>3</sub>S<sub>4</sub>. Следуя этой стратегии, были получены комплексы Mo<sub>3</sub>S<sub>4</sub> с различными дииминами и диаминами [12, 22]. В настоящей работе мы использовали схожие условия для получения комплекса вольфрама(IV) с тиомочевиной [W<sub>3</sub>S<sub>4</sub>(tu)<sub>8</sub>(H<sub>2</sub>O)]Cl<sub>4</sub>·2H<sub>2</sub>O. Для этого к раствору аква-комплекса [W<sub>3</sub>S<sub>4</sub>(H<sub>2</sub>O)<sub>9</sub>]<sup>4+</sup> в 2М HCl добавляли большой избыток тиомочевины, необходимый из-за протонирования тиомочевины в кислой среде. Постепенно происходило изменение окраски с фиолетовой на зеленую в результате координации тиомочевины к атомам вольфрама. При этом в ЭСП наблюдали батохромный сдвиг полосы поглощения в видимой области. Зеленый кристаллический продукт с высоким выходом (92 %) был выделен при выдерживании реакционной смеси при комнатной температуре в течение трех суток. Схема реакции приведена на рис. 1.

В ИК спектре  $[W_3S_4(tu)_8(H_2O)]Cl_4 \cdot 2H_2O$  в области 3400—3150 см<sup>-1</sup> наблюдаются полосы валентных колебаний группы NH тиомочевины и группы OH воды, в области 1630—1580 см<sup>-1</sup> — полосы деформационных колебаний HNH и HOH. Интенсивная полоса при 1386 см<sup>-1</sup> относится к валентным колебаниям группы C=S, а полоса при 1093 см<sup>-1</sup> — к валентным колебаниям C—N в тиомочевине. Значения частот и интенсивностей наблюдаемых колебаний согласуются с литературными данными [12, 14]. Данные элементного анализа на C, H, N, S находятся в хорошем соответствии с вычисленными значениями. В спектре <sup>13</sup>C ЯМР, записанного для твердого образца, зафиксированы два пика от координированных молекул тиомочевины, что находится в соответствии с данными PCA, согласно которым 3 молекулы тиомочевины находятся в *транс*-положении по отношению к атому µ<sub>3</sub>-S кластерного ядра, а 5 молекул — в *цис*-положении.



*Рис. 1.* Схема синтеза  $[W_3S_4(tu)_8(H_2O)]^{4+}$  из  $[W_3S_4(H_2O)_9]^{4+}$ 

Электроспрей-масс-спектр раствора соединения в метаноле показывает наличие пиков от различных однозаряженных форм  $[W_3S_4(OCH_3)(tu-H)_2]^+$  (*m/z* 860,8),  $[W_3S_4(OCH_3)_2(tu-H)(tu)]^+$  (*m/z* 892,8),  $[W_3S_4(tu-H)_3]^+$  (*m/z* 904,7),  $[W_3S_4(OCH_3)_3(tu)_2]^+$  (*m/z* 924,8),  $[W_3S_4(OCH_3)(tu-H)_2(tu)]^+$  (*m/z* 936,8),  $[W_3S_4(OCH_3)_2(tu-H)(tu)_2]^+$  (*m/z* 968,8). Таким образом, высокий заряд исходного комплекса 4+ снижается до 1+ за счет координации метокси-групп и депротонирования молекул тиомочевины в условиях распыления в электрическом поле. Такое поведение было ранее обнаружено для аналогичного комплекса молибдена. Максимальное количество молекул тиомочевины в этих формах составляет три. Это говорит о том, что тиомочевина легко отщепляется от кластерного ядра, а комплекс можно рассматривать как лабильный.

**Термические свойства.** Термическое разложение [W<sub>3</sub>S<sub>4</sub>(tu)<sub>8</sub>(H<sub>2</sub>O)]Cl<sub>4</sub>·2H<sub>2</sub>O было изучено методом термогравиметрического анализа. Соединение разлагается с отщеплением трех молекул воды (кристаллизационной и координированной) в интервале 20—100 °C, что согласуется с данными элементного и рентгеноструктурного анализа. Начиная с 200 °С, происходит значительная потеря массы, связанная с разложением координированной тиомочевины. Общая потеря массы в интервале от 20 до 700 °C в токе инертного газа составляет 49,7 %, что соответствует образованию дисульфида вольфрама WS<sub>2</sub>. Образование низкокристаллического WS<sub>2</sub> также подтверждается данными РФА. Следует отметить, что традиционно WS2 получают термолизом WS<sub>3</sub> или нагреванием WO<sub>3</sub> в присутствии соединений двухвалентной серы при достаточно высоких температурах (900 °С и выше). Известны примеры получения WS<sub>2</sub> в более мягких условиях из кластерных соединений вольфрама в качестве предшественников. Так, при нагревании тиокомплекса (NH<sub>4</sub>)<sub>2</sub>[W<sub>3</sub>S<sub>4</sub>(S<sub>4</sub>)<sub>3</sub>(NH<sub>3</sub>)<sub>3</sub>] до 380 °C в динамическом вакууме образуется аморфный дисульфид вольфрама с развитой удельной поверхностью [23]. Кроме того, аморфный WS<sub>2</sub> получается термическим разложением (NH<sub>4</sub>)<sub>2</sub>WS<sub>4</sub> в токе водорода при 400 °C [24]. Полученный этим способом дисульфид имеет низкую удельную поверхность (20 м<sup>2</sup>/г) и обладает каталитической активностью. Термолиз металлоорганических соединений, содержащих одноврекарбонильные тетраметилтиомочевины, менно группы И молекулы состава  $[M(CO)_5(SC(NMe_2)_2)]$  и  $[M(CO)_4(SC(NMe_2)_2)_2]$  (M = Mo, W) при 300 °С в атмосфере аргона также приводит к образованию аморфных дисульфидов [25].

Кристаллическая структура. Зеленые кристаллы, которые вырастали в ходе реакции, оказались пригодными для РСА. Строение кластерного катиона  $[W_3S_4(tu)_8(H_2O)]^{4+}$  показано на рис. 2. Основные длины связей представлены в табл. 2. Кластерное ядро  $\{W_3S_4\}^{4+}$  состоит из искаженного треугольника  $W_3$ , в котором атомы вольфрама связаны между собой одинарными связями W—W. Среднее расстояние W—W равно 2,7762(4) Å, что заметно длиннее расстояния W—W в анионном оксалатном комплексе  $[W_3S_4(C_2O_4)_3(H_2O)_3]^{2-}$  (2,71—2,73 Å) [26] и близко к длине связи W—W в катионном комплексе с 1,2-бис(диметилфосфино)этаном (dmpe)



Рис. 2. Строение кластерного катиона  $[W_3S_4(tu)_8(H_2O)]^{4+}$  в  $[W_3S_4(tu)_8(H_2O)] \cdot 2H_2O$  (эллипсоиды 50%-й вероятности). Атомы водорода не показаны для ясности

| <i>Рис. 3.</i> Упрощенная диаграмма молекулярных орбиталей для кластеров M <sub>3</sub> Q <sub>4</sub> (M = Mo, W; |  |
|--------------------------------------------------------------------------------------------------------------------|--|
| $Q = S, Se$ ) для идеализированной симметрии $C_{3v}$                                                              |  |

 $[W_3S_4Cl_3(dmpe)_3]^+$  (2,755 Å) [27]. Треугольник  $W_3$  связан с одним шапочным и тремя мостиковыми сульфидными лигандами. Средние значения длин связей  $W_{\mu_3}$ -S и  $W_{\mu_2}$ -S составляют 2,356(2) и 2,302(2) Å соответственно, что сопоставимо, например, с аналогичными значениями в  $[W_3S_4(C_2O_4)_3(H_2O)_3]^{2-}$  (2,34 и 2,30—2,31 Å) и  $[W_3S_4Cl_3(dmpe)_3]^+$  (2,382 Å и 2,289—2,328 Å).

Каждый атом вольфрама в  $[W_3S_4(tu)_8(H_2O)]^{4+}$  имеет искаженное октаэдрическое окружение (без учета связей металл—металл). Координационное окружение двух атомов вольфрама составляют 3 атома серы сульфидных лигандов и 3 атома серы молекул тиомочевины. Третий атом вольфрама окружен тремя атомами серы сульфидных лигандов, двумя атомами серы тиомочевины и одним атомом кислорода воды. Средние значения длин связей W—S(tu) и W—O(H<sub>2</sub>O) составляют 2,5751(2) и 2,229(7) Å соответственно. Для сравнения, расстояние W—O(H<sub>2</sub>O) в анионном комплексе  $[W_3S_4(C_2O_4)_3(H_2O)_3]^{2-}$  существенно короче — 2,19 Å [26]. Следует отметить, что в литературе нет примеров структурно охарактеризованных комплексов вольфрама(IV) с тиомочевиной и ее производными. В упомянутых выше комплексах W(0) с тетраметилтиомочевиной значения длин связей W—S(tu) составляют 2,582 Å ([W(CO)<sub>5</sub>{SC(NMe<sub>2</sub>)<sub>2</sub>}) и 2,568—2,609 Å ([W(CO)<sub>4</sub>{SC(NMe<sub>2</sub>)<sub>2</sub>]) [25].

Электронное строение. Классическая схема молекулярных орбиталей (MO) для кластеров  $M_3Q_4$  (M = Mo, W; Q = S, Se) в идеализированной  $C_{3\nu}$ -симметрии дает по отношению к связи металл—металл 3 связывающих ( $1a_1$  и 1e) и 5 разрыхляющих ( $2a_1$ , 2e, 3e,  $a_2$ ) молекулярных орбиталей (рис. 3) [ 28, 29 ]. Согласно этой схеме кластеры  $M_3Q_4$  являются стабильными в том случае, когда 6 электронов металла доступны для заполнения низкорасположенных металлцентрированных орбиталей  $1a_1$  и 1e (верхние занятые молекулярные орбитали, B3MO), что соответствует трем одинарным связям M—M.

Электронная природа внешних лигандов, окружающих кластерное ядро, может существенным образом повлиять на характер граничных орбиталей в этой схеме связывания. К примеру, в электронной структуре [Mo<sub>3</sub>S<sub>4</sub>(Dtp)<sub>2</sub>( $\mu$ -AcO)Cl(Me<sub>2</sub>Bipy)], в которой содержится одна молекула 4,4'-диметил-2,2'-бипиридила, характер нижней свободной молекулярной орбитали (HBMO) меняется на преимущественно бипиридил-центрированный, что объясняется наличием низколежащих разрыхляющих  $\pi$ -орбиталей в системе бипиридила [ 30 ]. Характер разрыхляющей HBMO (орбиталь 2 $a_1$  в классической схеме) важен, поскольку именно эта молекулярная орбиталь определяет возможность восстановления трехъядерных кластеров данного типа.

Для выяснения влияния координированной тиомочевины, которая является хорошим  $\sigma$ -донором, на характер граничных орбиталей в классической схеме связывания М—М в трехъядерных кластерах мы провели квантово-химические расчеты методом DFT для  $[W_3S_4(tu)_8(H_2O)]^{4+}$ . Оптимизированные значения геометрических параметров представлены в табл. 2. Рассчитанные межатомные расстояния удовлетворительно согласуются с экспериментальными кристаллографическими данными.

На рис. 4 приведена схема B3MO и HBMO, а также их вид. Полученная картина электронного строения  $[W_3S_4(tu)_8(H_2O)]^{4+}$  отличается от классической схемы связывания в кластерах  $\{M_3Q_4\}^{4+}$ . Отличие состоит в том, что молекулярные орбитали тиомочевины вносят сопоставимый вклад в B3MO наряду с атомными орбиталями вольфрама. Вклад от 5*d*-AO вольфрама составляет 32,8 %, вклад от 2*p*-AO серы сульфидных лигандов — 7,5 % и вклад от 2*p*-AO серы и азота молекул тиомочевины — 46,4 %. Следовательно, эта молекулярная орбиталь отвечает не только за связывание М—М в кластерном ядре (как в классической схеме), но и за связывание М—S(tu) между металлом и молекулами тиомочевины. Вклад орбиталей тиомочевины в B3MO-1 также высок и составляет 49,6 %, он уменьшается в B3MO-2 (28,6 %). HBMO преимущественно состоит из 5*d*-AO вольфрама (51,4 %) и 2*p*-AO серы сульфидных лигандов (38,1 %), что согласуется со схемой, приведенной на рис. 3, в которой роль HBMO выполняет

 $\frac{1017}{-a_2}$ 

Зе

2e

2a

1e

1a



*Рис. 4.* Схема расположения молекулярных орбиталей для  $[W_3S_4(tu)_8(H_2O)]^{4+}$ . Внешний вид ВЗМО и НВМО

разрыхляющая (в отношении связи металл—металл) металлоцентрированная орбиталь (2*a*<sub>1</sub> для *C*<sub>3ν</sub>-симметрии).

Для сравнения мы провели расчеты для аналогичного комплекса молибдена  $[Mo_3S_4(tu)_8(H_2O)]^{4+}$  и обнаружили схожую картину. ВЗМО также имеет смешанный характер: вклад от 5*d*-AO Mo 20,9, от 2*p*-AO S(S<sup>2-</sup>) 4,9, от 2*p*-AO S и N тиомочевины — 57,7 %. НВМО, как ожидалось, носит преимущественно металлоцентрированный характер: 5*d*-AO Mo (67,2 %), 2*p*-AO S(S<sup>2-</sup>) (19,6 %).

#### ЗАКЛЮЧЕНИЕ

Получен новый трехъядерный кластер вольфрама, координированный молекулами тиомочевины, состава  $[W_3S_4(tu)_8(H_2O)]Cl_4 \cdot 2H_2O$ , строение которого установлено методом PCA. Это первый пример структурно охарактеризованного комплекса вольфрама(IV), координированного тиомочевиной. Комплекс стабилен на воздухе, растворяется в органических растворителях и может служить исходным реагентом для получения комплексов  $W_3S_4$  с другими органическими лигандами по реакциям лигандного обмена. Нагревание  $[W_3S_4(tu)_8(H_2O)]Cl_4 \cdot 2H_2O$  до 700 °C в инертной атмосфере приводит к образованию дисульфида вольфрама, что можно рассматривать как новый способ получения  $WS_2$  из кластерного соединения в качестве предшественника. Установлено электронное строение комплекса  $[W_3S_4(tu)_8(H_2O)]^{4+}$ , особенностью которого является смешанный характер B3MO, отвечающих как за связывание металл—металл, так и за связывание между металлом и внешним лигандом (тиомочевиной).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 15-03-02775-а).

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Shibahara T. // Coord. Chem. Rev. 1993. 123. P. 73.
- 2. Llusar R., Uriel S. // Eur. J. Inorg. Chem. 2003. 7. P. 1271.
- Sokolov M.N., Fedin V.P., Sykes A.G. In: Comprehensive Coordination Chemistry II. V. 4. / Eds. J.A. McCleverty, T.J. Meyer. – N. Y.: Elsevier, 2003. – P. 761 – 823.
- 4. Вировец А.В., Гущин А.Л. и др. // Журн. структур. химии. 2006. 47, № 2. С. 332.
- 5. Федоров В.Е., Миронов Ю.В. и др. // Успехи химии. 2007. 76, № 6. С. 571 595.
- Hernandez-Molina R., Sokolov M.N., Abramov P.A. In: Molybdenum / Eds. A.A. Holder. N. Y.: Nova Science Publishers, Inc., 2013. P. 105 139.
- 7. Gushchin A.L., Sokolov M.N., Peresypkina E.V. et al. // Eur. J. Inorg. Chem. 2008. 25. P. 3964.
- 8. Gushchin A., Llusar R., Recatala D., Abramov P. // Russ. J. Coord. Chem. 2012. 38. P. 173.
- 9. Recatalá D., Llusar R., Gushchin A.L. et al. // ChemSusChem. 2015. 8. P. 148.
- 10. Recatalá D., Llusar R., Galindo F. et al. // Eur. J. Inorg. Chem. 2015. 11. P. 1877.
- 11. Recatalá D., Llusar R., Barlow A. et al. // Dalton Trans. 2015. 44. P. 13163.
- 12. Gushchin A.L., Laricheva Yu.A., Abramov P.A. et al. // Eur. J. Inorg. Chem. 2014. 25. P. 4093.
- 13. Fedin V.P., Sokolov M.N., Gerasko O.A. et al. // Inorg. Chim. Acta. 1989. 165. P. 24.
- 14. *Накамото К*. Инфракрасные спектры неорганических и координационных соединений / Под ред. Ю.А. Пентина М.: Мир, 1991.
- 15. Proteus Software for Thermal Analysis, NETZSCH Selb, 2005.
- 16. Powder Diffraction File International Centre for Diffraction Data, Pennsylvania, USA, 2010.
- 17. Sheldrick G.M. SADABS, Bruker AXS. Germany, University of Goettingen, 1990 2007.
- 18. Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Cryst. 2011. 44. P. 1281.
- 19. Baerends E.J. ADF2013, release 2013.01.c. The Netherlands, Vrije Universiteit, Amsterdam, 1995.
- 20. Van Lenthe E., Baerends E.J. // J. Comput. Chem. 2003. 24. P. 1142.
- 21. Van Lenthe E., Baerends E.J., Snijders J.G. // J. Chem. Phys. 1993. 99. P. 4597.
- 22. Pedrajas E., Sorribes I., Junge K. et al. // ChemCatChem. 2015. 7. P. 2675.
- 23. Fedin V.P., Sokolov M.N., Geras'ko O.A. et al. // Inorg. Chim. Acta. 1990. 175. P. 217.
- 24. Самойлов С.М., Рубинштейн А.М. // Изв. АН СССР, отд. хим. наук. 1957. 10. С. 1158.
- 25. Shupp J.P., Kinne A.S., Arman H.D., Tonzetich Z.J. // Organometallics. 2014. 33. P. 5238.
- 26. Sokolov M.N., Gushchin A.L., Naumov D.Yu. // J. Cluster Science. 2005. 16, N 3. P. 309.
- 27. Cotton F.A., Llusar R. // Inorg. Chem. 1988. 27, N 7. P. 1303.
- 28. Müller A., Jostes R., Cotton F.A. // Angew. Chem., Int. Engl. 1980. 19 P. 875.
- 29. Müller A., Jostes R., Eltzner W. et al. // Inorg. Chem. 1985. 24. P. 2872.
- 30. Гущин А.Л., Ларичева Ю.А., Пирязев Д.А., Соколов М.Н. // Координац. химия. 2014. 40, № 1. С. 8.