2012. Том 53, № 5

Сентябрь – октябрь

C. 872 - 886

UDC 541.6:547.53

CONFORMATIONAL ANALYSIS OF 2-ANTHRYLETHYLENE DERIVATIVES: PHOTOCHEMICAL AND COMPUTATIONAL INVESTIGATION

U. Srinivas¹, P. Arun Kumar¹, Kolupula Srinivas^{2,3}, K. Bhanuprakash², V. Jayathirtha Rao¹

¹Organic Division-II, Indian Institute of Chemical Technology, Hyderabad, India

²Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, India,

e-mail: skolupula@niperhyd.ac.in, ksrinivas07@yahoo.com

³National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, India

Received November, 5, 2011

2-Anthrylethylene derivatives 1E—5E and 1Z are synthesized to study the *cis*—*trans* photoisomerization. Interestingly, unlike 9-anthrylethylene derivatives, 2-anthrylethylene derivatives 1E to 5E do not exhibit E (*trans*) to Z (*cis*) photoisomerization upon direct and triplet sensitization. One-way Z (*cis*) to E (*trans*) photoisomerization of 1Z is found to be very efficient under direct and triplet sensitization conditions, demonstrating the involvement of both singlet and triplet states. 1E—5E exhibits excitation wavelength dependent fluorescence indicating the existence of conformers (rotamers) at room temperature, which is confirmed by fluorescence lifetimes measurements of compounds 1E and 2E. Theoretical studies are carried out at DFT and *ab initio* methodology and the calculated relative energy difference of the conformers is very small; it ranges between $2.9 \text{ kJ} \cdot \text{mol}^{-1}$ to $6.3 \text{ kJ} \cdot \text{mol}^{-1}$ for both ground and excited states.

K e y w o r d s: 2-anthryethylene derivatives, photochemical *cis—trans* isomerization, fluorescence, charge transfer, conformational analysis, theoretical studies.

INTRODUCTION

The photochemical $Z \rightrightarrows E$ (*cis* \rightrightarrows *trans*) isomerization of olefins has been extensively investigated. Much work has been carried out for stilbene and its derivatives [1-18], because of its importance in academia [19, 20], industry [21–24], and biological processes [25–27]. The light-driven E (trans) to Z(cis) isomerization of stilbene and other diarylethylenes has been a subject of active investigation because of fundamental [3, 20] and practical applications [8, 28]. Stilbene undergoes conventional efficient two-way isomerization with a weak fluorescence. Strong fluorescence was observed in transdiarylethenes containing large polyaromatic group such as anthracene, which display only one-way cis-to-trans isomerization [29–32]. Saltiel et al. studied the rotamer dependent E (trans) to Z (cis) isomerization in 2-anthrylethylene derivatives [33-36]. Conformational analysis of the vinyl naphthalenes, naphthylacrylic acid and amide derivatives were carried out by Lewis et al. [37] by means of NOE and Infrared spectroscopy. The rotational isomerization of 2-anthrylethene in the ground and excited states is a subject of interest in photochemistry [38-44]. Rotamers of (E)-2-anthrylethylenes, particularly one-way $Z(cis) \rightarrow E(trans)$ isomerization has been studied using steady-state fluorescence [38, 39], time-correlated single-photon counting (SPC) [39–42], time-gated fluorescence spectroscopy [45, 46], principal component analysis with self-modeling (PCA-SM) [40, 41] and T-T absorption spectroscopy [47, 48]. Despite the literature is abundant with articles related to conformational analysis and or rotamerism [49-58], less attention has been paid towards understanding the photochemical E(trans)—Z(cis) isomerization of 2-anthrylethylenes carrying electron withdrawing end groups. Our continuing efforts in studying the photochemical $Z \leftrightarrows E$ isomerization of various ole-

[©] Srinivas U., Arun Kumar P., Srinivas Kolupula, Bhanuprakash K., Jayathirtha Rao V., 2012

fins [59—62], led us to investigate the photochemical $Z \leftrightarrows E$ isomerization of 2-anthrylethylenes derivatives. So we report herein the synthesis, photoisomerization, fluorescence, conformational analysis and computational studies on 2-anthrylethylenes carrying electron withdrawing end groups. 2-Anthrylethylene derivatives 1*E* to 5*E* did not exhibit $E(trans) \boxdot Z(cis)$ photoisomerization upon direct and triplet sensitization conditions, in contrast to the 9-anthrylethylene derivatives [60—62]. However, we found that isomerization can take place exclusively $Z \rightarrow E$ one-way, and without producing any photocyclized product. Steady state fluorescence and fluorescence lifetime experiments indicated the existance of two rotamers. Furthermore, theoretical studies were conducted to estimate the stability of the rotamers in the ground and excited states.

EXPERIMENTAL

A Perkin-Elmer Lambda-2 UV-Visible spectrometer was used to obtain the absorption spectra. A SPEX Fluorolog 0.22 m fluorimeter was used for fluorescence measurements. Mass spectra were recorded on a VG Micro Mass 7070H instrument. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a FT-200 MHz and FT-300 MHz instrument in CDCl₃ solvent. A Shimadzu LC-8 HPLC system with a CR-8 integrator was used for HPLC analysis. An Applied Photo Physics QYR-20 Quantum Yield Reactor coupled with a 200 W Hg lamp was used to determine the quantum yields. All other chemicals were purchased from Aldrich/Fluka and locally.

7 (-2-anthracenecarbaldehyde): to a cooled solution of 2-cyanoanthracene 6 (2.03 g, 0.01 mol) in 30 ml of dichloromethane was added DIBALH (14 ml, 0.02 mol) at -78 °C. The mixture was stirred for 30 min and at ambient temperature for 5 h. Unreacted DIBALH was quenched with a pinch of NaF/H₂O at 0 °C. The supernatant liquid was filtered, extracted with chloroform (3×15 ml). The combined extracts were dried and evaporated under reduced pressure and purified by column chromatography on silica using AcOEt/Hexane (3:97) as eluent to give anthracene-2-carbaldehyde 7 as yellow solid. Yield: 90 %. *R*_f = 0.75 (AcOEt/Hexane 5:95); m.p.: 204—206 °C; ¹H NMR (200 MHz; CDCl₃): δ 10.21 (s, 1H, CHO), 8.71—8.42 (m, 3H, Ar), 8.20—7.91 (m, 4H, Ar), 7.58—7.41 (m, 2H, Ar); EI-MS (*m/z*) (%): 206 (*M*+) (35), 176 (14), 149 (100), 76 (8).

1*E* (methyl(E)-3-(2-anthryl)-2-propenoate): methyl diethylphosphonoacetate (2 g, 11 mmol) in dry DMF (15 ml) was slowly added to a suspension of NaH (264 mg, 11 mmol) in dry DMF (20 ml) at room temperature and it was slowly treated with 2-anthracene carbaldehyde 7 (2.06 g, 10 mmol) in 10 ml DMF. After 4 h of stirring the reaction mixture was quenched with water and extracted with ether, (4×20 ml). The combined extracts were dried, evaporated and the residue was purified by silica gel column chromatography to give pure 1*E* as yellow solid. Yield: 80%. *R_f* = 0.77 (AcOEt/Hexane: 5/95); m.p.: 194—196 °C; IR (KBr): v^- = 1713, 1620, 1435, 1245, 1050, 986 cm⁻¹; ¹H NMR (200 MHz; CDCl₃): δ 8.40—8.35 (d, 2H, *J* = 10.4 Hz, Ar); 8.04—7.93 (m, 4H, Ar), 7.89—7.81 (d, 1H, *J* = 16.0 Hz, CHCHCO₂Me), 7.65—7.6 (d, 1H, *J* = 8.0 Hz, Ar), 7.48—7.44 (m, 2H, Ar), 6.56— 6.48 (d, 1H, *J* = 16 Hz, CHCO₂Me), 3.83 (s, 3 H, CO₂CH₃), ¹³C NMR (75 MHz; CDCl₃): δ 167.5, 144.8, 132.4, 132.1, 131.7, 131.3, 129.0, 128.1, 127.5, 126.2, 126.1, 125.8, 122.2, 117.7, 51.7; EI-MS (*m*/*z*) (%): 262 (*M*⁺) (100), 232 (20), 202 (31), 141 (18), 101 (5). UV/Vis (n-hexane): λ_{max} (ε): 366 nm (9600 mol⁻¹·dm³·cm⁻¹); Emission maxima λ_{emi} (n-hexane): 434 nm; Quantum yield of fluorescence Φ_{flu} (n-hexane): 0.72. Elemental analysis Calcd (%) for C₁₈H₁₄O₂ (262.3): C, 82.42; H, 5.38; O, 12.20 %. Found: C, 82.87; H, 5.62.

2*E* ((E)-3-(2-anthryl)-2-propenenitrile): a similar procedure, as mentioned above, was adopted using diethylphosphonoacetonitrile to synthesize 2*E*, which gave yellow solid. Yield: 80%. $R_f = 0.5$ (AcOEt/Hexane: 5/95); m.p.: 268—270 °C; IR (KBr): $v^- = 2213$, 1610, 1433, 1329, 1267, 946 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 8.64—8.40 (m, 2H, Ar), 8.0—7.97 (m, 3H, Ar), 7.64—7.47 (m, 5H, Ar), 6.15—6.07 (d, 1H, J = 16.4 Hz, *CHCN*); ¹³C NMR (75 MHz, CDCl₃): δ 149.1, 133.8, 133.6, 131.1, 129.3, 128.1, 126.9, 125.6, 124.3, 117.9, 117.6, 105.2; EI-MS (*m/z*) (%): 229 (*M*⁺) (45), 171 (25), 141 (12), 95 (80), 59 (76), 43 (100); UV/Vis (n-hexane): λ_{max} (ε) = 366 nm (3871 mol⁻¹·dm³·cm⁻¹); Emission maxima λ_{emi} (n-hexane) = 434 nm; Quantum yield of fluorescence Φ_{flu} (n-hexane) = 0.59.

Elemental analysis Calcd (%) for C₁₇H₁₁N (229.2): C, 89.06; H, 4.84, N, 6.11; Found: C, 89.27; H, 5.01; N, 6.28 %.

Z (methyl (*Z*)-3-(2-anthryl)-2-propenoate): bis-(2,2,2-trichloroethyl)-1-carbometh-oxy methyl phosphonate (4.17 g, 10 mmol) in dry DMF (15 ml) was added slowly to a suspension of NaH (264 mg, 11 mmol) in dry DMF (10 ml) at rt. The reaction mixture is cooled to -78 °C and anthracene-2-carbaldehyde 7 (2.06 g, 10 mmol) was added slowly. The reaction mixture is warmed to room temperature, stirred for 3 h and then poured into crushed ice and extracted with ether (3×20 ml). The combined extracts were dried and evaporated under reduced pressure and the residue was purified by column chromatography on silica using AcoEt/Hexane as eluent to give 1*Z* as yellow solid. Yield: 70 %. *R_f* = 0.76 (AcOEt/Hexane: 5/95); m.p.: 162—164 °C; ¹H NMR (200 MHz; CDCl₃): δ 8.43—8.38 (m, 2H, Ar), 8.00—7.93 (m, 4H, Ar), 7.73—7.71 (d, 1H, *J* = 9.1 Hz), 7.47—7.45 (m, 2H, Ar), 7.13—7.11 (d, 1H, *J* = 12.2 Hz, CHCHCO₂CH₃), 6.06—6.04 (d, 1H, *J* = 12.2 Hz, CHCO₂CH₃), 3.85 (s, 3H, CO₂CH₃); UV/Vis (n-hexane): λ_{max} (ε) = 365 nm (8400 mol⁻¹ · dm³ · cm⁻¹); Emission maxima λ_{emi} (n-hexane) = 430 nm; Quantum yield of fluorescence Φ_{flu} (n-hexane) = 0.68.

E ((E)-4-(2-Anthryl)-3-buten-2-one): to a solution of 2-anthraldehyde 7 in 50 ml of acetone 2 ml of 5 % NaOH solution was slowly added at 0 °C and stirred at rt for 2 h. The solvent was removed and the product was extracted with chloroform (3×20 ml). The combined extracts were dried and evaporated under reduced pressure and residue was purified by column chromatography on silica using AcoEt/Hexane as eluent to give 3*E* as yellow solid. Yield: 90%. R_f = 0.6 (AcOEt/Hexane: 10/90); m.p.: 221—223 °C; IR (KBr): v^- = 1725, 1667, 1429, 1358, 1249, 977 cm⁻¹. ¹H NMR (200 MHz; CDCl₃): δ 8.41—8.37 (d, 2H, *J* = 8.8 Hz, Ar), 8.0—7.95 (m, 4H, Ar), 7.77—7.62 (m, 2H, Ar), 7.72—7.6 (d, 1H, *J* = 16.2 Hz, CHCHCOCH₃), 7.5—7.45 (m, 2H, Ar), 6.85—6.77 (d, 1H, *J* = 16.2 Hz, CHCOCH₃), 2.42 (s, 3H, COCH₃); ¹³C NMR (75 MHz; CDCl₃): δ 197.3, 142.3, 133.6, 131.6, 131.1, 130.8, 130.2, 128.3, 127.3, 126.6, 126.3, 125.4, 125.0, 121.5, 26.8; EI-MS (*m*/*z*) (%) 246 (*M*⁺) (20), 231 (14), 202 (18), 149 (100), 43 (75). UV/Vis (n-hexane): $\lambda_{max}(\varepsilon)$ = 364 nm (6410 mol⁻¹· ·dm³·cm⁻¹); Emission maxima λ_{emi} (n-hexane) = 428 nm; Quantum yield of fluorescence Φ_{flu} (n-hexane) = 0.11. Elemental analysis Calcd (%) for C₁₈H₁₄O (246.3): C, 87.78; H, 5.73; O, 6.50 %; Found: C, 88.12; H, 5.86 %.

E ([(E)-2-Nitro-1-ethenyl] anthracene): to the mixture of 2-anthraldehyde 7 (2.06 g, 0.01 mol) and nitromethane (1.2 g, 0.19 mol) in 30 ml of dry dichloromethane 2 drops of piperidine were added. The reaction mixture was refluxed for 8 h. After the completion of the reaction, it was poured into cold water and extracted with dichloromethane (3×20 ml). The combined extracts were dried and evaporated under reduced pressure and the residue was purified by column chromatography on silica using AcoEt/Hexane as eluent to give 4*E* (2.24 g, 90 %) as red solid. Yield: 90 %. *R_f* = 0.4 (AcOEt/Hexane: 10/90); m.p.: 212-214 °C; IR (KBr): v^- = 1630, 1220, 1026, 771 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 8.53—8.43 (d, 1H, *J* = 14.0 Hz, C*H*CHNO₂); 8.3—8.2 (m, 4H, Ar), 8.12—8.0 (m, 2H, Ar), 7.78—7.71 (d, 1H, *J* = 14.1 Hz, C*H*NO₂), 7.6—7.5 (m, 3H, Ar); ¹³C NMR (75 MHz, CDCl₃): δ 139.2, 136.9, 134.2, 133.1, 131.9, 130.8, 129.8, 128.4, 128.2, 127.4, 127.2, 126.8, 126.3, 121.7; EI-MS (*m/z*) (%) = 249 (*M*⁺) (5), 223 (8), 149 (100), 57 (20) 41 (10). UV/Vis (n-hexane): $\lambda_{max}(\varepsilon)$ = 380 nm (5510 mol⁻¹. \cdot dm³ · cm⁻¹); Emission maxima λ_{emi} (n-hexane) = 454 nm; Quantum yield of fluorescence Φ_{flu} (n-hexane) = 0.03. Elemental analysis Calcd (%) for C₁₆H₁₁NO₂ (249.2) C, 77.10; H, 4.45; N, 5.62; Found: C, 77.05; H, 4.32; N, 5.21.

E ((E)-3-(2-anthryl)-2-propen-1-ol): to a cooled solution of compound 1*E* (1.25 g, 5 mmol) in dichloromethane (20 ml), DIBALH (5.3 ml, 7.5 mmol) was added at –10 °C. The reaction mixture was stirred for 30 min at rt. Unreacted DIBALH was quenched with a pinch of NaF/H₂O at 0 °C. The supernatant liquid was filtered, extracted with chloroform (3×15 ml). The combined extracts were dried and evaporated under reduced pressure and purified by column chromatography on silica using AcoEt/Hexane as eluent to give 5*E* as yellow solid. Yield: 80 %. R_f = 0.25 (AcOEt/Hexane: 10/90); m.p.: 232—236 °C; IR (KBr): v^- = 3385, 1617, 1456, 1308, 956 cm⁻¹; ¹H NMR (200 MHz; CDCl₃): δ 8.5 (s, 2H, Ar), 8.1—7.9 (m, 5H, Ar), 7.51—7.42 (m, 4H, Ar), 6.62—6.5 (m, 2H, *CHCH*), 4.49—4.4 (d, 2H, *J* = 6.77 Hz, *CH*₂OH); ¹³C NMR (75 MHz, CDCl₃): δ 144.1, 133.3, 132.4, 131.3, 130.4, 129.2,

127.1, 126.4, 124.6, 123.2, 116.4, 63.8; EI-MS (*m/z*) (%) = 234 (*M*⁺) (21), 215(31), 202 (20), 149 (100); UV/Vis (n-hexane): λ_{max} (ϵ) = 364 nm (6345 mol⁻¹·dm³·cm⁻¹); Elemental analysis Calcd (%) for C₁₇H₁₄O (234.2): C, 87.15; H, 6.02; O, 6.83 %; Found: C, 87.06, H, 5.85.

General procedure for photolysis. A 450 W medium-pressure Hg arc lamp along with suitable filters [63, 64] were used for irradiation. All reactions were monitored by HPLC. An amino silica 5 μ , 0.5×25 cm column was used for HPLC analysis. In a typical experiment, 10 ml of a 0.001 M solution of 1*E*—5*E* and 2*Z*, N₂ bubbled, was used for irradiation. After irradiation, the products were characterrized by comparison with authentic materials. Triplet sensitized reactions were carried out using a mixture of sensitizer (0.01 M) and substrate (1*E*—5*E* and 1*Z* 0.001 M) in MeOH (10 ml), N₂ bubbled, which was irradiated for 1 h using a 450 W Hg lamp with filters.

Fluorescence. A fluorimeter equipped with a 450 W Xe lamp was used for fluorescence studies. Dry solvents were used, and identical conditions were maintained for all the fluorescence measurements. The slit widths were $2 \times 2 \times 2 \times 2$ mm. The emission spectral range was 350—500 nm. All operations were at room temperature. The quantum yield of fluorescence was determined relative to that of 9,10-diphenylanthracene (0.9) [65, 66].

RESULTS

Synthesis of 2-anthrylethylene derivatives. 2-Anthrylethylene derivatives 1E—5E and 1Z were synthesized to study $Z \leftrightarrows E$ photoisomerization, fluorescence, and rotamerism (conformational isomerization). 2-Anthracene carbaldehyde 7 is the key intermediate involved in the synthesis of 1E—5E and 1Z compounds (Scheme 1). Friedel—Crafts phthaloylation on chlorobenzene [67] gave chlorobenzophenone carboxylic acid, which upon treatment with sulfuric acid produced 2-chloroanthraquinone [68]. 2-Chloroanthraquinone was subsequently converted into 2-chloroanthracene [69] and then to 2-cyanoanthracene [70]. 2-Cyanoanthracene was transformed to the key intermediate 2-anthracene carbaldehyde 7 using DIBALH [71] (Scheme 1). Compound 7 was subjected to Horner-Wadsworth-Emmons olefination using suitable phosphonates [72, 73] to obtain 1E and 2E. Condensation of 7 with acetone afforded compound 3E and with nitromethane yielded 4E. Reduction of 1E using DI-BALH provided compound 5E [62]. The 1Z isomer was synthesized by adopting HWE olefination using a modified phosphonate reagent [74], previously reported by us (Scheme 1).

Photochemical $Z \leftrightarrows E$ (*cis* \dashv *trans*) isomerization. 2-Anthrylethylene derivatives $1E _ 5E$ and 1Z were subjected to direct and triplet sensitized $Z \leftrightarrows E$ isomerization. Compound 1Z upon direct excitation and triplet sensitization underwent Z (*cis*) to E (*trans*) isomerization exclusively, within 15 minutes and in quantitative yield. The E (*trans*) isomers of $1_ 5$ did not undergo E (*trans*) to Z (*cis*) isomerization upon direct excitation in various solvents or upon triplet sensitization, unlike 9-anthrylethylene derivatives [60 $_$ 62], but 1Z displayed *one-way* Z (*cis*) to E (*trans*) isomerization (Scheme 2; Table 1). Triplet energy of the sensitizers [63 $_$ 66] used varied between 160 $_$ 184 kJ·mol⁻¹. Prolonged irradiation (~400 nm, 3 h to 12 h) of compounds $1E_$ 5E and 1Z did not yield any new products other than the E (*trans*) isomer, as judged by ¹H NMR.

Absorption and fluorescence studies. Absorption and fluorescence studies were carried out in various organic solvents to understand the ground and excited state properties of 2-anthrylethylene derivatives and the data was compiled in Table 2. The absorption spectra of these derivatives are structured with a vibronic progression characteristic of the anthryl chromophore. This suggests that the excitation energy is largely localized in the anthryl chromophore, whereas 9-anthrylethylenes, carrying electron-withdrawing end groups, exhibited broad absorption in the 300—450 nm region [60-62]. The UV-visible absorption of 1*E*, 2*E*, 3*E*, and 5*E* shows a slight bathochromic shift (2—10 nm) upon increasing the solvent polarity. A prominent bathochromic shift is observed for compound 4*E* in the UV-vis absorption maxima with an increase in solvent polarity (Fig. 1).

The steady state fluorescence spectra of all the compounds were recorded at room temperature in various organic solvents. The fluorescence emission maxima and quantum yield of fluorescence data are given in Table 2; the corresponding fluorescence spectra for four compounds are displayed in Figs. 2—5. The excitation wavelength strongly affects the fluorescence spectra of derivatives 1E—5E.

Scheme 1. Reagents and conditions: (*a*) AlCl₃, 60 °C, 8 h (*b*) conc. H₂SO₄, 135 °C, 6 h (*c*) Zn dust/AcOH/pyridine, 110 °C, 8 h; (*d*) CuCN, pyridine, 220 °C, 24 h; (*e*) DIBALH, -78 °C, 4 h. (*f*) (EtO)₂P(O)CH₂COOMe, NaH, DMF, rt and 4 h; (*g*) (EtO)₂P(O)CH₂CN, NaH, DMF, rt, 4 h; (*h*) Acetone, 5 % NaOH, rt, 2 h; (*i*) nitromethane, piperidine, dichloromethane, 40 °C; (*j*) DIBALH, 0 °C, 6 h. (*k*) NaH, DMF, rt, cool to -78 °C, then add 2-anthraldehyde

Compounds 1*E* to 3*E* and 1*Z* display structured fluorescence in nonpolar solvents, such as hexane and cyclohexane, whereas broad fluorescence emission was observed in polar solvents. Compound 4*E* did not exhibit structured fluorescence both in nonpolar and polar solvents due to the strong electron-withdrawing nature of the nitro group. On the other hand, compound 5*E* displayed structured fluorescence irrespective of the solvent polarity. The fluorescence emission of all these derivatives, except that of 5*E*, were found to be sensitive towards the solvent polarity. The fluorescence quantum yield calculated for compounds 1*E*, 2*E*, and 5*E* is high (Table 2) compared to that of compounds 3*E* and 4*E*,

Scheme 2. Photochemical $Z \leftrightarrows E$ (*cis* \leftrightarrows *trans*) isomerization of compounds 1Z and 1E—5E

Table 1

Compound ^a			Photo-isomer composition ^b			
Compound	rilotolysis	E (trans), %	Z (cis), %			
ССООМе	Direct and Sensitized irradiation	98	2			
	Direct and Sensitized irradiation	100	0			
1E-5E (X = COOMe, CN, COMe, NO ₂ , CH ₂ OH)						

Photochemical Z—E isomerization of 2-anthrylethylene derivatives (1Z and 1E—5E)

^a The nitrogen bubbled 0.001 M solutions were irradiated (15 min for 1*Z* and 3—12 h for 1*E*—5*E*). A 450 W Hg arc lamp (~400 nm) was used and 0.001 M methanol solutions with 0.01 M sensitizers rose Bengal (163 kJ·mol⁻¹), erythrosine (176 kJ·mol⁻¹), and eosine (180 kJ·mol⁻¹) were used for sensitized irradiations (>500 nm, 15 min for 1*Z* and 3—6 h for 1*E*—5*E*) — a 450 W Hg arc lamp with filter solutions was used. ^b Photo isomer composition was analysed by normal phase HPLC and 1H-NMR.

Table 2

Compound ^a	Solvent	λ_{abs}, nm	λ_{flu}, nm	$\Phi_{\rm flu}$
1 <i>E</i>	Cvclohexane	356, 365, 384, 400	406, 434, 458, 490 (s)	0.75
	Hexane	356, 366, 384, 400	406, 432, 458, 486 (s)	0.72
	Chloroform	354, 364, 400	454	0.62
	Acetonitrile	354, 364, 400	460	0.41
	Methanol	354, 364, 382, 402	480	0.66
2 E	Cyclohexane	354, 366, 382, 404	408, 434, 458, 492 (s)	0.61
	Hexane	354, 366, 382, 404	410, 436, 462, 490 (s)	0.59
	Chloroform	354, 366, 382,406	455	0.40
	Acetonitrile	354, 366, 382, 406	456	0.41
	Methanol	354, 366, 382,406	462	0.57
3 E	Cyclohexane	366, 382, 404	386, 410, 430, 453 (s)	0.14
	Hexane	364, 382, 404	385, 406, 428, 452 (<i>s</i>)	0.11
	Chloroform	366, 384, 408	476	0.22
	Acetonitrile	356, 386, 410	483	0.18
	Methanol	356, 386,406	536	0.12
4 <i>E</i>	Cyclohexane	362, 372, 402, 426	451	0.031
	Hexane	360, 376, 426	454	0.03
	Chloroform	362, 380, 434	595	0.14
	Acetonitrile	360, 376, 424	615	0.096
5 E	Hexane	356, 364, 382, 404	386, 397, 422, 450 (s)	0.56
	Acetonitrile	356, 365, 400	399, 416, 450 (s)	0.42
1Z	Hexane	356, 365, 384, 400	406, 430, 457, 486 (s)	0.68
	Acetonitrile	355, 364, 400	460	0.40

UV-Visible absorption and fluorescence of compounds 1E-5E

^a Nitrogen bubbled 0.00001 M solutions were used for measuring the fluorescence at room temperature; quantum yields of fluorescence were determined using 9,10-Diphenyl anthracene ($\Phi_{flu} = 0.9$) as standard⁴⁶; experimental error is ±10 %.

Fig. 1. UV-Visible absorption spectra of $4E (10^{-5} \text{ M})$ in various solvents

Fig. 2. Normalized fluorescence excitation and emission spectra 1E and 1Z in hexane (10^{-5} M)

Fig. 3. Effect of solvent on the fluorescence spectrum of $1E(10^{-5} \text{ M})$

and this may be due to the intersystem crossing leading to a more populated triplet excited state. Fig. 2 shows the emission and excitation spectra of 1E and 1Z, and the fluorescence emission spectrum of cis isomer 1Z is almost similar to the emission spectrum of *trans* isomer 1E. Fig. 3 shows fluorescence of 1E in various solvents. The fluorescence spectrum is broadened and the maximum is shifted to longer wavelength on increasing the solvent polarity. Interestingly, fluorescence emission for these compounds is found to be excitation wavelength dependent suggesting the involvement of the conformers (rotamers) at room temperature. The fluorescence spectra of 1Eand 2E in hexane are displayed in Figs. 4 and 5. The fluorescence spectra were recorded by exciting at different wavelengths ranging from the lower wavelength region (330-400 nm; Fig. 4) to a higher wavelength region (400-420 nm; Fig. 4) for 1E. The fluorescence maxima (λ_{flu}) were observed at 406 nm, 432 nm, and 458 nm when the excitation was performed at 330-400 nm. Interestingly, upon excitation at 410 nm the fluorescence maxima were red shifted to 422 nm, 448 nm, and 478 nm. Similarly, for compound 2E upon excitation at a lower wavelength region (330-400 nm) the fluorescence maxima (λ_{flu}) were observed at 410 nm, 436 nm, and 462 nm (Fig. 5) and upon excitation at 420 nm the fluorescence maxima were found at 424 nm, 448 nm, and 472 nm (Fig. 5). All the other derivatives exhibited similar behavior.

Fluorescence lifetimes.

The

fluorescence lifetime profiles were obtained for 2-anthrylethylene derivatives (1E-2E) using a single photon counting nano-LED spectrofluorimeter (IBH) with a time resolution of around 1 ns. The excitation wavelengths were 374 nm and 439 nm and the fluorescence decay was monitored near the emission maximum (Table 3). Satisfactory fits to a single exponential were obtained for 374 nm excitation in all the solvents for these two compounds, and double exponential fits were found to be the most appropriate for 439 nm excitation in hexane and cyclohexane solvents (Table 3).

Computational methods and conformational analysis. It is very important in terms of materials based on the isomerization to consider the reasons why *s*-trans is more stable than *s*-cis in the

ground as well as the excited state. For this purpose we applied DFT and ab initio tools to evaluate the relative energy difference of the conformers of 1E—5E compounds [75]. Geometry optimizations of 1E-5E molecules (Chart) were performed at HF/6-31G(d,p)and B3LYP/6-31G(d,p)levels of theory for the S_0 state and the CIS/6-31G(d,p) level for the S_1 state without restricting the symmetry. Two potential minima (s-trans and *s-cis* rotamers — rotational axis C_2 — C_{11} bond) are obtained for each molecule. In the *s*-trans rotamer, C_1 and C₁₂ carbon atoms are trans to each other, whereas in s-cis, they are cis to each other. In both S_0 and S_1 states, irrespective of the acceptor, s-trans is found to be stable compared to the *s*-*cis* rotamer (Table 4). The energy difference between these rotamers is very small and it varies from 3.3 kJ \cdot mol⁻¹ to 6.7 kJ \cdot mol⁻¹ for different substituents at various levels of theory. This minor difference was expected due to the steric effects in the single bond rotation. The dipole moment difference of these rotamers computational studies show that none of the molecules are planar in the

Fig. 4. Fluorescence emission spectra of 1E in hexane (10^{-5}) as a function of the excitation wavelength

is also very small in both states. The *Fig. 5.* Fluorescence emission spectra of 2E in hexane (10^{-5}) as a computational studies show that none function of excitation wavelength

ground state, whereas in the first excited state, they are nearly planar. The twist angle between the anthracene plane and the olefinic double bond ranges from 5° to 30°, which is attributed to the interaction of the *ortho* protons of anthracene with the olefinic protons. Selected bond lengths C_2 — C_{11} (R_1),

Table 3

Solvent	Cor	npound	1 E ^a	Compound 2 <i>E</i> ^a		
	λ_{ex}, nm	τ_1 , ns	τ_2 , ns	λ_{ex}, nm	τ_1, ns	τ_2 , ns
Cyclohexane	374	9.38		374	9.90	
	439	4.13	0.080	439	5.72	0.285
Hexane	374	8.01		374	8.54	—
	439	4.02	0.0004	439	5.15	0.112
Chloroform	374	5.40		374	6.24	—
Acetonitrile	374	6.30		374	6.75	
Methanol	374	6.39		374	6.62	

Excitation wavelength dependent fluorescence lifetimes of compounds 1E and 2E

 a Nitrogen bubbled solutions 1.0×10 $^{-5}$ M were used; λ_{em} at 480 nm.

Table 4

Compound	HF/6-31G(<i>d</i> , <i>p</i>)		B3LYP/6-3	1G(<i>d</i> , <i>p</i>)	CIS/6-31G(<i>d</i> , <i>p</i>)		
	$\Delta E, \mathrm{kJ} \cdot \mathrm{mol}^{-1}$	μ, D	$\Delta E, \mathrm{kJ} \cdot \mathrm{mol}^{-1}$	μ, D	$\Delta E, \text{kJ} \cdot \text{mol}^{-1}$	μ, D	
1 E	5.3	2.7 (2.5)	5.6	2.7 (2.5)	5.6	3.2 (2.6)	
2 E	5.2	6.4 (6.5)	5.1	6.1 (6.3)	5.1	6.4 (6.5)	
3 E	5.2	4.3 (4.1)	4.1	3.9 (3.6)	5.5	4.8 (4.3)	
4 E	6.1	7.8 (8.2)	5.4	7.0 (7.2)	6.5	8.9 (9.1)	
5 E	3.2	2.1 (2.0)	4.2	1.6 (1.5)	4.0	2.2 (2.1)	

Relative energies (ΔE) *and dipole moment* (μ)^a *of* 1*E*—5*E*

^a Dipole moment (Debye) of *s*-trans is in parenthesis.

Table 5

Compound		$R_1 (C_2)$	$-C_{11}$)	$R_2 (C_{11})$	$-C_{12}$)	$R_3 (C_{12})$	$-C_{13}$)
CO	inpound	S_0	S_1	S_0	S_1	S_0	S_1
1 E	s-trans	1.465	1.447	1.333	1.343	1.463	1.454
2 E	s-cis s-trans	1.467	1.438	1.333	1.348	1.404	1.452
3 E	s-cis s-trans	1.462 1.458	1.439 1.449	1.333	1.351 1.343	1.476 1.427	1.462
4 E	s-cis s-trans	1.461 1.459	1.441 1.431	1.338 1.328	1.349 1.349	1.429 1.431	1.420 1.404
5 E	s-cis s-trans	1.464 1.473	1.426 1.464	1.327 1.327	1.354 1.331	1.432 1.492	1.401 1.491
	s-cis	1.470	1.457	1.326	1.335	1.493	1.490

Bond Lengths (A^0) of 1E—5E in S_0 and S_1 -state

 C_{11} — C_{12} (R_2), and C_{12} — C_{13} (R_3) of the optimized geometries of **1***E*—**5***E* in the ground state (HF/6-31G (d,p)) and the excited state (CIS/6-31G(d,p)) are presented in Table 5. Bond length alternation is observed from the ground state to the excited state in all the molecules. The C_2 — C_{11} bond length of *s*-trans of the **1***E* molecule is 1.465 Å in the S_0 state and it is reduced to 1.447 Å in the S_1 state. Similar behavior is observed for the C_{12} — C_{13} bond in S_0 and S_1 states, measuring 1.463 Å and 1.454 Å respectively. In contrast, the C_{11} — C_{12} bond in the S_0 state is 1.333 Å and it is elongated to 1.343 Å in the S_1 state. A similar kind of alteration is observed in both rotamers of all the molecules, i.e. in the S_1 state compared to the S_0 state, R_1 is reduced, but R_2 is elongated and again R_3 is reduced.

Computed absorption and emission analysis. UV-Visible absorption data indicate that there is not much ground state and medium interaction in almost all of the substrates (Table 2). The absorption spectrum of these derivatives is structured with a vibronic progression characteristic of the anthryl chromophore confirming that the excitation energy is largely localized on the anthryl chromophore, whereas 9-anthrylethylenes, carrying electron-withdrawing end groups, exhibit broad absorption in the 300—450 nm region [62]. In order to further analyze the nature of charge transfer, we have carried out theoretical calculations of vertical excitations at HF/6-31G (d,p) optimized geometries of all the conformations for each molecule using ZINDO-SCI; the results are shown in Table 6. The selected HOMO and LUMO orbitals of both rotamers in 1*E* and 5*E* molecules are shown in Fig. 6. In the HOMO of 1*E* and 5*E*, the electron density is located mainly on the anthracene moiety. In HOMO-1 of 1*E*, it is spreaded over both anthracene as well as olefinic double bond. But in the case of the LUMO

881

Table 6

	-	1		-	1 0		
Com- pound	Rotamer	State	λ_{abs} , nm	f	Major Transitions (CI)	λ_{em}, nm	f
1 <i>E</i>	s-trans	S_1	409	0.129	H→L (0.63):	438	0.163
		1			H-1 \rightarrow L (-0.14)		
		S_2	359	0.008		368	0.017
		S_3	300	1.388		303	0.291
	s-cis	S_1	431	0.093	H→L (0.63);	462	0.136
					H-1→L (-0.11)		
		S_2	359	0.012		366	0.008
		S_3	307	1.041		312	0.04
2 E	s-trans	S_1	411	0.123	$H \rightarrow L (0.62);$	436	0.143
					H-1→L (-0.16)		
		S_2	359	0.009		366	0.014
		S_3	297	1.432		297	1.325
	s-cis	S_1	437	0.087	H→L (0.63);	463	0.012
					H-1→L (-0.12)		
		S_2	358	0.021		364	0.01
		S_3	305	1.03		306	0.985
3 E	s-trans	S_1	414	0.139	H→L (0.63);	443	0.175
					H-1→L (-0.12)		
		S_2	362	0.011		373	0.018
		S_3	306	1.237		310	1.166
	s-cis	S_1	437	0.1	H→L (0.63);	468	0.145
					H-1→L (-0.12)		
		S_2	362	0.016		371	0.012
		S_3	313	0.986		317	0.982
4 E	s-trans	S_1	451	0.151	H→L (0.64);	489	0.211
					H-1→L (-0.15)		
		S_2	366	0.024		378	0.03
		S_3	326	0.805		331	0.844
	s-cis	S_1	477	0.108	H→L (0.65);	519	0.164
					H-1→L (-0.12)		
		S_2	368	0.021		379	0.028
		S_3	331	0.738		337	0.804
5 E	s-trans	S_1	390	0.082	$H \rightarrow L (0.63)$	422	0.087
		S_2	347	0.001	_	350	0.002
		S_3	282	0.466		289	0.143
	s-cis	S_1	403	0.06	H→L (0.64)	438	0.078
		S_2	345	0.01		351	0.007
		S_3	286	0.129	—	294	0.017

Computed electronic absorption and emission spectra of 1E-5E

Coefficients indicated in parentheses; H indicates HOMO and L indicates LUMO.

Fig. 6. Frontier molecular orbital pictures of 1E & 5E

of 1E, the electron density is located all over the molecule, i.e. it is extended to the acceptor also. In contrast, for 5E the reorganization of the electron density is observed within the anthracene and olefinic bond. Computed electronic excitation values are in good agreement with the experimental results. Computed electronic absorption of the 1E molecule is 409 nm and 431 nm for s-trans and s-cis rotamers respectively. Absorption analysis is carried out to know the transitions responsible for the absorption maxima presented in the same table. Table 6 illustrates that the mixture of transitions (HOMO to LUMO, HOMO-1 to LUMO) is responsible for the observed absorption maxima in both s-trans and s-cis of the 1E molecule. This reveals that charge transfer in 1E takes place from the donor groups (anthracene) to the acceptor (end) groups. The calculated absorption maxima are in good agreement with experimentally observed 400 nm in hexane. Owing to the interconversion between two rotamers at room temperature average (single) absorption maxima are observed experimentally. The second and third transitions are 359 nm, 300 nm and 359 nm, 307 nm for s-trans and s-cis rotamers respectively, which is slightly overestimated compared to the experimental results i.e. 380 nm and 360 nm for S_2 and S_3 transitions. This is attributed to the calculations being carried out in the gas phase, whereas the experimental results are obtained in the solvent environment (condensed media). For the 3E molecule, the calculated S_1 , S_2 , S_3 transitions are 414 nm, 362 nm, and 306 nm for *s*-trans and 437 nm, 362 nm, 313 nm for the s-cis rotamer, which coincides with experimental 404 nm, 382 nm, and 366 nm. Similarly, the calculated absorption values for s-trans and s-cis of 4E—5E molecules are also in good agreement with the experimental results. For all the molecules except for 5E the major (HOMO to LUMO) and minor transitions (HOMO-1 to LUMO) are combinedly responsible for the observed absorption maxima. In the case of the 5E molecule, only one transition, i.e. HOMO to LUMO, is responsible for the absorption maxima of both rotamers. This discrepancy can be explained by considering their end groups, which are acceptors in 1E—4E molecules, but donors in the 5E molecule. Hence, the absorption maxima of the 5E molecule is slightly blue shifted compared to the other molecules (1E-4*E*) and the HOMO-1 to LUMO transition disappears.

DISCUSSION

The red shift observed in the emission maxima (fluorescence solvatochromism) [76, 77] for compounds 1E—4E by changing the solvent polarity indicates that the singlet excited state has some amount of charge transfer or polar character [78]. Frontier Molecular Orbital analysis (Fig. 6) reveals

ЖУРНАЛ СТРУКТУРНОЙ ХИМИИ. 2012. Т. 53, № 5

that the partial charge transfer occurs from the donor to the acceptor when it is excited for 1E-4Emolecules. This is also observed in the geometry of S_1 vs. S_0 where single and double bond alteration occurred. From the solvent effects it can also be concluded that the molecule is polarized in the excited state, and hence, it exhibits different interactions with nonpolar and polar solvents. In contrast, compound 5E did not exhibit fluorescence solvatochromism and this infers the non-involvement of the charge transfer excited state, which is due to the lack of electron- withdrawing acceptor groups, and the same is noticed in the frontier molecular orbital of 5E (Fig. 6). The fluorescence maxima (λ_{flu}), for compound 1*E* were observed at 406 nm, 432 nm, and 458 nm upon excitation at 330-400 nm. When the same compound was subjected to excitation at 410 nm, different fluorescence maxima were observed at 422 nm, 448 nm, and 478 nm (Fig. 4). The two different fluorescence emission spectra correspond to the two rotamers, because of different absorptivities at the given λ of excitation. Similar excitation wavelength dependent fluorescence emission is observed for the other molecules (Fig. 5). The computed emission spectra of the 1E molecule (438 nm for s-trans and 462 nm for the s-cis rotamer) are in good agreement with the experimental results (Fig.4; Table 6). This is further supported by the fluorescence lifetime data recorded (Table 3) where biexponential decay becomes prominent at λ_{exci} of 439 nm. The excitation at 374 nm provides single exponential decay (Table 3) for compounds 1E and 2E, and this indicates the selective population of the excited rotamer (Scheme 3). Interconversion of the excited rotamers (Scheme 3) is predicted as not a feasible process, according to the NEER principle. These excited rotamers do not undergo E - Z isomerization, but exhibit only fluorescence (Scheme 3). A comparison of both experimental and theoretical results reveals that two rotamers (Chart 1) exist in the excited state. These rotamers have different first lowest excited states, and hence, it is reflected in fluorescence emission.

Scheme 3. Excited state profile of compound 1E

Chart 1. List of molecules and corresponding rotamers

CONCLUSIONS

In conclusion, 2-anthrylethylene derivatives (1E—5E and 1Z) were synthesized to study photochemical Z(cis)—E(trans) isomerization. All the derivatives did not undergo E(trans) to Z(cis)isomerization upon direct and triplet sensitization. But compound 1Z exhibited efficient one-way Z(cis) to E(trans) isomerization upon direct and sensitized irradiation. The UV-Visible absorption spectra of 1*E*, 2*E*, 3*E*, and 5*E* displayed a slight bathochromic shift (2—10 nm) upon changing the solvent polarity from non-polar hexane to polar methanol. A prominent bathochromic shift of the UV-Visible absorption maximum was observed for compound 4*E* with an increase in the solvent polarity. Compounds 1*E*—4*E* displayed fluorescence solvatochromism due to the polar nature of the singlet excited state. Compounds 1*E*—5*E* exhibited strong dependence of fluorescence on the excitation wavelength due to the presence of two rotamers. Fluorescence decay profiles also indicate the presence of two rotamers in 2-anthrylethylene derivatives 1*E* and 2*E*. Fluorescence life time studies carried out at room temperature revealed that 2-anthrylethylene derivatives 1*E*—5*E* exhibited *s*-trans and *s*-cis rotational isomers. Steady state fluorescence experiments indicated that compounds 1*E*—5*E* exhibited intense emission corresponding to the *s*-trans rotational isomer with shorter λ_{max}^f upon excitation at a lower wavelength region (320—390 nm), and weak emission corresponding to the *s*-cis rotational isomer with longer λ_{max}^f is noticed upon excitation at a higher wavelength region (400—420 nm). Theoretical studies performed also supported the existence of rotational isomers, and the *s*-trans rotamer is more stable than the *s*-cis rotamer.

Acknowledgements. We thank Director, IICT, Project Director, NIPER, and the Head of the Division for the encouraging support. P. Arun Kumar and Kolupula Srinivas thank CSIR-New Delhi and U. Srinivas thanks UGS-New Delhi for fellowships. We thank Prof. A. Samantha for providing life time measurement data.

REFERENCES

- 1. Hammond G.S., Saltiel J., Lamola A.A., Turro N.J., Bradshaw J.S., Cowan D.O., Counsell R.C., Vogt V., Dalton C. // J. Amer. Chem. Soc. 1964. **86**. P. 3197 3217.
- 2. Hammond H.A., DeMeyer D.E., Williams J.L.R. // J. Amer. Chem. Soc. 1969. 91. P. 5180 5181.
- 3. Waldeck D.H. // Chem. Rev. 1991. P. 415 436.
- 4. Gorner H., Kuhn H. // J. Adv. Photochem. 1995. 19. P. 1 117.
- 5. Saltiel J., Sun Y.P. / Eds. Photochromism, Molecular Systems. Elsevier: Amsterdam, 1990.
- 6. Merer A.J., Mulliken R.S. // Chem. Rev. 1969. 69. P. 639 656.
- 7. Mulliken R.S. // J. Chem. Phys. 1977. 66. P. 2448 2451.
- 8. Meier H. // Angew. Chem., Int. Ed. Engl. 1992. 31. P. 1399 1420.
- Simeonov A., Matsuhita M., Juban E.A., Thompson E.H.Z., Hoffmann T.Z., Beuscher IV A.E., Taylor M.J., Peter Wirsching, Wolfgang Rettig, Mc Cusker J.K., Stevens R.C., Miller D.P., Schultz P.G., Lerner R.A., Janda K.D. // Science. – 2000. – 290. – P. 307 – 313.
- 10. Papper V., Likhtenshtein G.I. // J. Photochem. Photobiol A. 2001. 140. P. 39 52.
- 11. Saltiel J., Krishna T.S.R., Turek A.M. // J. Amer. Chem. Soc. 2005. 127. P. 6938 6939.
- 12. Akiu K., Saijo M., Ikegami M., Arai T. // Bull. Chem. Soc. Jpn. 2005. 78. P. 1132 1137.
- 13. Momotake A., Arai T. // J. Photochem. Photobiol. C. 2004. 5. P. 1 25.
- 14. Roberts J.C., Pincock J.A. // J. Org. Chem. 2006. 71. P. 1480 1492.
- 15. Yang J.S., Liau K.L., Tu C.W., Hwang C.Y. // J. Phys. Chem. A. 2005. 109. P. 6450 6456.
- 16. Uda M., Momotake A., Arai T. // Tetrahedron Lett. 2005. 46. P. 3021 3024.
- 17. Schuster D.I., Nuber B., Vail S.A., MacMahon S., Lin C., Wilson S.R., Khong A. // Photochem. Photobiol. Sci. 2003. 2. P. 315 321.
- Tatewaki H., Baden N., Momotake A., Arai T., Terazima M. // J. Phys. Chem. B. 2004. 108. P. 12783 12789.
- 19. *Turro N.J.* / Modern Molecular Photochemistry, The Benzamin, Cummings Publishing Co., Inc., Menlo Park (C.A) London, Amsterdam, 1978.
- 20. Saltiel J., Charlton J.L. in Rearrangement in Ground, Excited states. / ed. By P. deMayo. New York: Academic Press, 1980. **3**. P. 25.
- 21. Kirk-Othner // Encyclopedia of Chemical Technology. 4-th ed. Willey, 1996. 3. P. 25.
- 22. Feringa B.L. // Tetrahedron. 1993. 94. P. 8267 8310.
- 23. Braun A.M., Maurette M.J., Oliveros E. // Photochemical Technology. New York: Wiley, 1991.
- 24. Feringa B.L., van Delden R.A., Koumura N., Geertsema E.M. // Chem. Rev. 2000. 100. P. 1789 1816.
- 25. Balogh-Nair V., Nakanishi K. in Chemistry, Biology of synthetic Retenoids / Ed. by M. Dawson, W. Okamura. – Boca – Ranton: CRC Press, 1990, FL. – P. 147.

- 26. Rao V.J., Derguini F., Nakanishi K., Taguchi T., Hosada A., Hanzawa Y., Kobayashi T., Pande C.M., Callender R.R. // J. Amer. Chem. Soc. – 1986. – 108. – P. 6077 – 6078.
- Liu R.S.H., Shichida Y. // Photochemistry in Organized, Constrained Media. Chapter 18. / Ed. V. Ramamurthy. – New York: VCH Publishers, 1991.
- 28. Irie M. // Chem. Rev. 2000. **100**. P. 1685 1716.
- 29. Arai T., Karatsu T., Sakuragi H., Tokumari K. // Tetrahedron Lett. 1983. 24. P. 2873 2876.
- 30. Hamaguchi H., Karatsu M.T., Arai T., Tokumaru K. // J. Amer. Chem. Soc. 1986. 108. P. 1698 1699.
- 31. Arai T., Tokumaru K. // Chem. Rev. 1993. 93. P. 23 39.
- 32. Becker H.D. / Chem. Rev. 1993. 93. P. 145 172.
- 33. Saltiel J., Tarkalanov N., Sears D.F. Jr. // J. Amer. Chem. Soc. 1995. 117. P. 5586 5587.
- 34. Saltiel J., Zhang Y., Sears D.F. Jr. // J. Amer. Chem. Soc. 1996. 118. P. 2811 2817.
- 35. Saltiel J., Zhang Y., Sears D.F. Jr. // J. Amer. Chem. Soc. 1997. 119. P. 11202 11210.
- 36. Saltiel J., Krishnamoorthy G., Sears D.F. Jr. // Photochem. Photobiol. Sci. 2003. 2. P. 1162 1168.
- 37. Lewis F.D., Liu X. // J. Amer. Chem. Soc. 1999. 121. P. 11928 11929.
- 38. Mazzucato U., Momicchioli F. // Chem. Rev. 1991. 91. P. 1679 1719.
- 39. Fischer G., Fischer E. // J. Phys. Chem. 1981. 85. P. 2611 2613.
- 40. Spalletti A., Bartocci G, Masetti F., Mazzucato U., Cruciani G. // Chem. Phys. 1992. 160. P. 131 144.
- 41. Bartocci G., Mazzucato U., Spalletti A. // Chem. Phys. 1996. 202. P. 367 376.
- 42. *Ghiggino K.P., Skilton P.F., Fischer E.* // J. Amer. Chem. Soc. 1986. **108**. P. 1146 1149.
- 43. Wismontski-Knittel T., Das P.K., Fischer E. // J. Phys. Chem. 1984. 88. P. 1163 1168.
- 44. Arai T., Karatsu T., Sakuragi H., Tokumaru K., Tamai N., Yamazaki I. // Chem. Phys. Lett. 1989. 158. P. 429 434.
- 45. Kang T.J., Etheridge T., Jarzeba W., Barbara P.F. // J. Phys. Chem. 1989. **93**. P. 1876 1881.
- 46. Brearley A.M., Strandjord A.J.G., Flom S.R., Barbara P.F. // Chem. Phys. Lett. 1985. 113. P. 43 48.
- 47. Karatsu T., Yoshikawa N., Kitamura A., Tokumaru K. // Chem. Lett. 1994. P. 381 384.
- 48. Krongauz V., Castel N., Fischer E. // J. Photochem. 1987. 39. P. 285 300.
- Karatsu T., Itoh H., Nishigaki A., Fukui K., Kitamura A., Matsuo S., Misawa H. // J. Phys. Chem. A. 2000. – 104. – P. 6993 – 7003.
- 50. Jacobs H.J., Havinga E. // Adv. Photochem. 1979. 11. P. 305.
- 51. Birks J.B., Bartocci G., Aloisi G.G., Dellonte S., Barigelletti F. // Chem. Phys. 1980. 51. P. 113 120.
- 52. Bartocci G., Ginocchietti G., Mazzucato U., Spalletti A. // Chem. Phys. 2006. 328. P. 275 283.
- 53. Marcotte N., Fery-Forgues S. // J. Photochem. Photobiol. A: Chemistry. 2000. 130. P. 133 138.
- 54. Bartocci G., Spalletti A. // J. Phys. Chem. A. 2002. 106. P. 7068.
- 55. Ciorba S., Fontana F., Ciancaleoni G., Caronna T., Mazzucato U., Spalletti A. // J. Fluorescence. 2009. 19. P. 759.
- 56. Bartocci G., Galiazzo G., Ginocchietti G., Mazzucato U., Spalletti A. // Photochem. Photobiol. Sci. 2004. 3. P. 870.
- 57. Ginocchietti G., Galiazzo G., Mazzucato U., Spalletti A. // Photochem. Photobiol. Sci. 2005. 4. P. 547.
- Barldi I., Benassi E., Spalletti A. // Spectrochim. Acta Part A: Molecular, Biomolecular Spectroscopy. 2008. – 71. – P. 543.
- 59. Bushan K.M., Rao G.V., Soujanya T., Rao V.J., Saha S., Samanta A. // J. Org. Chem. 2001. **66**. P. 681 688.
- 60. *Reddy M.J.R., Rao G.V., Manibhushan K., Reddy M.J.R., Gopal V.R., Rao V.J. //* Chem. Lett. 2001. **3**. P. 186 187.
- 61. *Reddy M.J.R., Srinivas U., Srinivas K., Reddy V.V., Rao V.J.* // Bull. Chem. Soc. Jpn. 2002. **75**. P. 2487 2495.
- 62. Gopal V.R., Reddy A.M., Rao V.J. // J. Org. Chem. 1995. 60. P. 7966 7973.
- 63. Barbara P.F., Jarzeba W. // Adv. Photochem. 1990. 15. P. 1.
- 64. Lippert E.Z., Rettig W., Banacic-Koutecky V., Heisel F., Meihe J. // Adv. Chem. Phys. 1987. 68. P. 1.
- 65. Scaiano J.C. Handbook of Organic Photochemistry; CRC press: Boca Raton, FL, 1, 1989.
- 66. Calvert J.G., Pitts J.N. Jr. // Photochemistry / Eds, Wiley: New York, Chapter VII, 1966.
- 67. *Tanaka K., Miura T., Umezawa N., Urano Y., Kikuchi K., Higuchi T., Nagano T. //* J. Amer. Chem. Soc. 2001. **123**. P. 2530 2536.
- 68. Fairbourne A. // J. Chem. Soc. 1921. 119. P. 1573 1582.
- 69. Traxler J.T. // Syn. Comm. 1977. 7. P. 161 166.
- 70. Gore P.H. // J. Chem. Soc. 1959. P. 1616 1618.
- 71. Marshall J.A., Anderson N.H., Schlicher J.W. // J. Org. Chem. 1970. 35. P. 858 861.

- 72. Wadsworth W.S. // Org. React. 1977. 25. P. 73 145.
- 73. Maryanoff B.E., Reitz A.B. // Chem. Rev. 1989. 89. P. 863 927.
- 74. Reddy A.M., Gopal V.R., Rao V.J. // Ind. J. Chem. 1996. **35B**. P. 312 317.
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A. Jr., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. Gaussian 03 revision B.01, Gaussian, Inc., Wallingford CT, 2004.
- Bartocci G., Masetti U., Mazzucato U., Spalletti A., Orlandi G., Poggi G. // J. Chem. Soc., Faraday Trans. - 1988. - 84. - P. 385 - 399.
- 77. Momicchioli F., Baraldi I., Fischer E. // J. Photochem. Photobiol A. 1989. 48. P. 95 107.
- 78. Reichhardt C. Solvents, Solvent Effects in Organic Chemistry, VCH, Weinhein, 1, 988.