В заключение отметим, что наличие спонтанного излучения в случае адиабатического взаимодействия ($\omega t_0 \gg 1$) уменьшает влияние ангармоничности колебаний на релаксацию двухатомных молекул в среде инертного газа. Относительный вклад спонтанного излучения в процесс дезактивации (термической алюсе радиационной) при заданном $\alpha = \tau_0 / \tau_0$ быстро уменьшается с ростом влияния ангармоничности, т. е. с увеличением параметра адиабатичности, начальной колебательной температуры большинстваых распределения или энергетической координаты пика распределения начального инверсного распределения.

Сравнение классического и квантовомеханического способов расчета показывает, что при описании процессов радиационной дезактивации классический расчет в диффузионном приближении дает достаточно точный результат для систем с $N \gg 1$ ($N \gg 20$); для $N \gg 20$ он предпочтительнее одноканатного приближения квантового расчета. Для процесса радиационной дезактивации начального большинстваых распределения критерием «классичности» системы может служить условие ($\omega_0 kT_0 \ll 1$).

Поступила в редакцию 11/X 1976,
после доработки — 7/1 1977

ЛИТЕРАТУРА

2. М. Н. Сафарьян. ПМФ, 1972, 2, 4.

ТЕРМОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ КИНЕТИКИ ОКИСЛЕНИЯ ЦИРКОНИЯ НА ВОЗДУХЕ

В. А. Гриба, В. И. Розенбанд
(Черноголовка)

Для исследования воспламенения металлов в газообразной окислительной среде необходимо изучение кинетики реактирования металлов с газами. Обычно для этих целей применяются гравиметрические или волюмометрические методы, в которых за протеканием химической реакции следят по изменению веса исследуемого образца или количеству поглощенного газа в изотермических условиях. В последнее время для этих целей применяются некоторые неизотермические термографические методы, основанные на программированном нагревании электрическим током тонких металлических нитей в потоке газообразного окислителя или определению кинетики по данным реакционного разогрева при раздельном предварительном нагреве реагентов [1, 2].

В данной работе на примере реакции окисления циркония на воздухе исследуется кинетика гетерогенной поверхностной реакции для системы металл — газ, используется метод дифференциального термического анализа (ДТА) с применением метода «температурого разбавления» [3]. «Тепловое разбавление», при котором исследуемое вещество помещается в металлический блок-разбавитель, позволяет максимально,
приблизить теплофизические характеристики исследуемого образца к параметрам эталона и исключить большие разогревы, которые могут привести к появлению в ходе реакции пространственной неизотермичности в образце.

Два блока-разбавителя массой 4,2 г, изготовленные из нержавеющей стали X18H9T (один с порошком циркония массой m=0,1 г, а другой с инертной окисью алюминия), помещались в печь установки ПРТ-1000 M, которая позволяла осуществлять программированный линейный нагрев с заданной скоростью. В ходе эксперимента с помощью хромель-алюмелевых термопар измерялась разность температур между блоками ΔT (сигнал ДТА), температура блока с цирконием T и температура стенки печи T0. Сигнал ДТА подавался на прибор Ф-116/1, используемый для усиления малых напряжений, и записывался на самописец КСП-4. Экспериментальные кривые обрабатывались по схеме, приведенной в работе [4]. Окончательные уравнения для расчета скорости тепловыделения q', количества выделившегося тепла q и суммарного теплового эффекта реакции окисления Q имеют следующий вид:

\[
q' = CM \cdot d\Delta T/dt + CM\omega \cdot \Delta T/\Delta T',
\]

(1)

\[
q = CM\Delta T + CM\omega \int_0^t \frac{\Delta T'}{\Delta T'} dt,
\]

(2)

\[
Q = \frac{CM\omega}{m} \int_0^t \frac{\Delta T'}{\Delta T'} dt,
\]

(3)

где C — суммарная теплоемкость блока и инертного вещества; M — суммарная масса блока и инертного вещества; Q — тепловой эффект реакции окисления; m — масса исследуемого вещества; \omega — скорость нагрева; \Delta T' — разность температур между эталоном и стенкой печи.

Коэффициент теплоотдачи, характеризующий теплообмен между блоком и печью, определялся предварительно по величине \Delta T'. Вычисление величин \frac{d\Delta T}{dt} и \int_0^t \frac{\Delta T'}{\Delta T'} dt проводилось с помощью ЭВМ.

Проделав серию экспериментов с разными темпами нагрева, исследуя их рассмотрение время и переход обычным образом от неизотермических кинетических кривых к изотермическим [5], можно получить серию кривых q'(q) при T=const и установить вид кинетического закона. Для общности и сопоставления получаемых результатов с данными других авторов значения q' и q пересчитывались на единицу реакциальной поверхности в предположении, что в используемом диапазоне температур (350—550°C) тепловыделение обусловлено в основном поверхностной реакцией окисления (растворение кислорода в Zr в этом диапазоне температур несущественно [6]), и общее изменение поверхности реакции вследствие выгорания незначительно (глубина выгорания составляет <20%).

В эксперименте использовался цирконий марки М-41, ЦМТУ-3145-52 с фракцией менее 45 мкм. Скорость нагрева составляла 5, 25, 125 и 0,63 град/мин. При этих темпах нагрева перепад температур в блоке диаметром 7 мм на квазистационарном участке составляет менее 0,2°.

Время фильтрации, оцененное по определенному для порошка Zr коэффициенту разтворимости [2], составляет ~1 с. Это позволяет считать, что фильтрационные затруднения отсутствуют, и в реакции участвует вся внутренняя поверхность образца. К такому же выводу приводят данные химического анализа по содержанию кислорода в разных
слой образца в ходе реакции. Полная внутренняя поверхность образца, определенная по методу [7], составляла $3 \cdot 10^2$ см2.

На рис. 1 для различных температур показана зависимость скорости тепловыделения q_0 от количества выделившегося тепла q_0, пересчитанная на единицу реакционной поверхности при сведении неизотермических к изотермическим. С ростом q_0 скорость тепловыделения падает, что свидетельствует о торможении процессов продуктами реакции. Процесс окисления описывается логарифмическим законом, т. е.

$$\lg q_0 = \lg k_1 - k_2 q_0,$$

где константа k_2 определяется по углу наклона прямой, а k_1 — по пересечению продолжения этих прямых с осью ординат.

Константа k_2, характеризующая степень торможения процесса слоем образовавшегося конденсированного продукта реакции, сама зависит от температуры, уменьшаясь с ростом T. Такая зависимость, впервые обнаруженная в [1], является следствием увеличения с ростом температуры диффузионной подвижности частиц, определяющих протекание химической реакции.

Спряжение на рис. 2 в полулогарифмических (аргениновских) координатах кривых $k_2(T)$ позволяет определить вид их температурной зависимости. Окончательный кинетический закон окисления исследуемого порошка циркония на воздухе в диапазоне 350—550°С имеет вид

$$q_0 = k_3(T) e^{-\frac{k_4}{T}}, \text{ кал./(см}^2\cdot\text{с)},$$

где $k_3(T) = 1.9 \cdot e^{-15000/RT}, \text{ кал./(см}^2\cdot\text{с}); k_4(T) = -0.14 \cdot e^{4500/RT}, \text{ см}^2/\text{кал}.$

Аналитический вид закона был получен в работе [1] при изучении электротермографическим методом окисления циркониевой проволоки. Разница в численных значениях обусловлена различной чистотой и технологией изготовления используемых материалов. Ослабление торможения процесса в ходе реакции наблюдалось также при изучении окисления циркона на воздухе гравиметрическим методом [8]. Ниже приведены значения Q, определенные по (3) при различных скоростях нагрева:

<table>
<thead>
<tr>
<th>ω, град/мин</th>
<th>Q, кал/г</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,63</td>
<td>1250</td>
</tr>
<tr>
<td>1,25</td>
<td>1420</td>
</tr>
<tr>
<td>2,5</td>
<td>1130</td>
</tr>
<tr>
<td>5</td>
<td>1150</td>
</tr>
</tbody>
</table>

Данный метод наиболее удобен для изучения кинетики взаимодействия двойных конденсированных безгазовых систем (интерметаллиды, системы металл — неметалл и т. д.), когда обычные гравиметрические и волнометрические методы неприменимы, а использование упомянутых выше неизотермических термографических методов [1, 2] представляет значительные трудности.

Поступила в редакцию 15/IX 1976

117
СКОРОСТЬ ЗВУКА В УДАРНО-СЖАТЫХ ТВЕРДЫХ ТЕЛАХ.
ПОРИСТОЕ ВЕЩЕСТВО

А. П. Рыбаков
(Челябинск)

Воспользовавшись уравнением состояния Мп — Гринхайзена [1], можно получить [2] для ударной адиабаты уравнение с предельным сжатием \(h = 2/(\Gamma_0 + 1) \).

\[
\rho_T = \frac{(h - 1) \rho_x - 2V \cdot E_x}{h - k \cdot V_0/V},
\]

где \(k = V_0/V_0 \) — коэффициент пористости; \(V_0, V_0 \) — начальные удельные объемы пористого и сплошного вещества; \(\rho, E \) — давление и внутренняя энергия; индекс \(g \) означает принадлежность к ударной адиабате; индекс \(x \) — к кривой холодного сжатия.

В уравнении (1) предполагается, что электронные давление и энергия малы, параметр Гринхайзена постоянен (\(\Gamma = \Gamma_0 \)), а начальная энергия вещества \(E_0 \) не учитывается.

Воспользуемся для \(p_T \) формулой (16) из работы [3]. В таком случае для \(E_x \) получим

\[
E_x = \frac{c_0^2}{4\beta} \left[\exp \frac{4\beta}{\sigma} \left(1 - \frac{1}{\sigma} \right) - 1 \right] - \left(1 - \frac{1}{\sigma} \right).
\]

В формуле (2) \(c_0 \) и \(\beta \) — коэффициенты в соотношении между волновой \(D \) и массовой \(m \) скоростью; \(c_0 \) имеет смысл гидродинамической скорости звука в сплошном теле при нормальных условиях; \(\sigma = V_0/V \) — сжатие.

В выражениях для \(p_T \) и \(E_x \) показательную функцию разложим в ряд и удержим в разложении два первых члена. Затем подставим это в уравнение (1) и получим уравнение ударной адиабаты пористого тела

\[
\rho_T = \frac{c_0^2}{V_0} \frac{(h - 1) (\sigma - 1)}{\sigma (h - k\sigma)}.
\]

Волновая скорость связана с давлением и удельным объемом следующим образом: \(D = kV_0 \left[(p)/(kV_0 - V) \right]^{1/2} \). Подставляя \(\rho_T \) из (3), получим

\[
D^2 = c_0^2 \frac{k^2 (h - 1) (\sigma - 1)}{(k\sigma - 1) (h - k\sigma)}.
\]