УДК 662.73+547.992.2+544.723 DOI: 10.15372/KhUR20160316

Сорбция катионов меди нативными и модифицированными гуминовыми кислотами

С. И. ЖЕРЕБЦОВ¹, Н. В. МАЛЫШЕНКО¹, О. В. СМОТРИНА¹, Л. В. БРЮХОВЕЦКАЯ¹, З. Р. ИСМАГИЛОВ^{1,2}

¹Институт углехимии и химического материаловедения Федерального исследовательского центра угля и углехимии Сибирского отделения РАН, проспект Советский, 18, Кемерово 650000 (Россия)

E-mail: sizh@yandex.ru

²Институт катализа им. Г. К. Борескова Сибирского отделения РАН, проспект Академика Лаврентьева, 5, Новосибирск 630090 (Россия)

Аннотация

С использованием методов ИК-Фурье, ¹³С ЯМР-спектроскопии в твердом теле исследована сорбция катионов меди нативными и модифицированными гуминовыми кислотами, полученными из бурых углей Тисульского месторождения Канско-Ачинского бассейна. Определены сорбционные емкости гуминовых кислот. Показано, что модифицирование гуминовых кислот пероксидом водорода приводит к изменению функционального состава и повышению сорбционной емкости. Сорбция катионов меди протекает как по механизму ионного обмена, так и за счет образования комплексов с кислородосодержащими группами и ароматическими фрагментами.

Ключевые слова: нативные и модифицированные гуминовые кислоты, сорбция катионов меди, емкость, ионный обмен

введение

Гуминовые кислоты (ГК) представляют собой сложные природные соединения нерегулярного строения с различной структурой, составом и топологией молекулярных фрагментов. Преобладание в составе ГК низкоили высокомолекулярных соединений с различным содержанием ароматических и алифатических фрагментов, функциональных групп зависит от генезиса сырья, степени его метаморфизма, а также от способа их выделения [1-4]. Гуминовые кислоты высокой степени гумификации отличаются высокой степенью ароматичности, высоким содержанием карбоксильных групп, поликонденсированных и сопряженных структур, органических свободных радикалов, что определяет их высокую химическую реакционную способность [5]. В настоящее время ГК находят широкое применение в различных областях народного хозяйства. Гуминовые кислоты проявляют сорбционные свойства, обусловленные наличием активных функциональных групп, благодаря чему их можно использовать для очистки сточных вод и почв от тяжелых и радиоактивных металлов, нефтяных загрязнений, селективного разделения и извлечения катионов металлов из различных технических смесей [6–9]. Существует предположение, что катионы металлов взаимодействуют с ГК по механизму ионного обмена при одновременном протекании реакций, ведущих к образованию комплексных соединений [10, 11].

Химическое модифицирование может изменить функциональный состав ГК и, следовательно, их сорбционные характеристики. Показано, что обработка ГК пероксидом водорода приводит к повышению в 2–4 раза сорбционной емкости по отношению к катионам цинка [12].

© Жеребцов С. И., Мальшенко Н. В., Смотрина О. В., Брюховецкая Л. В., Исмагилов З. Р., 2016

В данной работе исследована сорбция из водных растворов катионов меди модифицированными H₂O₂ ГК, выделенными из бурых углей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения ГК использовали образцы бурого угля Тисульского месторождения Канско-Ачинского бассейна (БУТС) и его окисленной в пласте формы (БУТСО). Функционально-групповой состав ГК зависит не только от источника ГК, но и от способа их выделения [4, 13]. В данной работе образцы угля обрабатывали натриевой, калиевой щелочью и получали растворы гуматов натрия (ГУМ Na) и калия (ГУМ К) соответственно. Для выделения ГК к растворам ГУМ Na и ГУМ К приливали 10 % раствор соляной кислоты. Выпавшие осадки фильтровали, промывали до рН дистиллированной воды и сущили при 70 °С.

Выход ГК из окисленного в пласте угля в 2-2.5 раза превышает выход ГК из бурого угля. Следует отметить, что выход ГК из ГУМ К превышает выход из ГУМ Na, как для угля БУТСО, так и для угля БУТС. Гуминовые кислоты БУТСО, в отличие от ГК БУТС, характеризуются более высоким содержанием кислорода [12].

Модифицирование ГК проводилось следующим образом: к определенному объему растворов, содержащих 10 г ГУМ К или ГУМ Na, при постоянном перемешивании на магнитной мешалке добавляли по каплям из бюретки пероксид водорода (C = 32 %, V = 5, 10, 15, 30 мл) и далее осаждали соляной кислотой. Полученные осадки отфильтровывали, промывали водой до pH дистиллированной воды, высушивали при температуре 70 °C до постоянной массы.

Для определения сорбционной способности исследуемых образцов навески ГК в 1 г помещали в конические колбы с притертыми пробками, заливали водным раствором нитрата меди (V = 25 мл, C = 0.1 моль/л, рН 4.48) и оставляли до установления равновесия в течение 3 сут при 25 °C. Далее раство-

ТАБЛИЦА 1

Интегральные интенсивности спектральных областей в 13 С ЯМР-спектрах образцов до и после сорбции $Cu^{2+},~\%$

Образцы*	Химический сдвиг, м. д.					
	220-187	187-165	165-145	90-48		
	C=O	COOH	C_{ar} -O	C _{alk} -O		
ГК ГУМ Na БУТС	0.87/0.77	5.36/2.37	10.62/13.13	9.04/5.59		
ГК ГУМ Na БУТС (5)	0.94/0.82	7.05/7.15	8.68/7.91	10.87/4.03		
ГК ГУМ Na БУТС (10)	1.00/1.44	7.50/3.88	8.49/10.57	11.15/3.79		
ГК ГУМ Na БУТС (15)	0.89/1.02	7.53/4.20	8.78/10.32	11.83/3.97		
ГК ГУМ К БУТС	1.04/0.89	5.83/3.13	10.93/12.5	9.08/2.09		
ГК ГУМ К БУТС (5)	1.10/1.03	6.12/2.74	10.01/12.69	11.68/4.46		
ГК ГУМ К БУТС (10)	1.16/1.25	6.27/3.20	10.00/12.08	11.97/4.76		
ГК ГУМ К БУТС (15)	1.24/1.37	6.35/3.53	9.98/12.39	11.96/4.73		
ГК ГУМ Na БУТСО	0.75/1.67	14.55/0	3.80/2.33	3.47/2.44		
ГК ГУМ Na БУТСО (5)	1.54/0.58	8.54/0.81	2.76/2.08	5.81/4.29		
ГК ГУМ Na БУТСО (15)	1.22/0.83	7.36/1.68	2.55/0	6.10/5.26		
ГК ГУМ Na БУТСО (30)	1.07/1.03	8.93/0.86	2.73/0	5.86/2.56		
ГК ГУМ К БУТСО	1.15/0.87	9.11/0.72	3.66/0	5.02/2.34		
ГК ГУМ К БУТСО (5)	1.83/0.82	7.45/0.68	3.33/0	6.36/1.27		
ГК ГУМ К БУТСО (15)	1.69/0.44	8.95/0.45	2.78/0	5.59/1.08		
ГК ГУМ К БУТСО (30)	1.32/1.26	6.14/0.82	2.95/0	6.83/2.33		

Примечание. Первое значение - до сорбции, второе - после сорбции.

*Здесь и табл: 2: в скобках приведен объем H₂O₂, применяемый при модифицировании (в мл).

ры отфильтровывали, осадки промывали небольшим количеством воды, сушили сначала на воздухе, затем в вакуум-сушильном шкафу при температуре 40 °C в течение 5-6 ч до постоянной массы. Содержание катионов меди в исходном и равновесных растворах определяли с помощью трилонометрического титрования. Расчет количества катионов Cu^{2+} , сорбированных ГК, рассчитывали по разности концентраций в исходном и равновесном растворах на 1 г сухого образца.

¹³С ЯМР-спектры высокого разрешения в твердом теле регистрировали на приборе Bruker Avance III 300W по методике кроссполяризации с вращением под "магическим" углом на частоте 75 МГц с частотой вращения образцов 5 кГц.

ИК-спектры снимали на спектрометре с Фурье-преобразованием "Инфралюм-ФТ 801" в таблетках с KBr.

Исходный и равновесные растворы анализировали на содержание протонов с помощью pH-метра Sartorius PP-50.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Гуминовые кислоты характеризуются типичными полосами поглощения ИК-спектров различной интенсивности [14, 15]. В результате модифицирования ГК БУТС при увеличении количества пероксида водорода растут интенсивности полос связи С=О карбоксильных групп (1710 см⁻¹); связи С=О первичных амидов (1620 см⁻¹); связи С-О карбоновых кислот, сложных эфиров, О-Н фенолов (1260 см⁻¹); связи С-О спиртов и эфиров (1100-1030 см⁻¹); водородосвязанных ОНгрупп (3400 см⁻¹). В ИК-спектрах ГК БУТСО, в отличие от спектров ГК БУТС, уменьшается интенсивность полосы 1710 см⁻¹ в процессе обработки пероксидом водорода. Образцы серии БУТСО характеризуются более высоким содержанием кислорода [12].

В табл. 1 приведены данные по интегральным интенсивностям спектральных областей кислородосодержащих групп ¹³С ЯМР-спектров исследованных исходных и модифицированных образцов до и после сорбции катионов меди.

Модифицирование ГК БУТС приводит к увеличению содержания карбонильных (220187 м. д.), карбоксильных (187–165 м. д.) групп и групп, содержащих кислород при алкильном углероде (90–48 м. д.). Для ГК БУТСО растет содержание карбонильных (220–187 м. д.) групп и групп, содержащих кислород при алкильном углероде (108–48 м. д.). Вероятно, при обработке пероксидом водорода ГК серии БУТСО одновременно происходит декарбоксилирование групп СООН, вследствие чего их содержание уменьшается и растет содержание карбонильных и гидроксильных групп по сравнению с исходными ГК.

Изменение состава ГК обусловлено протеканием различных окислительных реакций с участием пероксида водорода. По данным ¹³С ЯМР-спектроскопии, уменьшение содержания одних функциональных групп приводит к увеличению содержания других кислородосодержащих групп.

Для ГК ГУМ Na и ГК ГУМ К серии БУТС наблюдаются небольшие отличия в содержании групп СООН и C_{ar}-O, как исходных, так и модифицированных; для ГК серии БУТСО – в содержании групп СООН и C_{alk}-O. В свою очередь, это отражается на значениях сорбционных емкостей ГК, выделенных из ГУМ К и ГУМ Na (табл. 2).

ТАБЛИЦА	2
---------	---

Сорбционные емн	сости (Е)	гуминовых	кислот
-----------------	-----------	-----------	--------

Обр	разцы	Е, ммоль/г	рН равновесного
			p-pa
гк	ГУМ Na БУТС	0.08	2.03
гк	ГУМ Na БУТС (5)	0.28	2.10
гк	ГУМ Na БУТС (10)	0.27	2.06
ΓК	ГУМ Na БУТС (15)	0.30	2.14
гк	ГУМ К БУТС	0.11	2.04
гк	ГУМ К БУТС (5)	0.33	2.06
ΓК	ГУМ К БУТС (10)	0.30	2.08
гк	ГУМ К БУТС (15)	0.34	2.09
гк	ГУМ Na БУТСО	0.47	3.36
гк	ГУМ Na БУТСО (5)	0.52	2.05
ΓК	ГУМ Na БУТСО(15)	0.67	2.18
гк	ГУМ Na БУТСО (30)	0.49	2.03
гк	ГУМ К БУТСО	0.68	2.62
гк	ГУМ К БУТСО (5)	0.74	2.38
гк	ГУМ К БУТСО (15)	1.05	3.15
гк	ГУМ К БУТСО (30)	0.62	2.23

Примечание. Обозн. см. табл. 1.

Модифицирование повышает сорбционную способность ГК серии БУТС в среднем в 3 раза, серии БУТСО – в 1.5 раза. Максимальное увеличение емкости достигается для ГК при обработке 15 мл H₂O₂. Дальнейшее повышение количества H₂O₂ приводит к снижению емкости (ГК БУТСО).

Уменьшение значений pH равновесных растворов (см. табл. 2) по сравнению с исходным свидетельствует о протекании процесса ионного обмена, т. е. протоны карбоксильных групп ГК обмениваются на катионы меди из внешнего раствора. Гуминовые кислоты с более высоким содержанием карбоксильных групп характеризуются более высокими сорбционными характеристиками по отношению к катионам меди, т. е. емкости ГК серии БУТСО выше, чем ГК серии БУТС.

Снижение интенсивности полос валентных колебаний C=O (1710 см⁻¹) и деформационных колебаний связи O-H (1260 см⁻¹) карбоксильных групп, а также появление полос симметричных валентных колебаний карбоксилатиона (1383 см⁻¹) свидетельствует о протекании ионного обмена в процессе сорбции катионов металлов ГК [12, 16]. Анализ ИК-спектров образцов до и после сорбции катионов меди показывает, что не все карбоксильные группы участвуют в ионном обмене.

Ранее нами было показано [17], что катионы меди сорбируются угольными субстанциями, в том числе и ГК, как за счет ионного обмена, так и за счет образования комплексов с ароматическими фрагментами и различными кислородосодержащими группами. Модифицирование ГК приводит к повышению содержания в их структуре кислородосодержащих групп, способных взаимодействовать с катионами меди не только по механизму ионного обмена, но и с образованием комплексов, в результате чего сорбционная способность повышается. Обнаружено, что при взаимодействии катионов меди с ГК образуются комплексы, в которых с наибольшей вероятностью участвуют фенольные, замещенные фенольные группы и кислородосодержащие алкильные группы в боковых цепях замещенных ароматических колец [18]. Образование комплексов парамагнитных катионов, обладающих свободной координационной вакансией, с различными функциональными

группами ГК может быть причиной снижения интенсивности, уширения и сдвига сигналов в ¹³С ЯМР-спектрах [19]. По изменению интенсивности спектральных областей ¹³С ЯМРспектров ГК до и после сорбции катионов меди (см. табл. 1) можно сделать следующий вывод: для ГК серии БУТС в процессе комплексообразования с наибольшей вероятностью участвуют карбоксильные группы СООН (187–165 м. д.) и кислородосодержащие группы, связанные с алкильной цепочкой С_{аlk}–О (90–48 м. д.). Для ГК серии БУТСО помимо указанных групп существенный вклад в комплексообразование вносят группы С_{аr}–О (165–145 м. д.).

ЗАКЛЮЧЕНИЕ

Окисление пероксидом водорода ГК, полученных из бурых углей, приводит к повышению содержания кислородосодержащих функциональных групп и увеличению сорбционной емкости по отношению к катионам меди.

Уменьшение pH равновесных растворов при сорбции катионов меди ГК, данные ИК-, ЯМР-спектров ГК до и после сорбции Cu²⁺ свидетельствуют о протекании процесса не только по механизму ионного обмена, но и о комплексообразовании.

Работа выполнена с использованием оборудования ЦКП ФИЦ УУХ СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1 Александрова И. В. // Почвоведение. 1993. № 12. С. 47.
- 2 Кухаренко Т. А. Окисленные в пластах бурые и каменные угли. М.: Недра, 1972. 216 с.
- 3 Sivakova L. G., Zherebtsov S. I., Smotrina O. V. // Solid Fuel Chem. 2005. Vol. 39, No. 5. P. 20.
- 4 Юдина Н. В., Тихова В. И. // Химия раст. сырья. 2003. № 1. С. 93.
- 5 Barancîkova G., Senesi N., Brunetti G. // Geoderma. 1997. Vol. 78. P. 251.
- 6 Кинле X., Бадер Э. Активные угли и их промышленное применение. Л.: Химия, 1984. 215 с.
- 7 Kang S., Xing B. // Environ. Sci. Technol. 2005. Vol. 39. P. 134.
- 8 Helal A. A., HelalAly A., Salim N. Z., Rhalifa S. V. // J. Radioanalyt. Nucl. Chem. 2006. Vol. 267, No. 2. P. 363.
- 9 Лиштван И. И., Капуцкий Ф. Н., Янута Ю. Г. // Химия уст. разв. 2006. Т. 14, № 4. С. 391.
- 10 Кошеева И. Я., Чхетия Д. Н., Гецина М. Л. // Электронный научн.-инф. журн. "Вестн. Отделения наук о Земле РАН". 2007. № 1. С. 25.

URL: http://www.scgis.ru/russian/cp1251/hdgggms/1-2007/informbul-1 2007/hvdroterm-30.pdf (Дата обращения 18.04.2016)

- 11 Ringqvist L., Oborn I. // Water Res. 2002. Vol. 36, No. 9. P. 2233.
- 12 Malyshenko N. V., Zherebtsov S. I., Smotrina O. V., Bryukhovetskaya L. V., Ismagilov Z. R. // Chem. Sust. Dev. 2015. Vol. 23, No. 4. P. 451.
- 13 Комиссаров И. Д., Стрельцова И. Н. // Гуминовые препараты: науч. тр. Тюмень: Изд-во ТСХИ, 1971 Т. 14. С. 48.
- 14 Камнева А.И. Химия горючих ископаемых. М.: Химия, 1974. 272 с.
- 15 Шакс И. А., Файзуллина Е. М. Инфракрасные спектры ископаемого органического вещества. М.: Недра, 1974. 131 с.
- 16 Erdogan S., Baysal A., Akba O., Hamamci C. // Polish J. Environ. Stud. 2007. Vol. 16, No. 5. P. 671.
- 17 Zherebtsov S. I., Malyshenko N. V., Bryukhovetskaya L. V., Lyrshchikov S. Y., Ismagilov Z. R. // Solid Fuel Chem. 2015. Vol. 49, No. 5. P. 294.
- 18 Fuentes M., Olaetxea M., Baigorri R. // J. Geochem. Exploration. 2013. Vol. 129. P. 14.
- 19 Гюнтер X. Введение в курс спектроскопии ЯМР. М.: Мир, 1984. 478 с.