2010. Том 51, № 6

Ноябрь – декабрь

C. 1187 – 1199

УДК 546.922:546.98:541.49:547.466

СТЕРЕОИЗОМЕРНЫЕ КОМПЛЕКСЫ Pt(II) С ТРЕОНИНОМ И АЛЛОТРЕОНИНОМ

© 2010 Л.Ф. Крылова¹, Л.М. Ковтунова¹*, Г.В. Романенко², Л.А. Шелудякова³

¹Новосибирский государственный университет

²Учреждение Российской академии наук Институт "Международный томографический центр" СО РАН, Новосибирск

³Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

Статья поступила 4 февраля 2010 г.

Синтезированы геометрические изомеры и диастереомеры бисхелатов Pt(II) с диастереомерными гидроксиаминокислотами — треонином (трео- α -амино- β -гидроксимасляная кислота — CH₃C*H(OH)C*H(NH₂)COOH = ThrH) и аллотреонином (эритро- α -амино- β -гидроксимасляная кислота = alloThrH), содержащими два асимметрических атома углерода C*: *цис-,транс*-[Pt(S-Thr)₂], *цис-,транс*-[Pt(R-Thr)(S-Thr)], *цис-,транс*-[Pt(R-alloThr)(S-alloThr)] (где R, S — абсолютные конфигурации асимметрического атома углерода, связанного с карбоксильной группой). Методом ¹⁹⁵Pt ЯМР спектроскопии изучены последовательные стадии синтеза стереоизомерных комплексов Pt(II) с треонином. Синтезированные комплексы были исследованы методом ЯМР спектроскопии на ядрах ¹H, ¹³C, ¹⁹⁵Pt, методом ИК спектроскопии и рентгеноструктурного анализа.

Ключевые слова: стереоизомеры, комплексы, платина, треонин, аллотреонин, ЯМР спектры, ИК спектры, кристаллическая структура.

введение

К настоящему времени химия Pt(II) с рацемическими аминокислотами исследована систематически [1, 2], в то время как комплексы с оптически активными аминокислотами менее изучены. Интерес к гидроксиаминокислотам в качестве лигандов обусловлен не только их биологической ролью, но и наличием дополнительной функциональной группы (помимо аминои карбоксильной группы), способной к координации.

Еще в 1969 г. Л.М. Волштейн [3] предложил методы синтеза комплексов Pt(II) с рацемическим серином (2-амино-3-гидроксипропионовая кислота = SerH) следующих типов: *цис-*, *mpaнc*-[Pt(Ser)₂] с бидентатно связанными (через NH₂- и COO-группы) лигандами и *mpaнc*-[Pt(SerH)₂Cl₂] с монодентатно связанными (через группу NH₂) SerH.

Позже, в 2003 г. М. Ватабе [4] описал синтез комплексов с оптически активным серином μuc -,mpahc-[Pt(S-Ser)₂]. В качестве реагента для синтеза μuc -[Pt(S-Ser)₂] авторы использовали K₂PtI₄.

Нами в 2006 г. [5] описаны стереоизомерные комплексы Pt(II) с серином *mpahc*-[Pt(S-SerH)₂Cl₂], *mpahc*-[Pt(R-SerH)(S-SerH)Cl₂], *цис-,mpahc*-[Pt(R-Ser)], *mpahc*-[Pt(S-Ser)₂].

Следующим гомологом в ряду β-гидроксипроизводных α-аминокислот является α-аминоβ-гидроксимасляная кислота, имеющая два асимметрических атома углерода и существующая в виде двух диастереомеров: треонин и аллотреонин [6].

Никаких сведений о бисаминокислотных комплексах Pt(II) с треонином и аллотреонином в литературе нет.

^{*} E-mail: gchem@fen.nsu.ru

В данной работе были разработаны пути синтеза и методы выделения твердых фаз *цис-*, *транс-*[Pt(S-Thr)₂], *цис-,транс-*[Pt(R-Thr)(S-Thr)] и *цис-,транс-*[Pt(R-alloThr)(S-alloThr)]. Идентификация синтезированных комплексов проведена с помощью ЯМР (на ядрах ¹H, ¹³C, ¹⁹⁵Pt), ИК спектроскопии, РСА и элементного анализа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез *транс*-[Pt(S-Thr)₂]·4H₂O. Навеску 0,415 г (1 ммоль) K₂PtCl₄ растворяли в 10 мл воды и добавляли к раствору 0,480 г (4 ммоль) S-ThrH в 10 мл воды. Реакционную смесь нагревали на водяной бане в течение 40 мин, поддерживая pH раствора постоянным и равным ~6 путем добавления по каплям 0,5 M раствора КОН. При нагревании цвет реакционной смеси постепенно становился желтым. Раствор оставляли на двое суток. Выпавший осадок отфильтровывали, промывали небольшим количеством воды и сушили при комнатной температуре. Выход: ~50 %. Найдено для *транс*-[Pt(S-Thr)₂]·4H₂O (вычислено для PtC₈H₂₄N₂O₁₀), %: С 19,0 (19,1); H 4,81 (4,80); N 5,61 (5,56); Pt 38,2 (38,8).

Синтез цис-[Pt(S-Thr)₂], цис-[Pt(R-Thr)(S-Thr)]. Навеску 0,415 г (1 ммоль) K₂PtCl₄ растворяли в 8 мл воды и добавляли к 8 мл водного раствора 0,664 г (4 ммоль) KI. Нагревали в течение 20 мин. Навеску 0,238 г (2 ммоль) S-ThrH (для синтеза цис-[Pt(R-Thr)(S-Thr)] использовали рацемический ThrH) растворяли в 4 мл воды, добавляли к раствору тетраиодоплатинита и нагревали в течение 1,5 ч, поддерживая pH ~ 8 путем добавляли в течение 5—10 мин. Навеску AgNO₃ 0,68 г (4 ммоль) растворяли в 5 мл воды, добавляли этот раствор к реакционной смеси и нагревали при 50 °C с перемешиванием в течение 20 мин. Отфильтровывали выпавший осадок AgI. Фильтрат упаривали до 8 мл и добавляли 20 мл этилового спирта. Выпадал осадок солей KCl и KNO₃, который отфильтровали. Из водно-спиртового фильтрата постепенно выпадал осадок солей KCl и KNO₃, который промывали водно-спиртовым раствором (вода: спирт = 1:4) и сушили при комнатной температуре. Выход ~ 30 %. Найдено для μc -[Pt(R-Thr)₂].0,5H₂O (вычислено для PtC₈H₁₆N₂O₆), %: C 22,4 (22,3); H 4,34 (3,74); N 6,11 (6,50); Pt 45,0 (45,2).

Синтез цис-[Pt(R-alloThr)(S-alloThr)]. Навеску 0,415 г (1 ммоль) K₂PtCl₄ растворяли в 8 мл воды и добавляли 8 мл водного раствора 0,664 г (4 ммоль) KI. Нагревали в течение 20 мин. Навеску рацемического alloThrH 0,238 г (2 ммоль) растворяли в 4 мл воды, добавляли к приготовленному раствору тетраиодоплатинита и нагревали в течение 1 ч, поддерживая pH ~ 8 путем добавления по каплям 0,5 M раствора KOH. Затем добавляли 1M раствор HCl до pH ~ 6 и нагревали в течение 5—10 мин. Навеску AgNO₃ 0,68 г (4 ммоль) растворяли в 5 мл воды, добавляли к реакционной смеси и нагревали при 50 °C с перемешиванием в течение 20 мин. Отфильтровывали выпавший осадок AgI. Фильтрат упаривали до 4 мл и добавляли 15 мл ацетона. Выпадал осадок, содержащий соли KCl, KNO₃ и оба диастереомера *цис*-бисхелата, которые отфильтровывали и сушили при комнатной температуре. Выход ~10 %. Найдено для *цис*-[Pt(RalloThr)(S-alloThr)] (вычислено для PtC₈H₁₆N₂O₆), %: C 22,2 (22,3); H 3,77 (3,74); N 6,77 (6,50); Pt 44,1 (45,2).

Синтез *транс*-[Pt(R-Thr)(S-Thr)], *транс*-[Pt(R-alloThr)(S-alloThr)]. Навеску 0,415 г (1 ммоль) K_2 PtCl₄ растворяли в 8 мл воды и добавляли к раствору 0,480 г (4 ммоль) рацемического треонина (или рацемического аллотреонина), растворенного в 8 мл воды. Реакционную смесь нагревали на водяной бане в течение 1 ч, поддерживая pH ~ 6, путем добавления 0,5 M раствора КОН. Затем раствор охлаждали и оставляли при комнатной температуре. Через несколько суток выпадал осадок разнолигандного *транс*-бисхелата. Его отфильтровывали, промывали водой (*транс*-бисхелат с аллотреонином промывали небольшим количеством охлажденной воды) и сушили при комнатной температуре. Выход ~30—40 %. Найдено для *транс*- [Pt(R-Thr)(S-Thr)] (вычислено для PtC₈H₁₆N₂O₆), %: С 22,0 (22,3); Н 3,81 (3,74); N 6,50 (6,50); Pt 44,8 (45,2). Найдено для *mpahc*-[Pt(R-alloThr)(S-alloThr)] (вычислено для PtC₈H₁₆N₂O₆), %: С 21,9 (22,3); Н 4,14 (3,74); N 6,39 (6,50); Pt 44,9 (45,2).

ПРИБОРЫ И ИЗМЕРЕНИЯ

ЯМР спектры регистрировали на приборе Bruker DPX-250 на частотах 250 (¹H), 62,9 (¹³C), 53,6 (¹⁹⁵Pt) МГц и на приборе Bruker Avance III 500 на частоте 500 (¹H) МГц. Для отсчета химических сдвигов в качестве вторичного эталона использовали:

• в спектрах ПМР: в D₂O — химический сдвиг протонов CH₃-групп дополнительно введенного ДМСО (δ = 2,710 м.д.); в ДМСО-d₆ — центральный сигнал остаточных протонов ДМСО (δ = 2,500 м.д.);

в спектрах ¹³С: в D₂O — сигнал дополнительно введенного ДМСО (δ = 39,39 м.д.);
в ДМСО-d₆ — сигнал атома углерода CD₃-группы (δ = 39,60 м.д.);

• химический сдвиг¹⁹⁵Pt измеряли относительно внешнего эталона — 1 М водного раствора Na₂PtCl₆. Спектры¹⁹⁵Pt регистрировали с использованием подавления по протонам.

ИК спектры кристаллических образцов регистрировали на Фурье-спектрометре Scimitar FTS 2000 и Vertex 80 в области 4000—100 см⁻¹. Образцы готовили в таблетках KBr и полиэтилене.

Рентгеноструктурное исследование. Массивы отражений от монокристаллов всех исследованных соединений (бесцветные очень тонкие пластинки) получены на дифрактометре SMART APEX CCD (Bruker AXS) (МоК_а, поглощение учитывали по программе Bruker SADABS, версия 2.10). Структуры решены прямым методом, уточнены полноматричным МНК в анизотропном приближении для всех неводородных атомов, положения атомов Н частично локализованы в разностных синтезах электронной плотности (положения остальных рассчитаны геометрически) и уточнены совместно с неводородными атомами в изотропном приближении по модели жесткой группы. Все расчеты по решению и уточнению структур проводили по комплексу программ Bruker Shelxtl Version 6.14. Необходимо отметить, что кристаллы исследованных комплексов склонны к двойникованию, что представляло особую трудность в выборе кристалла для РСА. Избранные значения длин связей, валентных и торсионных углов приведены в табл. 1. Все данные по структурам исследованных соединений в виде CIF-файлов депонированы в Кембриджском центре кристаллоструктурных данных под следующими номерами: 764955 — *mpahc*-[Pt(S-Thr)(R-Thr)]·H₂O; 764954 — *mpahc*-[Pt(S-Thr)₂]·4H₂O; 764957 — *mpahc*- $[Pt(R-alloThr)(S-alloThr)] \cdot 2H_2O; 764953 - uuc - [Pt(R-Thr)(S-Thr)]; 764958 - uuc - [Pt(S-Thr)_2] \cdot$ $\cdot 0,5H_2O;764956 - \mu c$ -[Pt(R-alloThr)(S-alloThr)] $\cdot 2(CH_3)_2CO.$

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Синтез *транс*-изомеров. Образование *транс*-бисхелата с одинаковыми лигандами *транс*-[Pt(S-Thr)₂] можно представить схемой 1. В качестве реагентов использовали K₂PtCl₄ и S-ThrH (молярное отношение 1:4). Реакцию проводили при pH ~ 6. На первой стадии синтеза происходит внедрение аминокислоты через NH₂-группу с образованием формы I. Отметим, что продукт реакции взаимодействия PtCl₄²⁻ с аминокислотами зависит от двух основных факторов, первым из которых является соотношение скоростей внедрения NH₂CH(R)COO⁻ (v_{Pt-N} — скорость образования связи Pt—NH₂) и замыкания цикла (v_{Pt-O} — скорость образования связи Pt—OCO) [7]. А вторым — кинетический эффект *транс*-влияния (TB) лигандов I⁻ > Cl⁻ > NH₂ > O₂C [8]. В данных условиях (pH ~ 6) $v_{Pt-O} > v_{Pt-N}$ (концентрация COO⁻ больше, чем концентрация непротонированных NH₂-групп), поэтому на второй стадии происходит замыкание аминокислотного цикла через группу COO⁻ с образованием формы II (схема 2).

Далее происходит внедрение второго треонинат-иона. Поскольку $TB(NH_2) > TB(OCO)$, то замещается Cl⁻ион, находящийся в *транс*-положении к аминогруппе, с образованием формы III. После замыкания второго аминокислотного цикла образуется *транс*-бисхелат IV.

Таблица 1

	Соединение							
Связь <i>d</i> Углы ω, φ	$\begin{array}{c} mpa \mu c - \\ [Pt(S-Thr) \cdot \\ \cdot (R-Thr)] \cdot \\ \cdot H_2O \end{array}$	$\begin{array}{c} mpahc-\\ [Pt(S-Thr)_2] \\ \cdot 4H_2O \end{array}$	<i>транс-</i> [Pt(R-alloThr)· ·(S-alloThr)]· ·2H ₂ O	uuc- [Pt(R-Thr)· ·(S-Thr)]	$\begin{array}{c} uuc-\\ [Pt(S-Tr)_2] \\ \cdot 0,5H_2O \end{array}$	<i>uuc</i> -[Pt(R-alloThr)· ·(S-alloThr)]· ·2(CH ₃) ₂ CO		
1	2	3	4	5	6	7		
Pt—O(1)	2,006(2)	2,004(3)	1,986(3)	2,020(3) 2,023(3)	2,009(7) 2,023(7) 2,017(7) 2,032(6)	2,016(6) 2,022(5)		
Pt—N(1)	2,034(3)	2,035(4)	2,041(4)	1,994(4) 2,018(3)	2,019(7) 2,026(8) 2,008(7) 2,031(9)	2,016(5) 2,022(5)		
O(1)—C(1)	1,289(4)	1,285(9)	1,295(6)	1,312(5) 1,290(5)	1,293(12) 1,324(12) 1,340(11) 1,270(12)	1,285(8) 1,287(9)		
C(1)—O(2)	1,232(4)	1,226(8)	1,225(5)	1,211(5) 1,228(5)	1,219(12) 1,220(11) 1,204(13) 1,226(11)	1,233(8) 1,220(8)		
N(1)—C(2)	1,485(4)	1,526(12)	1,496(5)	1,485(5) 1,486(5)	1,480(13) 1,473(13) 1,474(12) 1,482(11)	1,492(8) 1,507(9)		
C(3)—O(3)	1,438(4)	1,424(9)	1,426(7)	1,441(5) 1,417(6)	1,427(12) 1,427(11) 1,450(12) 1,455(13)	1,423(10) 1,414(10)		
O(1)—Pt—N(1)	82,8(1)	80,9(1)	82,6(1)	82,2(1) 82,3(1)	82,2(3) 82,3(3)	82,7(2) 83,1(2)		
O(2)—C(1)—C(2)—N(1)	163,0(3)	-166,4(7)	174,2(4)	-176,3(5) -167,1(4)	-156,9(9) -155,8(9) 169,1(11) -164,3(10)	-167,3(6) 172,8(6)		
O(1)—C(1)—C(2)—N(1)	-21,0(4)	13,3(10)	-5,7(6)	4,0(6) 16,1(5)	27,9(11) 25,9(11) -20,0(14) 14,3(13)	15,7(9) -9,7(9)		
O(2)—C(1)—C(2)—C(3)	36,6(4)	-38,9(8)	-60,7(6)	61,1(6) -43,0(6)	$\begin{array}{r} -31,5(14) \\ -30,5(14) \\ -67,1(15) \\ -34,9(15) \end{array}$	69,3(8) -65,5(8)		

Избранные значения длин связей d (Å), валентных w (град.) и торсионных ф (град.) углов

СТЕРЕОИЗОМЕРНЫЕ КОМПЛЕКСЫ Pt(II) С ТРЕОНИНОМ И АЛЛОТРЕОНИНОМ

Окончание таб						
1	2	3	4	5	6	7
O(1)—C(1)—C(2)—C(3)	-147,4(3)	140,8(8)	119,4(5)	-118,5(4)	153,2(9)	-107,7(7)
				140,3(4)	151,2(9)	112,0(7)
					103,8(11)	
					143,7(10)	
N(1)-C(2)-C(3)-O(3)	-54,9(3)	67,0(9)	-61,1(5)	38,2(5)	37,3(10)	58,1(7)
				51,4(5)	61,1(10)	-56,1(7)
					-37,0(10)	
C(1) $C(2)$ $C(2)$ $O(2)$	(0.9(2))	59 1(9)	174 G(4)	160 4(4)	63,1(10)	170 5(6)
C(1) - C(2) - C(3) - O(3)	09,8(3)	-38,1(8)	1/4,0(4)	100,4(4) 72,3(5)	-87,3(10)	-179,3(0) 178,5(6)
				-72,5(3)	-02,8(10) -159,7(8)	-178,5(0)
					-64.8(11)	
N(1) - C(2) - C(3) - C(4)	68,9(3)	-57,8(10)	60,0(6)	163,6(4)	-81,2(11)	-62,9(8)
				-71,6(5)	-63,7(12)	64,5(8)
					-158,4(8)	
					-57,3(12)	
C(1) - C(2) - C(3) - C(4)	-166,4(3)	177,2(6)	-64,3(6)	-74,2(5)	154,0(10)	59,5(8)
		/		164,7(4)	172,4(10)	-57,9(8)
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	78.8(10)	J- (-)
					174,8(9)	

Для синтеза разнолигандного *транс*-[Pt(R-Thr)(S-Thr)] в качестве реагента использовали рацемический треонин. Реакция с рацемическим ThrH протекает также согласно схеме 1. Полученная твердая фаза продукта реакции (IV) представляла собой индивидуальное соединение — разнолигандный *транс*-[Pt(R-Thr)(S-Thr)], значительно хуже растворимый в воде, чем его диастереомеры *транс*-[Pt(S-Thr)₂] и *транс*-[Pt(R-Thr)₂], которые остаются в растворе.

Схема 1. Синтез *транс*-[Pt(S-Thr)₂]

Схема 2. Синтез *цис*-[Pt(S-Thr)₂]

1191

Синтез *цис*-бисхелатов. Для синтеза *цис*-бисхелата *цис*- $[Pt(S-Thr)_2]$ в качестве реагентов использовали K₂PtI₄ и S-ThrH (молярное отношение 1:2). Реакцию проводили при pH ~ 8. Образование *цис*-бисхелата можно описать схемой 2. На первой стадии происходит замещение I⁻ на треонинат-ион с образование V.

На второй стадии происходит внедрение еще одного треонинат-иона. Поскольку $TB(I) > TB(NH_2)$, то лабилизованным оказывается I⁻, находящийся в *цис*-положении к аминогруппе, поэтому вторая аминокислота замещает лабилизованный иодид-ион с образованием VI. После подкисления и добавления AgNO₃ выпадает осадок AgI и образуется продукт реакции VII.

Следует обратить внимание на то, что синтез разнолигандных *цис*-бисхелатов можно осуществлять двумя способами. Первый из них аналогичен способу получения *цис*-Pt(S-Thr)₂ (схема 2), только в качестве реагента использовался рацемический ThrH. В результате твердая фаза продукта реакции VII содержала только индивидуальный *цис*-[Pt(R-Thr)(S-Thr)], который хуже растворим по сравнению с *цис*-[Pt(S-Thr)₂] и *цис*-[Pt(R-Thr)₂].

Синтез разнолигандного диастереомера с аллотреонином μuc -[Pt(R-alloThr)(S-alloThr)] осуществляли согласно схеме 2, используя в качестве реагента рацемический alloThrH. Но растворимость μuc -[Pt(R-alloThr)(S-alloThr)] оказалась примерно одинаковой с растворимостью μuc -[Pt(S-alloThr)₂] (в отличие от производных с треонином). Выделить небольшое количество разнолигандного диастереомера μuc -бисхелата удалось с использованием ацетона.

Второй способ синтеза разнолигандных диастереомеров *цис*-бисхелатов включает взаимодействие соответствующих *транс*-бисхелатов с рацемической аминокислотой. Впервые способ синтеза *цис*-бисхелатов при взаимодействии *транс*-бисхелатов с аминокислотой был предложен Л.М. Волштейном [1, 3]. Позже нами в [5] этот способ был использован для синтеза ин-

Схема 3. Синтез цис-бисхелатов из транс-бисхелатов

дивидуального разнолигандного диастереомера *цис*-бисхелата с серином. В настоящей работе этот же способ использовали для получения *цис*-[Pt(R-Thr)(S-Thr)] (схема 3). При нагревании *mpaнc*-[Pt(R-Thr)(S-Thr)] с нейтрализованным раствором рацемического ThrH (молярное отношение 1:2) происходит образование форм VIII, IX, X и XI. Отнесение сигналов проводили согласно данным [9, 10]. Сигналы в области $\delta(^{195}\text{Pt}) = -2291$ и -2802 м.д. относятся к формам триаминокислотного [Pt(Thr)(Thr)₂] IX и тетрааминокислотного типа [Pt(Thr)₄] XI соответственно. Сигналы $\delta(^{195}\text{Pt}) = -1994$ м.д. и $\delta(^{195}\text{Pt}) = -2438$ м.д. обнаруживаются только в щелочных растворах и только для гидроксиаминокислотных комплексов. Так, в [5] при синтезе комплексов Pt(II) с серином наблюдали сигнал $\delta(^{195}\text{Pt}) = -2438$ м.д. Поэтому можно предположить, что в данных условиях (сильно щелочной раствор) эти сигналы соответствуют бисаминокислотной и триаминокислотной формам VIII и X соответственно. При этом в VIII один треонинат-анион координирован бидентатно через амино- и карбоксильную группу, а другой треонинат-анион координирован через гидрокси- и аминогруппу. А в X два треонинат-иона координированы монодентатно через аминого и в харбоксильную группу этом цикл образованы монодентатно через аминогруппу.

После добавления HClO₄ до pH ~ 3—4 в растворе сразу же исчезают формы VIII и X и остается практически одна форма IX. Дальнейшее нагревание триаминокислотного комплекса IX приводит к замыканию аминокислотного цикла и образованию смеси диастереомеров *цис*-бисхелатов *цис*-[Pt(S-Thr)₂], *цис*-[Pt(R-Thr)₂] и *цис*-[Pt(R-Thr)(S-Thr)] VII. Выделение твердой фазы разнолигандного диастереомера *цис*-[Pt(R-Thr)(S-Thr)] проводили согласно методике, описанной в экспериментальной части.

Отметим, что для всех диастереомерных *цис*-бисхелатов VII и XII хначения $\delta(^{195}$ Pt) в водных растворах одинаковы. Однако, как показали дальнейшие эксперименты, выделенные индивидуальные диастереомеры в другом растворителе (ДМСО-d₆) имеют заметные отличия $\delta(^{195}$ Pt) (табл. 2)

ИДЕНТИФИКАЦИЯ СПЕКТРОВ

В табл. 2 приведены данные $^1 \rm H, \ ^{13}\rm C$ и $^{195}\rm Pt$ ЯМР спектров стереоизомерных бисхелатов в $D_2\rm O$ и ДМСО-d_6.

¹⁹⁵ Рt ЯМР спектры. Из данных табл. 2 следует, что с помощью ¹⁹⁵ Рt ЯМР спектроскопии можно идентифицировать *цис*- и *транс*-бисхелаты, различие $\delta(^{195}$ Pt) которых составляет ~ 200 м.д., причем $\delta(^{195}$ Pt) *цис*-бисхелатов находится в более сильном поле.

Здесь отметим, что в пределах одного спектроскопического эксперимента точность прибора позволяет отличать формы, различие химических сдвигов которых в ¹⁹⁵Pt ЯМР спектрах составляет более ~5 м.д. Но точность воспроизведения спектров одного и того же образца меньше, что определяется случайными отклонениями (изменение температуры, pH, концентрация и т.п.).

Заметное различие диастереомерных комплексов мы наблюдали только в случае *цис*-изомеров. Кроме того, различие $\delta(^{195}\text{Pt})$ зависит от растворителя. Например, для *цис*-[Pt(S-Thr)₂] и *цис*-[Pt(R-Thr)(S-Thr)] в ДМСО-d₆ различие составляет ~15 м.д., в то время как в D₂O это различие уменьшается. Поэтому в ¹⁹⁵Pt ЯМР спектре смеси диастереомеров *цис*-бисхелатов в ДМСО-d₆ наблюдали два сигнала, а в водном растворе только один сигнал.

В случае диастереомерных *транс*-бисхелатов различие $\delta(^{195}$ Pt) как в ДМСО-d₆, так и в D₂O находится в пределах погрешности измерения, что не позволило нам идентифицировать их по ¹⁹⁵Pt ЯМР спектрам.

ПМР спектры. Наиболее информативными для идентификации стереоизомеров оказались ПМР спектры (см. табл. 2). Из-за неэквивалентности NH₂-протонов координированного треонина [11] в ПМР спектрах бисхелатных комплексов в ДМСО-d₆ наблюдали два сигнала NH₂протонов. В D₂O из-за быстрого дейтерирования сигналы протонов NH₂ и OH отсутствуют.

На рис. 1 в качестве примера приведены ПМР спектры в DMSO-d₆ индивидуальных *цис*-[Pt(S-Thr)₂] (a), *транс*-[Pt(S-Thr)₂] (δ) и ПМР спектр специально приготовленной смеси диастереомеров μuc -[Pt(S-Thr)₂] и μuc -[Pt(R-Thr)(S-Thr)] (*в*). Из рисунка видно, что различие геометрических изомеров проявляется не только на химических сдвигах всех групп протонов, но и в разной мультиплетности двух CH-групп. Так, для μuc -бисхелатов сигнал протона CH-группы, связанной с NH₂-группой, представляет собой квартет (расщепление на CH(OH) и NH₂ с одинаковыми константами спин-спинового взаимодействия ³*J* = 4 Гц), в то время как для *транс*изомера аналогичный сигнал имеет более сложную структуру и представляет собой триплет

Таблица 2

Соетичение	Растворитель	¹⁹⁵ Pt, δ, мд	¹ Н, б, мд				¹³ С, б, мд				
			CH ₃	CH(NH ₂)	CH(OH)	NH ₂	OH	CH ₃	CH(NH ₂)	CH(OH)	COO
транс- [Pt(S-Thr) ₂]	ДМСО-d ₆	-1668	1,12 d	2,95 t×d	4,03 qv×d	4,81 d×d 6,18	5,09 d	20,24	61,32	66,42	184,0
	D_2O	-1651	1,28 d	3,46 d	4,31 q	<u>u×u</u>			—	_	_
$\begin{array}{c} mpahc-\\ [Pt(R-Thr) \\ \cdot (S-Thr)] \end{array}$	ДМСО-d ₆	-1668	1,13 d	2,94 t×d	4,03 qv×d	4,81 d×d 6,17 d×d	5,03 d	20,11	61,19	66,25	184,0
	D_2O	-1651	1,29 d	3,47 m	4,31 q×d	—					
цис- [Pt(S-Thr) ₂]	ДМСО-d ₆	-1857	1,140 d	2,92 q	3,98 s	4,76 d×d 5,81 d×d	5,22 d	20,42	62,82	65,84	182,5
	D ₂ O	-1841	1,28 d	3,44 d	4,30 q×d	6,11** 5,25**		19,19	63,89	67,46	186,8
<i>цис</i> - [Pt(R-Thr)·	ДМСО-d ₆	-1842	1,143 d	2,87	4,03	5,05 5,66	5,25 d	20,43	62,95	65,93	182,8
\cdot (S-Thr)]	D ₂ O	-1836	1,28	3,42	4,31 q×d		—	19,27	63,87	67,53	187,0
<i>транс-</i> [Pt(R-alloThr)· ·(S-alloThr)]	ДМСО-d ₆	-1638	1,20	3,18	3,92	5,08 d×d 6,15 d×d	5,09 d	17,55	60,38	66,75	184,7
	D ₂ O	-1621	1,33 d	3,61 d	4,19 q×d	—		17,17	61,39	67,68	188,6
<i>uuc</i> - [Pt(R-alloThr)·	ДМСО-d ₆	-1795	1,37 d	3,24	4,03 qv×d	5,73 5,28	5,27	16,81	61,90	65,74	183,3
·(S-alloThr)]	D ₂ O	-1805	1,44 d	3,65	4,25 q×d	5,22 5,73		17,09	62,96	67,23	187,2
<i>uuc-</i> [Pt(S-alloThr) ₂]*	ДМСО-d ₆	-1816	1,28 d	3,27	4,00 s	4,94 5,81	5,26	17,12	61,90	65,78	186,0
	D ₂ O	-1805	1,42 d	3,66	4,23 a×d	—		17,11	63,01	67,33	187,0

Данные ¹ H, ¹⁹⁵ Pt и ¹³ C ЯМР спектров для бисаминокислотных комплексов Pt(II) с треонином
и аллотреонином

** Сигналы сразу после растворения образца.

^{*} Данные ЯМР смеси диастереомеров.

дублетов (³*J* = 4 и 7 Гц). Соответственно, сигнал СН-группы, связанной с ОН-группой, для *цис*изомера представляет секстет, а для *транс*-изомера — квинтет дублетов (см. вставки на рис. 1).

На рис. 1, в представлен спектр смеси двух диастереомеров. Видно, что различие диастереомеров наблюдается на сигналах всех групп протонов.

¹³С **ЯМР спектры**. Из данных табл. 2 следует, что различие геометрических изомеров проявляется в области групп СОО, CH(NH₂), CH(OH) и CH₃ и составляет ~1,5 м.д.

Различия диастереомеров *цис*-бисхелатов малы и наиболее явно проявляются в области $\delta(^{13}C)$ групп СОО. Диастереомеры *транс*-бисхелатов не различаются в ^{13}C ЯМР спектрах.

Рис. 1. ПМР спектры в ДМСО-d₆: *а* — *цис*-[Pt(S-Thr)₂], *б* — *транс*-[Pt(S-Thr)₂], *в* — смеси диастереомеров *цис*-[Pt(R-Thr)(S-Thr)] и *цис*-[Pt(S-Thr)₂]

Таблица 3

Данные ИК спектров							
Соединение	ν (N—H) + ν (OH)	$v(C=O) + \delta(NH_2)$	v(Pt—N)	v(Pt—O)			
<i>транс</i> -[Pt(S-Thr) ₂]	3482; 3412; 3372пл; 3231; 3099	1659; 1636; 1590	533, 500	464, 455, 425			
mpanc-[Pt(R-Thr)(S-Thr)]	3469; 3246; 3209пл; 3106	1660; 1629 1553пл	523, 495	468, 440, 426			
<i>uuc-</i> [Pt(S-Thr) ₂]	3394; 3305; 3279; 3264; 3208; 3135	1698; 1659; 1641 1591; 1567; 1551	538; 516	466; 448; 435; 421			
uuc-[Pt(R-Thr)(S-Thr)]	3498; 3330; 3260; 3233пл; 3084	1684; 1645; 1602	530; 490пл.	422			
<i>транс</i> -[Pt(R-alloThr)(S-alloThr)]	3372; 3266; 3212; 3152	1650; 1619	513 ш.	465; 435, 425пл.			

Рис. 2. Строение молекул комплексов

ИК спектры. Твердые фазы синтезированных комплексов были исследованы методом ИК спектроскопии. В табл. 3 приведены данные ИК спектров комплексов в области характеристичных полос групп NH₂ и COO, а также Pt—N и Pt—O.

Для свободных аминокислот ThrH и alloThrH, существующих в виде биполярного иона $NH_3^+RCHCOO^-$, в ИК спектрах наблюдаются широкие интенсивные полосы с максимумами ~3050 см⁻¹, обусловленные валентными колебаниями групп NH_3^+ и OH, образующих водородные связи; в области 1638—1595 см⁻¹ — полосы валентных колебаний $v_{as}(CO)$ групп COO^- , в которые вносят вклад деформационные колебания $\delta_d(NH_3^+)$.

В спектрах комплексов Pt(II) с треонином и аллотреонином присутствуют полосы v(NH) координированных аминогрупп (3500—3100 см⁻¹) и v_{as}(CO) координированного карбоксилатиона (1698—1560 см⁻¹). Координацию треонина и аллотреонина через группы NH₂ и OCO также подтверждают полосы v(Pt—N) (540—520 см⁻¹) и v(Pt—O) (460—420 см⁻¹) (см. табл. 3) [12].

ИК спектры геометрических изомеров обычно отличаются количеством полос поглощения. Так, для комплексов Pt(II) и Pd(II) с глицином *цис*-бисхелаты в области v(NH) и v(CO) имеют больше полос, чем *транс*-бисхелаты [12]. В спектрах бисхелатов Pt(II) с треонином, например *транс*-[Pt(R-Thr)(S-Thr)], в области 3500—3100 см⁻¹ имеется 4 полосы, а в спектре *цис*-[Pt(R-Thr)(S-Thr)] — 5 полос.

Следует обратить внимание на данные ИК спектров комплекса *цис*-[Pt(S-Thr)₂]. Из данных PCA (см. табл. 1 и рис. 2) следует, что кристаллическая решетка *цис*-[Pt(S-Thr)₂] содержит два типа молекул, отличающихся длинами связей и углами между связями. В ИК спектре этого комплекса наблюдается большее количество полос по сравнению с другими *цис*-бисхелатами.

В работе [13] на основании ИК спектров было обнаружено различие диастереомеров комплексов Pd(II) с валином. Различие диастереомеров проявляется и в ИК спектрах *mpanc*-[Pt(R-

Рис. 3. Укладка слоев и строение слоя в кристаллах *цис*-[Pt(R-Thr)(S-Thr)] (*a*, *б*) и *транс*-[Pt(R-Thr)(S-Thr)] (*b*, *c*) соответственно

Puc. 4. Каркасы в структурах μc -[Pt(S-Thr)₂] (*a*), μc -[Pt(R-alloThr)(S-alloThr)] (*b*), mpahc-[Pt(S-Thr)₂] (*b*) и mpahc-[Pt(R-alloThr)(S-alloThr)] (*c*)

Thr)(S-Thr)] и μuc -[Pt(R-Thr)(S-Thr)], в которых число полос меньше, чем в соответствующих спектрах диастереомеров *транс*-[Pt(S-Thr)₂] и μuc -[Pt(S-Thr)₂].

Рентгеноструктурный анализ. Окружение атома Pt — квадрат, образованный донорными атомами N аминогрупп и O двух треонинат-анионов (см. рис. 2). Из рис. 2 видно, что асимметрические атомы углерода, связанные с NH₂-группой, имеют разную абсолютную конфигурацию для разнолигандных диастереомеров как *цис*-, так и *mpaнc*-бисхелатов *цис-,mpaнc*-[Pt(R-L)(S-L)] (L = Thr, alloThrH), в то время как для комплексов *цис-,mpaнc*-[Pt(S-Thr)₂] они имеют одинаковую абсолютную конфигурацию [14].

Молекула комплекса *транс*-[Pt(S-Thr)₂] имеет симметрию C_2 , что приводит к незначительному искажению координационного квадрата — угол между хелатными циклами равен 4,5°, молекулы комплексов *транс*-[Pt(R-Thr)(S-Thr)] и *транс*-[Pt(R-alloThr)(S-alloThr)] центросимметричны. В комплексах *цис*-конфигурации молекулы несимметричны и расположены в общей позиции. Расстояния Pt—O и Pt—N лежат в интервале 1,994(4)—2,041(4) и 1,986(3)—2,023(3) Å соответственно. Расстояние С—O для координированного атома кислорода карбоксилат-иона (средн. 1,297(6) Å) существенно превышает расстояние С—O для некоординированного атома (средн. 1,222(3) Å). Значения хелатных углов N—Pt—O не зависят от конфигурации молекулы и равны 80,9(1)—83,1(2)°.

Отметим, что кристаллическая решетка *цис*-[Pt(S-Thr)₂] содержит два типа молекул, отличающихся длинами связей и углами между связями. В кристаллах молекулы комплексов связаны как между собой, так и сольватными молекулами системой водородных связей в слои (μuc -[Pt(R-Thr)(S-Thr)], mpahc-[Pt(R-Thr)(S-Thr)]) (рис. 3) или каркас (mpahc-[Pt(S-Thr)₂], mpahc-[Pt(R-alloThr)(S-alloThr)], μuc -[Pt(S-Thr)₂], μuc -[Pt(R-alloThr)(S-alloThr)]) (рис. 4).

СПИСОК ЛИТЕРАТУРЫ

- 1. Волштейн Л.М. // Координац. химия. 1975. 1, № 5. С. 595 619.
- 2. Iakovidis A., Hadjiliadis N. // Coord. Chem. Rev. 1994. N 135/136. P. 17 63.
- 3. Волштейн Л.М., Ластушкина Т.Р. // Журн. неорган. химии. 1969. 14, № 2. С. 480 483.
- 4. Watabe M., Kai M., Goto K. // J. Inorg. Biochem. 2003. 97. P. 240 248.
- 5. *Крылова Л.Ф., Матвеева Л.М., Романенко Г.В.* // Журн. структур. химии. 2006. **47**, № 4. С. 670 681.
- 6. *Мецлер Д.* Биохимия. М.: Мир, 1980. Т.1. С. 80.
- 7. *Крылова Л.Ф., Диканская Л.Д., Чупахин А.П. и др.* // Журн. неорган. химии. 1995. **40**, № 3. С. 433 439.
- 8. Волштейн Л.М., Крылова Л.Ф., Беляев А.В. // Журн. неорган. химии. 1973. **18**, № 4. С. 1066 1070.
- 9. Крылова Л.Ф., Павлушко Т.А. // Журн. неорган. химии. 2001. 46, № 6. С. 930 941.
- 10. Priqueler J.R.L., Butler I.S., Rochon F.D. // Appl. Spectr. Rew. 2006. 41. C. 185 226.
- 11. Гюнтер Х. Введение в курс спектроскопии ЯМР. М.: Мир, 1984.
- 12. *Накамото К*. ИК спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. С. 260 262.
- 13. Крылова Л.Ф., Купров И.С. // Журн. неорган. химии. 2003 48, № 8. С. 1288 1298.
- 14. Терней А. Современная органическая химия. Т.1. М.: Мир, 1981.