Геологическое строение и углеводородный потенциал терригенного девона на территории Пермского края

Кожевникова Е. Е.

Аннотация

Работа посвящена изучению особенностей геологического строения и нефтегазоносности девонского терригенного комплекса распространенного на территории Пермского края. Проведена оценка перспектив открытия новых залежей нефтей с использованием количественных критериев для определения масштабов генерации и эмиграции нефтегазоматеринскими толщами изучаемого комплекса. Использован комплексный подход, позволивший проследить все этапы формирования нефтегазоносности терригенного девона. Данный комплекс является самым погруженным из всех промышленных комплексов края, имеет сложное геологическое строение и остается разбуренным меньше других, но при этом именно с ним связывают возможность увеличение ресурсной базы. Соответственно комплексная оценка, учитывающая как количественные критерии, так и генетические параметры является необходимым этапом в ходе дальнейшего планирования геологоразведочных работ. Результаты, полученные при выполнении данной работы, указывают на низкий генерационный потенциал терригенного девона в пределах изучаемой территории. Впервые установлено отсутствие генетической связи между нефтями терригенного девона и органическим веществом данной толщи, но выявлена генетическая связь нефтей изучаемого комплекса с нефтями и органическим веществом верхнедевонско-турнейского нефтегазоносного комплекса. Отмечено, что на месторождениях с залежами в терригенном девоне, как правило, присутствуют залежи нефти и в вышележащем верхнедевонско-турнейском нефтегазоносном комплексе, чаще всего это встречается в зонах распространения бортовой части Камско-Кинельской системы впадин. Наличие разрабатываемых месторождений подтверждает высокую вероятность открытия новых залежей, но с учетом вновь полученных данных возникает необходимость пересмотреть поисковые критерии и проводить геологоразведочные работы на терригенный девон, в первую очередь в районах разведанных месторождений, содержащих залежи нефти в верхнедевонско-турнейском нефтегазоносном комплексе.

Ключевые слова:

Терригенный девон, Пермский край, генерационный потенциал, масштабы эмиграции, нефтегазоматеринские свиты, геохимические параметры, металлопорфирины нефтей

ВВЕДЕНИЕ

Пермский край долгое время занимает ведущие позиции по добыче углеводородов (УВ) среди нефтедобывающих регионов Волго-Уральской нефтегазоносной провинции. Здесь в разрезе осадочного чехла снизу вверх выделяют 7 нефтегазоносных комплексов (НГК): девонский терригенный, верхнедевонско-турнейский карбонатный, нижнесредневизейский терригенный, верхневизейско-башкирский карбонатный, верейский терригенно-карбонатный, каширско-гжельский карбонатный и нижнепермский карбонатный. Основные запасы УВ сосредоточены в верхнедевонско-турнейском, нижнесредневизейском и верхневизейско-башкирском НГК.

Девонский терригенный нефтегазоносный комплекс является самым погруженным из всех и менее всего изученным, но при этом содержит до 20% промышленных залежей нефти. Его изучением занимаются уже несколько десятилетий, но споры об источнике генерации нефтей данных отложений не утихают. Существует несколько мнений: источником являются рифей-вендские отложения [Шаронов, 1971]; генерация проходила за счет собственных нефтематеринских свит [Калачникова и др., 1977; Фрик и др., 2007]; в результате генерации УВ нефтегазоматеринскими свитами данного комплекса, находящимися в пределах Предуральского прогиба [Камалеева, 2014], забывая, что в настоящее время надежно укрепилось представление о полном рассеивании УВ в процессе миграции на расстоянии более 15–20 км [Hantschel, Kauerauf, 2009].

В отношении вышележащих нефтегазоносных комплексов большая часть геологов еще в конце 60-х начале 70-х годов признала области развития доманикитов и доманикоидов верхнедевонско-турнейского возраста, распространенных большей частью в осевой зоне Камско-Кинельской системы впадин (ККСВ), основными зонами генерации УВ. С решением этого вопроса связано успешное открытие многих месторождений в регионе, а открытие залежей в отложениях терригенного девона является скорей случайностью, так на юге края подтверждаемость ресурсов по данному комплексу не превышает 0,3%, хотя район Башкирского свода наиболее изучен по данным бурения.

Работы, проведенные ранее и посвященные нефтегазоносности девонского терригенного НГК [Сташкова и др, 2015], были основаны на литологическом и петрографическом описании образцов керна содержащих органическое вещество (ОВ). Также рассматривалось изменение отдельных геохимических параметров таких как, концентрация битумоида, изотопный состав углерода, содержание металлопорфиринов, соотношение пристан/фитан в нефтях и битумоидах, с учетом немногочисленных определений нефтематеринского потенциала толщи методом пиролиза Rock-Eval.

В данной работе применен комплексный подход, основанный на геофизических, геологических и геохимических данных, позволивших восстановить геологические условия образования отложений и масштабы генерации УВ девонского терригенного нефтегазоносного комплекса на территории всего Пермского края. Впервые для территории края применена современная технология выделения нефтяных систем, освещенная в ряде зарубежных изданий [Мадооп, Dow, 2012]. Она базируется на органической (осадочно-миграционной теории) происхождения нефти, на которой в настоящее время основана вся успешная мировая практика поисковых работ на нефть и газ.

МЕТОДЫ ИССЛЕДОВАНИЯ

В работе информация использована 0 мощностях стратиграфических подразделений, описание керна, данные о концентрациях органического вещества и геохимических параметрах нефтей и ОВ. Выделение нефтяных систем является примером комплексирования геологических, геохимических и геофизических исследований при нефтегазогеологическом районировании и поисковых работах. Так как по современным представлениям [Magoon, Dow, 2012] «нефтяная система» – это комплекс отложений определенной области развития нефтегазоносного бассейна, связанный проявлением процессов формирования нефтегазоносности. Она включает нефтегазоматеринские свиты, пути миграции углеводородов, породы-коллекторы, флюидоупоры и ловушки, а также контролируется благоприятным сочетанием их появления в геологическом времени и пространстве. Данная работа позволила впервые выделить элементы нефтяной системы для девонского терригенного нефтегазоносного комплекса Пермского края.

Представленная работа резюмирует основные результаты, полученные в период изучения автором терригенного девона на юге Пермского края с 2011 по 2014 гг. и дополненная последними результатами исследования терригенного девона в центральной части и на севере края. С целью восстановления условий осадкообразования, автором проведена корреляция отложений терригенного девона по разрезу более 1000 скважин. Для проведения корреляции использованы данные электрического и радиоактивного каротажа, как наиболее информативные. Отражающий горизонт, приуроченный к подошве саргаевских известняков, наиболее явно прослеживается по данным радиоактивного каротажа, данные микробокового каротажа наиболее точно позволяют проследить маломощную толщу пашийских отложений в разрезах скважин.

Стратиграфическое расчленение разреза позволило проследить распределение мощностей комплекса. Так как глинистые толщи на стадии диагенеза обладают наиболее благоприятными условиями для сохранения и захоронения органического вещества, с

целью установления масштабов и источников генерации проведено выделение глинистых пород по данным геофизических исследований скважин и установлены их мощности. Для определения источников нефтегазообразования необходимо не просто выделение глинистых толщ, богатых OB, а требуется определить масштабы генерации. К сожалению, пиролитические исследования Rock-Eval керна выполнены в очень небольшом объеме и только для юга края, при этом часто не на аргиллитах, а на обломочных породах. Данная ситуация затрудняет диагностику параметров нефтегазообразования материнских пород и не позволяет сделать выводы для территории всего края на основе только этого метода. Количественная оценка генерационного потенциала терригенного девона проведена по данным 48 поисковых скважин, расположенных по всей изучаемой территории, с использованием 114 определений содержания органического углерода в породах. В ходе изучения всей толщи терригенного девона проведен расчет плотности современного содержания органического вещества (Qов), плотности генерации нефти (Q_{ren}) и плотности эмиграции нефти в коллектор (Q_{so}).

Генетические корреляции проводились в основном по изотопному составу углерода нефтей и ОВ пород, содержанию металлопорфиринов в битумоидах ОВ пород и нефтей, соотношению изопреноидов пристан/фитан в нефтях и битумодах ОВ пород, выполненных в АО «КамНИИКИГС» [Сташкова и др., 2015]. Следует отметить, что существует ограниченное количество проведенных исследований генетических параметров. Так, изотопный состав углерода исследован только для 17 образцов нефтей и 20 образцов ОВ пород, определение металлопорфиринов и соотношение изопреноидов — 24 образца нефтей и 22 пробы битумоидов ОВ пород. Тем не менее, имеющиеся данные представляют всю территорию исследования и охватывают весь диапазон развития терригенного девона.

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О НЕФЕГАЗОНОСНОСТИ ТЕРРИГЕННОГО ДЕВОНА

В стратиграфическом представлении девонский терригенный комплекс сложен отложениями верхнеэмского подъяруса, бийского и афонинского горизонтов эйфельского яруса, всех горизонтов живетского яруса и нижнефранского подъяруса. В отложениях живетского возраста выделяют промышленный пласт Д₂, в породах пашийского возраста пласт Д₁, в тиманских — Д₀. На территории края полнота разреза весьма изменчива, наиболее полно (до 180 м) комплекс представлен в центральной части региона, в субширотной полосе расположения Верхнекамско-Чусовсой палеовпадины, по направлению на север и юго-восток мощность и стратиграфическая полнота комплекса постепенно сокращается (рис.1). Минимальные мощности (до 40 м) расположены на юго-

востоке края и связаны с длительным существованием Красноуфимской палеосуши, прекратившей свое существование только в позднетиманское время. В ходе анализа данных установлено отсутствие закономерности между мощностью, стратиграфической полнотой разреза и распространением месторождений. Напротив, большая часть месторождений с залежами в терригенном девоне сосредоточены на юге края, где мощности комплекса ниже средних значений.

В пределах края фиксируется приуроченность месторождений УВ к бортовой и прибортовой зоне Камско-Кинельской системе впадин. Месторождения с залежами в терригенном девоне сосредоточены на юге края (95%), только три месторождения открыто в центральной части, в районе г.Пермь и всего одно на севере края в районе г.Чердынь. Отличительной особенностью месторождений с залежами только в отложениях терригенного девона является их приуроченность к осевой зоне ККСВ (рис.1).

ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ ОБРАЗОВАНИЯ ОТЛОЖЕНИЙ ТЕРРИГЕННОГО ДЕВОНА

Девонский седиментогенный период развития начался с трансгрессии морского мелководного бассейна из Уральской зоны на пенепленизированную додевонскую поверхность платформы. Анализ данных, полученных разными исследователями (Ю.А. Кузнецов, А.В. Кутуков, Л.В. Шаронов и др.), позволил восстановить условия осадконакопления пород терригенного девона. В период формирования отложений терригенного девона, который длился на протяжении раннеэмского и раннефранского времени, на изучаемой территории трансгрессии сменялись регрессиями, погружение чередовалось с малоамплитудными подъемами и размывом ранее накопившихся осадков. Существовавшие условия привели к формированию отложений, имеющих четко выраженную цикличность и частую литологическую неоднородность. Замещение коллекторов непроницаемыми породами, которое часто встречается в пределах локальных структур, осложняет разработку месторождений, также часто наблюдается замещение продуктивных пластов плотными породами в сводовых частях структур, что, в свою очередь, серьезно затрудняет процесс поисков и разведки.

В работе учтены условия диагенеза по петрографическим данным и единичным определениям форм серы и железа в изучаемых породах для выделения геохимических фаций. Геохимические фации имеют решающее значение при образовании нефтегазоматеринских пород, так как определяют окислительно-восстановительные условия среды, влияющие на сохранность органического вещества. Наиболее формирования благоприятными для нефтематеринских пород являются резковосстановительные условия, наименее окислительные. Ha основании петрографических определений немногочисленных химико-аналитических реакционноспособных форм серы и железа для южных районов Пермского края окислительно-восстановительные обстановки диагенеза формирования отложений терригенного девона. Установлено, что содержание пиритного железа Fелир для большинства образцов составляет менее 0,5 %, при доле Fe_{пир} среди реакционного менее Эти данные указывают на доминирование слабовосстановительных и 30 %. окислительных условий диагенеза [Кожевникова, 2013]. Исключение составляют единичные образцы из отложений пашийского и тиманского возрастов, в которых содержание пиритного железа достигает 0,76 и 0,92 % на породу, соответственно. Полученные расчеты подтверждаются и данными по микроописанию пород, так в пашийских отложениях отмечаются сидерит и шамозит. Наличие сидерита указывает на более окислительные условия, так как его формирование часто идет за счет углекислоты, образовавшейся при окислении органического вещества. Местами в породах встречается пирит, что указывает на смену осадконакопления в сторону наиболее восстановительных Из-за граница условий. частых тектонических колебаний окислительновосстановительного раздела, располагавшаяся обычно вблизи поверхности осадка временами опускалась ниже, вызывая окисление уже образовавшихся пород. В тиманских отложениях пирит присутствует практически по всей территории, что указывает на установление восстановительных и слабовосстановительных условий. Установленные данные свидетельствуют о существовавших геохимических условиях неблагоприятных для формирования нефтематеринских пород на стадии диагенеза, так как происходило окисление органического вещества.

КОЛИЧЕСТВЕННАЯ ОЦЕНКА ГЕНЕРАЦИОННОГО ПОТЕНЦИАЛА

В процессе сбора и изучения информации для оценки генерационного потенциала отбирались данные с концентрацией органического углерода в породах (Сорг) со значениями выше 0,3 %, так как установлено, что даже чистые глины с Сорг менее данного значения ни при каких стадиях катагенеза не способны генерировать УВ [Ларская, 1983]. Кроме содержания органического вещества учтено и его катагенетическая преобразованность. Тектонические процессы, влияющие на развитие катагенетических условий, на исследуемой территории в палеозойское время характеризуются относительно невысокой скоростью погружения толщ, в среднем равной 36,7 м/млн лет [Кривощеков, Козлова, 2012]. Катагенетические изменения пород и заключенного в них органического вещества обусловлены действием ряда взаимосвязанных факторов, главными из которых являются температура, давление и геологическое время. По опубликованным данным ОВ пород терригенного девона на изучаемой территории испытало катагенез подстадии МК₁ и

только на небольшой восточной части территории достигло подстадии MK_2 [Фрик и др., 2007].

В ходе изучения керна Сорг принято определять не по всему разрезу скважины, а для отдельных интервалов, поэтому в пределах одной скважины изменения параметра имеет широкий диапазон. В связи с этим в работе рассмотрен самый оптимистичный вариант, и значения Сорг для каждой скважины взяты как среднее значение всех его определений для мощности терригенного девона в скважине, за вычетом определений в песчаниках.

Детальная корреляция с выделением глинистых толщ обогащенных органическим веществом и их привязка по стратиграфическим подразделениям, показала, что на территории не прослеживается выдержанной глинистой толщи с высоким содержанием органического вещества. Нефтегазоматеринские породы (НГМП) выделены во всех стратиграфических комплексах, но они не выдержаны по площади края, только в тиманских отложениях встречаются практически на всей территории. Выделена некоторая региональная зональность распределения нефтегазоматеринских пород, так в центральной части края они выделены преимущественно в эйфельских отложениях, а на юге и севере края преобладают в породах тиманского возраста (рис.2).

При оценке масштабов генерации учитывался тип органического вещества, так по микропетрографическим описаниям в отложениях терригенного девона преобладает гумусовое органическое вещество ІІІ типа [Фрик и др., 2007]. Наиболее информативным показателем характеризующим не просто содержание ОВ в отдельном образце, а распределение органического вещества по всей толщи является плотность современного содержания ОВ, рассчитанная по формуле Qob=Copr*H*d*10⁷ где: Copr — среднее содержание углерода в породах, %; Н — мощность пород, км; d — плотность горных пород, г/см³ [Корчагина, Четверикова, 1983]. Именно этот критерий позволяет выделить нефтегазоматеринские свиты (НГМС), т.е. толщи не просто содержащие органические включения, а содержащие органическое вещество в количестве, достаточном для генерации УВ в масштабах до формирования залежей промышленного значения [Словарь по геологии нефти и газа, 1988]. По полученным данным построена карта распределения плотности органического вещества (рис.2), НГМС выделены в центральной части края, где разрез представлен наиболее полно от верхнеэмских до тиманских отложений.

Обычно распределение запасов УВ на территории соответствуют распределению Qoв [Родионова, 1967], но в случае с терригенным девоном в пределах Пермского края данная закономерность не работает, напротив, разрабатываемые месторождения расположены в зонах с минимальными значениями плотности ОВ. Так из 41 открытого

месторождения, в зоне распространения нефтегазоматеринских свит терригенного девона находиться только 16 месторождений. Рассчитанные величины плотности органического вещества указывают на невозможность формирования разрабатываемых залежей в терригенном девоне за счет собственного генерационного потенциала, так как больше половины залежей находятся на территории с плотностью органического вещества менее 1 миллиона тон на квадратный километр, то есть меньше критического значения. Даже с учетом существования латеральной миграции нефти, обычно не превышающей 15–20 км, невозможно объяснить генерацию залежей терригенного девона на юго-востоке края за счет собственного органического вещества.

Важно понимать, что высокие показатели плотности ОВ указывают только на наличие достаточного количества ОВ, а сам процесс генерации УВ сложный и многофакторный. В связи с этим, в работе использован параметр, учитывающий большую часть факторов, влияющих на формирование нефти, это плотность генерации углеводородов, рассчитанный по формуле $Q_{reh} = C_{opr} * p_{mn} * h_{mn} * K^{reh}_{nn} * 10^6 / C^r * M_{ocr}$ где: $C_{opr} -$ концентрация остаточного органического углерода в материнских породах, %; $p_{mn} -$ плотность материнских пород T/m^3 ; $h_{mn} -$ мощность материнских пород, м; $K^{reh}_{n} -$ коэффициент генерации нефти, % от исходной массы органического вещества; $C^r -$ концентрация углерода в остаточном ОВ на данной стадии катагенеза, %; $M_{ocr} -$ остаточная масса ОВ, % от исходной массы [Методическое руководство, 2000]. Согласно существующим представлениям для формирования залежей параметр Q_{reh} должен иметь значения от первых миллионов тонн на квадратный км, по рассчитанным данным (табл. 1) на территории Пермского края зон с такими значениями не выделено. Это еще одно подтверждение отсутствия генерации УВ, достаточной для образования промышленных залежей, НГМС самого терригенного девона.

Одним из критериев указывающих на генетическую связь скоплений УВ с вмещающей толщей является достаточное количество эмигрировавших нефтей для формирования известных запасов в исследуемой толще [Родионова, 1967], но параметр плотности эмиграции УВ в коллектор (Qэм), указывающий на количество углеводородов эмигрировавших в коллектор после генерации для формирования залежей, так же имеет низкие значения и говорит об отсутствии эмиграции, достаточной для формирования промышленных залежей. Плотность эмиграции рассчитана по формуле $Q_{\rm 3M} = Q_{\rm ren} * K^{\rm 3M}_{\rm H}$; где: $K^{\rm 3M}_{\rm H} -$ коэффициент эмиграции нефти, принят равным 0,035. Согласно методическим рекомендациям $K^{\rm 3M}_{\rm H}$ в начале главной зоны нефтеобразования, в которую вступили породы изучаемого комплекса, составляет обычно 0,02–0,05 [Методическое руководство, 2000], в данной работе принято среднее арифметическое значение. Все полученные критерии,

позволяющие оценить масштаб генерации, представлены в таблице 1, где № скв — номер скважины на рис. 1 и 2; Сорг — среднее содержание углерода в породах терригенного девона, %; H, Дтер — мощность нефтегазоматеринских пород терригенного девона, м; Qов — плотность современного содержания органического вещества в породах терригенного девона, $\tau/\kappa m^2$; $Q_{\text{ген}}$ — плотность генерации углеводородов НГМП терригенного девона, $\tau/\kappa m^2$; $Q_{\text{эм}}$ — плотность эмиграции углеводородов из нефтегазоматеринских пород терригенного девона, $\tau/\kappa m^2$.

Расчет генерационного и эмиграционного потенциала для пород терригенного девона на территории Пермского края дал низкие значения. Наличие органического вещества в породах центральной части края соответствует зонам с низкой стадией катагенеза. В породах терригенного девона преобладает гумусовое ОВ ІІІ типа [Фрик и др., 2007], которое по современным геохимическим представлениям требует повышенных палеотемператур для начала генерации УВ. Эти факты указывают на отсутствие процесса генерации нефтегазоматеринским свитам изучаемого комплекса в количестве достаточном для формирования существующих залежей.

ГЕОХИМИЧЕСКИЕ И ГЕНЕТИЧЕСКИЕ КОРРЕЛЯЦИИ НЕФТЬ-НЕФТЬ И НЕФТЬ-ОВ ПОРОД

Установленный низкий генерационный потенциал определил необходимость в проведении корреляции нефтей терригенного девона с ОВ вмещающих пород и нефтями прилегающих комплексов. При расчете плотности органического вещества 16 месторождений из 41 попали в зону распространения НГМС (рис. 2), проведен сравнительный анализ свойств нефтей этих месторождений с нефтями месторождений расположенных за пределами зоны НГМС. Сопоставление физических, химических и геохимических свойств не позволило разделить данные нефти, что указывает на их единый источник генерации.

Многими исследователями уже изучены нефти рифей-вендских отложений и описаны их отличительные свойства [Башкова, Карасева, 2006; Белоконь (Карасева) и др., 2001]. Применение дискриминантного анализа по физико-химическим параметрам нефтей позволило установить сходство нефтей терригенного девона с верхнедевонскотурнейскими, а также подтвердит отсутствие сходства нефтей изучаемого комплекса и рифей-вендских (рис. 3). В дискриминантом анализе использовались данные плотности нефти (pl), содержание в нефтях: серы (s), смол (sm), асфальтенов (asf), парафина (prf). В результате отмечается четкое разделение наблюдений по первой дискриминантной функции, на две группы. Первой группе со значениями Z₁ от -4 до 3 соответствуют все образцы нефти из отложений терригенного девона и верхнедевонско-турнейких, второй

группе со значениями Z_1 от 7 до 9 соответствуют все образцы нефтей из рифей-вендских отложений. Если сходство физико-химических параметров часто связывают с близкими условиями вторичных изменений, то применение генетических параметров, таких как соотношение пристан/фитан (p/f), содержание металлопорфиринов (VOp) и изотопный состав углерода нефтей (iz) позволяет делать выводы о типе исходного органического вещества и соответственно об источнике генерации. Проведение дискриминантного анализа по генетическим параметрам также позволило получить четкое разделение нефтей на две группы (рис.4). По первой дискриминантной функции с интервалом значений от -4 до 0 обособились образцы нефтей из отложений терригенного девона и верхнедевонскотурнейских, вторую группу с интервалом значений по Z_1 образовали образцы нефтей из рифей-вендских отложений.

Применение математического анализа позволяет утверждать об отсутствии вертикальной миграции нефтей из рифей-вендских отложений в вышележащие толщи терригенного девона на территории Пермского края и указывает на разные источники генерации данных нефтей. При этом отмечается сходство нефтей терригенного девона и верхнедевонско-турнейского НГК, как по физико-химическим, так и по генетическим параметрам.

В связи с рассчитанным низким генерационным потенциалом терригенного девона и отсутствием миграции нефтей из нижележащих пород, проведен сравнительный анализ нефтей терригенного девона и нефтей верхнедевонско-турнейского комплекса. Изучены как физико-химические, так и генетические параметры. Установлено некоторое уменьшение плотности, вязкости и содержание серы в направлении с запада на восток и ухудшение свойств нефтей вверх по разрезу [Кожевникова и др., 2014], но это связано скорей с гипсометрическим положением залежей, а не разными источниками генерации.

По генетическим параметрам разделить нефти так же не удалось. В связи с тем что, соотношение пристана и фитана является отражением специфики исходного материала и условий осадконакопления, и это соотношение в своем составе обычно сохраняется, данный параметр может использоваться для генетической корреляции. Средние значения соотношение пристан/фитан для нефтей обоих комплексов равны 0,7, что указывает на исходное ОВ сапропелевого типа. По концентрации металлопорфиринов нефти относятся к сапропелевым, так как наблюдается существенное преобладание ванадилпорфиринов (VOp) над никелевыми порфиринами (Nip). Минимальные значения металлопорфиринов до полного отсутствия свойственны нефтям в восточных районах не зависимо от стратиграфической приуроченности, что связано с повышенными палеотемпературами в Предуральском краевом прогибе, которые привели к разрушению металлопорфиринов.

Максимальные значения металлопорфиринов отмечены в нефтях на Башкирском своде, общая тенденция увеличения концентрации ванадилпорфиринов в направлении с востока на запад характерна как для нефтей терригенного девона, так и для нефтей верхнедевонско-турнейского комплекса [Кожевникова и др., 2014]. По изотопному составу так же отсутствует разделение нефтей рассматриваемых комплексов, диапазон изменения от -27 до -29 промилле. Сходство нефтей терригенного девона и верхнедевонско-турнейского комплекса отмечается не только на территории Пермского края, но и в соседних районах [Кожевникова, 2018].

В работе проведено сопоставление генетических параметров нефтей терригенного девона с битумоидами ОВ вмещающих пород, установлено отсутствие генетического родства этих объектов. Как уже отмечалось по петрографическому описанию, и подтверждено по генетическим параметрам (соотношение пристан/фитан более 1, низкое содержание ванадилпорфиринов) ОВ терригенного девона относится к гумусовому типу. Данный факт отвергает возможность образования нефтей терригенного девона за счет собственного органического вещества, так как установлено, что источником генерации нефтей терригенного девона является органическое вещество с преобладанием сапропелевого органического вещества.

ХАРАКТЕРИСТИКА КОЛЛЕКТОРОВ И ФЛЮИДОУПОРОВ

На всей изучаемой территории коллекторы терригенного девона представлены песчаниками мелкозернистыми, реже разнозернистыми, алевритистыми, слабоглинистыми, сложенными полуокатанными, угловатыми, плохо и хорошо окатанными кварцевыми зернами. Также коллекторы представлены алевролитами разнозернистыми, слабоглинистыми, крупнозернистыми, реже песчанистыми, сложенными угловатыми, реже полуокатанными кварцевыми зернами. Коэффициент пористости в пределах залежей изменяется в диапазоне от 10,2 до 19 %, а коэффициент проницаемости от 0,003 до 0,53 мкм 2 . С приближением к Предуральскому прогибу фильтрационно-емкостные свойства пород заметно ухудшаются.

В отличие от других нефтегазоносных комплексов края в терригенном девоне из-за высокой литологической изменчивости почти 80 % ловушек литологически экранированные, что в свою очередь весьма затрудняет поиски залежей. Особенность изучаемого комплекса заключается в частом присутствии нефтенасыщенных линз песчаников. Как правило, они приурочены к пашийским отложениям и характеризуются небольшой площадью, а толщина продуктивных пластов составляет первые метры. По всей территории, независимо от стратиграфической принадлежности, отмечается высокая неоднородность проницаемых пластов комплекса, так в пределах одного месторождения

часто наблюдается неоднократная замена коллектора плотными породами [Балашова, Салай, 1970]. Наиболее распространенными являются пластовые частично литологически экранированные залежи. Несколько реже встречаются пластовые сводовые типы ловушек.

Внутри комплекса выдержанного флюидоупора нет, о чем свидетельствует заполнение всех проницаемых прослоев у подошвы покрышки нефтью, нижележащих — водой. Данное распределение флюидов указывает на возможность заполнения комплекса нефтью за счет вышележащий нефтематеринских толщ, то есть в результате миграции сверху вниз.

От вышележащих коллекторов проницаемая часть девонского терригенного нефтегазоносного комплекса отделена плотными песчано-аргиллитовыми тиманскими породами, служащими флюидоупорами. Мощность плохо проницаемых пород не выдержанная изменяется от 3 до 20 м, также экранирующими свойствами обладают глинистые известняки саргаевского возраста, залегающие на терригенном девоне. По результатам анализа материалов по флюидоупорам терригенного девона можно утверждать, что пачки непроницаемых пород мощностью 5–6 м вполне достаточно для сохранения промышленных залежей углеводородов. Примером этого являются залежи Аспинского и Сосновского месторождений, где мощность всего тиманского горизонта, представленная непроницаемыми отложениями, не превышает 5–6 м. В некоторых случаях покрышкой для залежей нефти в терригенном девоне служат вышележащие глинистые карбонаты саргаевского горизонта, так на Дороховском месторождении в тиманском пласте открыта залежь нефти, залегающая под плотными породами тиманского горизонта мощностью всего 2 м.

На изучаемой территории все месторождения по соотношению нефтенасыщенных и водонасыщенных коллекторов по стратиграфическим подразделениям можно разделить на 6 типов (рис.5). Первый тип — залежи во всех пластах, в этом случае пашийскоживетские залежи являются едиными и имеют общий водонефтяной контакт. Второй тип — в случае замещения коллектора тиманских отложений плотными породами нефть концентрируется в нижележащих отложенияхв пашийских и живетских. Третий тип — при отсутсвии коллектора в тиманской толще залежи только в пашийских отложениях, в этом случае живетские отложения водонасыщенные. Четвертый тип — залежи в тиманских и пашийских отложениях, не связаны между собой, в пашийских отложениях чаще всего встречаются линзы, нижележащий пласт водонасыщенный. Пятый тип — концентрация нефти только в тиманских отложениях, возникает в случае замещения коллектора плотными породами в нижележащих отложениях. Шестой — нефть только в тиманских отложениях, нижележащие коллекторы водонасыщенные. Наиболее распространенны

месторождения с четвертым и шестым типом соотношения нефтенасыщенных коллекторов.

Все месторождения в терригенном девоне имеют сложное строение, всегда присутствует замещение коллекторов или тектоническое нарушение, при этом нефтенасыщенные мощности составляют первые метры.

МОДЕЛЬ НЕФТЕГАЗОНОСНОСТИ ИЗУЧАМОГО КОМПЛЕКСА

Как уже отмечалось, нефтяная система включает в себя нефтегазоматеринские свиты, породы-коллекторы, флюидоупоры и пути миграции. Образование девонского терригенного нефтегазоносного комплекса началось с раннеэмского времени, когда проходило осадконакопление в основном в условиях континентальных и прибрежноморских, малоблагоприятных для захоронения органического вещества. Формирование нефтематеринских свит, обеспечивших образование залежей в терригенном девоне, началось с позднетиманского времени и продолжалось весь позднедевонский и частично турнейский этап. Наибольшее влияние на формирование залежей в изучаемом комплексе оказали материнские свиты саргаевского и доманикового горизонтов. Генерация в материнских свитах, эмиграция и вторичная миграция нефти начались только в конце раннепермского времени (так называемый «критический момент») и продолжались вплоть до подъема территории, к этому времени уже были сформированы флюидоупоры. Формирование структурных и неструктурных ловушек происходило до проявления процессов нефтеобразования, что благоприятно сказалось на образовании залежей.

Установлено, что формирование залежей терригенного девона на территории Пермского края, проходившее в основном в конце раннепермского времени в большинстве случаев проявлялось за счет эмиграции нефти в нижележащие коллекторы (рис. 6) из нефтегазоматеринских верхнедевонско-турнейскго Об СВИТ комплекса. ЭТОМ свидетельствует тот факт, что коллекторы тиманского пласта До, находящегося непосредственно под материнскими свитами, заполнены нефтью на более 80 % месторождений. Отсутствие нефти в пласте Д₀ на таких месторождений, как Быркинское, Москудьинское и др. связано с замещением тиманских коллекторов плотными породами. Следует отметить, что флюидоупоры данного пласта часто включают и саргаевские отложения, содержащие доманикиты. В районах осевой зоны ККСВ с наиболее интенсивной генерацией нефти в доманикитах, в прилегающих бортовых зонах в результате нисходящей миграции могли быть насыщены все пласты. Латеральная и сублатеральная миграция из доманикитов развивалась в меньшей степени в случае их более низкого гипсометрического положения в период генерации и аккумуляции нефти и была ограничена замещением коллекторов плотными породами.

ЗАКЛЮЧЕНИЕ

Проведенный комплексный подход к изучению нефтегазоносности девонского терригенного комплекса, с выделением нефтяной системы, наиболее предпочтительный в нефтяной геологии. Он позволяет учитывать, как условия формирования отложений, тип органического вещества, так и стадию катагенеза.

Прослеживание глинистых толщ с повышенным содержанием Сорг в девонском терригенном нефтегазоносном комплексе позволило установить их не равномерное распределение по территории и по разрезу, чаще всего они встречаются в тиманских отложениях, территориально максимальные значения Сорг встречены в образцах на севере края, в районе г. Соликамск и в центральной части края.

Оценка генерационного потенциала девонского терригенного нефтегазоносного комплекса указывает на наличие нефтегазоматериских свит в толще, но на территории с низкой катагенетической преобразованностью ОВ, что не привело к генерации нефтей в масштабах достаточных для формирования промышленных залежей, открытых к настоящему моменту. По данным RockEval, изученные глинистые породы по пиролитическим параметрам, таким как S_1 (содержание микронефти) и S_2 (остаточный нефтегенерационный потенциал) в основном не относятся к материнским. Общий нефтяной потенциал ($S_1 + S_2$) отложений невысок (менее 1,0 мг/г породы). Повышенные значения $S_1 + S_2$ зафиксированы для живетских аргиллитов в одной из скважин. Водородный индекс HI, характеризующий остаточный нефтяной потенциал, также низок (в основном менее 200 мг/г Сорг). Таким образом, данные RockEval подтверждают установленную низкую генерационную способность материнских пород.

Низкий показатель плотности эмиграции и результаты корреляции геохимических параметров нефтей терригенного девона с битумоидами органического вещества данной толщи, позволяет говорить об отсутствии связи между нефтями и ОВ вмещающих пород. Более того корреляция нефтей изучаемого комплекса с нефтями верхнедевонскотурнейского комплекса указывает на их единый источник генерации из органического вещества с преобладанием сапропелевой составляющей.

В результате выполнения работы на рассматриваемой территории установлено, отсутствие возможности формирования залежей нефти в терригенном девоне за счет собственного генерационного потенциала или за счет вертикальной миграции из нижележащих рифей-вендских отложений. При этом не стоит говорить об отсутствии перспектив открытия новых залежей в терригенном девоне, так как установлена генетическая связь нефтей изучаемого комплекса с нефтями верхнедевонско-турнейского комплекса. Также необходимо отметить, что большинство залежей в терригенном девоне

сопровождается залежами в вышележащих девонско-каменноугольных комплексах, то есть этот параметр может в какой-то степени быть поисковым, но только в зонах развития рифовых структур. Следовательно, при проектировании поисковых работ необходимо сконцентрировать внимание на изучении отложений терригенного девона в районах с залежами в вышележащем нефтегазоносном комплексе, также перспективными для выявления залежей являются структуры, выявлены в отложениях терригенного девона в районе осевой зоны Камско-Кинельской системы впадин.

ЛИТЕРАТУРА

- 1. Балашова М.М., Салай А.П. Некоторые особенности распределения нефти в кыновско-живетской толще Пермской области. // Труды ВНИГНИ, вып. LXXII, Пермь, 1970, 290 с.
- 2. Белоконь (Карасева) Т.В., Горбачев В.И., Балашова М.М. Строение и нефтегазоносность рифейско-вендских отложений востока Русской платформы. Пермь, ИПК «Звезда», 2001, 108 с.
- 3. Башкова С.Е., Карасева Т.В. Особенности органического вещества пород рифейских отложений севера Волго-Уральской нефтегазоносной провинции // Стратегия развития минерально-сырьевого комплекса Приволжского и Южного федеральных округов на 2007 и последующие годы: Тезисы докл. научно-практической конференции. Саратов, 2006, с.87-89.
- 4. Калачникова, И.Г., Финкель В.Ф., Гецен Н.Г. Рассеянное органическое вещество и битумоиды палеозойских отложений Пермского Прикамья // Тр. КО ВНИГНИ. Вып. 117, Пермь, 1977, с. 250–258.
- 5. Камалеева А.И. Исследование возможных источников нефти месторождений Татарстана. Автореферат диссертации на соискание ученой степени канд. геол.-мин. наук, Москва, 2014, 26с.
- 6. Кожевникова Е.Е. Влияние условий седиментогенеза и диагенеза на формирование нефтематеринских пород и свит в терригенном девоне на юге Пермского края // Геология в развивающемся мире: сб. науч. Тр. (по материалам VI науч.-практ. конф. студентов, аспирантов и молодых ученых с междунар. участием): в 2 т. / отв. ред. Е.Н. Батурин; Перм. гос. нац. исслед. ун-т. Пермь, 2013. Т.1. С. 237–241.
- 7. Кожевникова Е.Е., Карасева Т.В., Трубникова Ю.А. Закономерности изменения свойств и состава нефтей терригенного девона в южных районах Пермского края // Геология, геофизика и разработка нефтяных и газовых месторождений. 2014. №7. С. 109–114.

- 8. Кожевникова Е.Е. Корреляция нефтей терригенного девона с нефтями верхнедевонского комплекса // Геология и полезные ископаемые Западного Урала сб. статей. гл. ред. Р.Г. Ибламинов, Пермь, 2018, С. 130-133.
- 9. Корчагина Ю.И., Четверикова О.П. Методы оценки генерации углеводородов в нефтепродуцирующих породах. Москва, Недра, 1983, 222 с.
- 10. Кривощеков С.Н., Козлова И.А. Геодинамическая характеристика условий погружения и катагенеза рассеянного органического вещества пород фран-фаменской толщи на территории Пермского Прикамья // Нефтяное хозяйство, 2012, № 7, с 82-85.
- 11. Ларская, Е.С. Диагностика и методы изучения нефтегазоматеринских толщ Москва, Недра, 1983, 200 с.
- 12. Методическое руководство по количественной и экономической оценке ресурсов нефти, газа и конденсата России. Москва, ВНИГНИ, 2000, 189 с.
- 13. Родионова, К.Ф. Органическое вещество и нефтематеринские породы девона Волго-Уральской нефтегазоносной области. Москва, Недра, 1967, 367 с.
- 14. Словарь по геологии нефти и газа. Гл. ред. К.А. Черников. Ленинград, Недра, 1988, 679 с.
- 15. Сташкова Э.К. Фрик М.Г., Арасланова Р.М., Багаев А.Н. Терригенный девон Пермского края. Пермь, АО КамНИИКИГС, 2015, 140с.
- 16. Фрик, М.Г., Титова Г.И., Батова И.С. Закономерности распространения нефтегазоматеринских толщ нижне-верхнедевонских терригенных отложений Пермского края // Геология, геофизика и разработка нефтяных и газовых месторождений, 2007, \mathbb{N}_2 4, с. 17 29.
- 17. Шаронов, Л.В. Формирование нефтяных и газовых месторождений северной части Волго-Уральского бассейна. Перм. кн. изд-во, 1971, 287 с.
- 18. Hantschel Th., Kauerauf A.I. Fundamentals of Basin and Petroleum Systems Modeling // Springer-Verlag Berlin Heidelberg, 2009, 482p
- 19. Magoon L. B., Dow W. G. The petroleum system from source to trap // AAPG memoir 60, 2012, 312p

Рис. 1. Распределение мощности пород терригенного девона

Условные обозначения: 1 — порядковый номер скважины; 2 — административная граница Пермского края; 3 — изопахиты мощности пород терригенного девона, м; 4 — линия палеопрофиля; 5 — населенные пункты; 6 — месторождения, имеющие залежи в терригенном девоне; 7 — месторождения УВ; зоны Камско-Кинельской системы впадин: 8 — осевая; 9 — бортовая; 10 — прибортовая.

Рис. 2. Распределение плотности органического вещества в породах терригенного девона

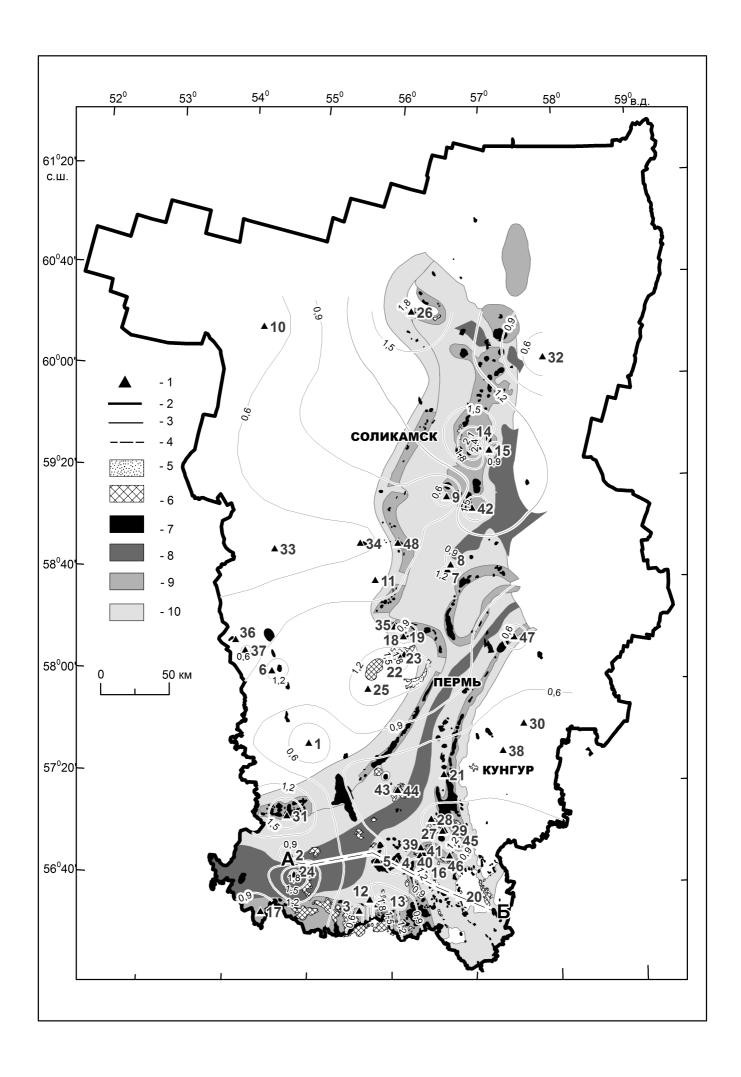
Условные обозначения: 1 — порядковый номер скважины; 2 — административная граница Пермского края; 3 — изопахиты Сорг, %; 4 — изопахиты плотности органического вещества; 5 — населенные пункты; 6 — месторождения, имеющие залежи в терригенном девоне; плотность органического вещества, млн. т/км^2 : 7 — 0-1; 8 — 1-2; 9 — 2-3; 10 — 3-4; 11 — 4-5; 12 — более 5.

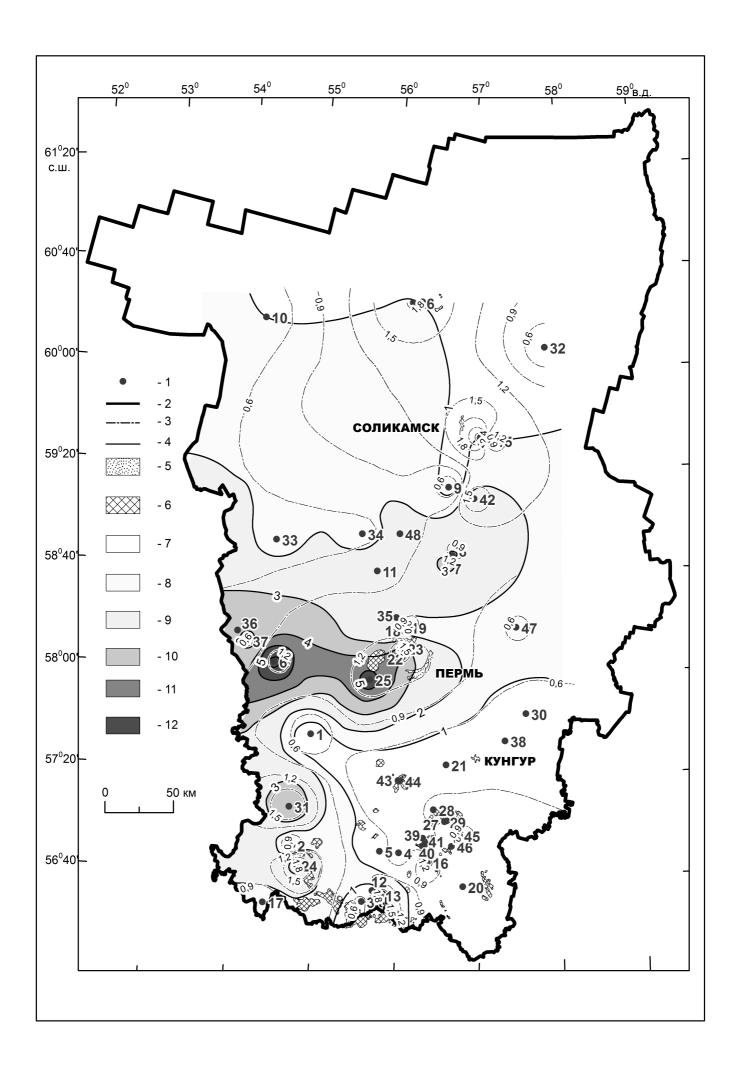
Рис.3. Соотношение по значениям Z_1 и Z_2 для нефтей рифей-вендских, девонских терригенных и верхнедевонско-турнейских отложений по физико-химическим параметрам

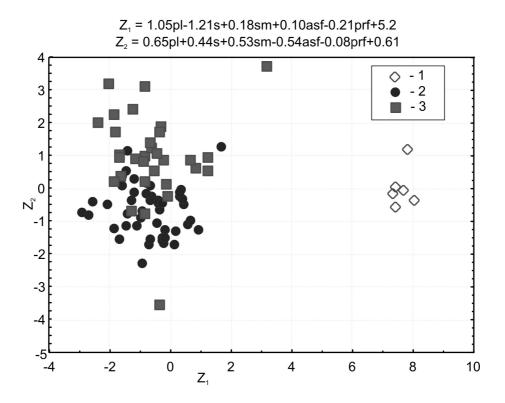
Условные обозначения: 1 – нефти рифей-вендских отложений; 2 – нефти терригенного девона; 3 – нефти вернедевонско-турнейских отложений.

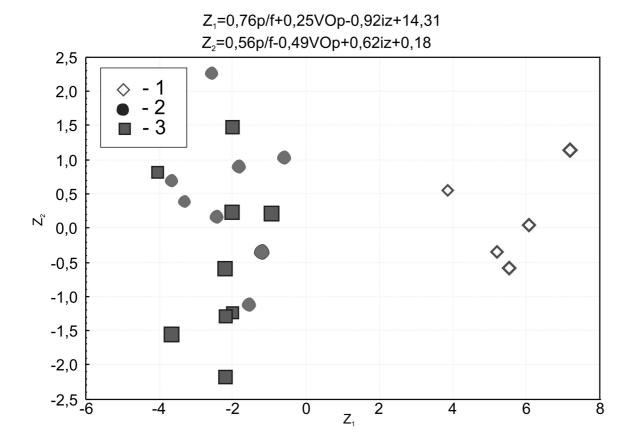
Рис.4. Соотношение по значениям Z_1 и Z_2 для нефтей вендских, девонских терригенных и верхнедевонско-турнейских отложений по генетическим параметрам Условные обозначения: 1 – нефти рифей-вендских отложений; 2 – нефти терригенного девона; 3 – нефти верхнедевонско-турнейских отложений.

Рис.5. Соотношение нефтенасыщенных и водонасыщенных коллекторов по стратиграфическим подразделениям

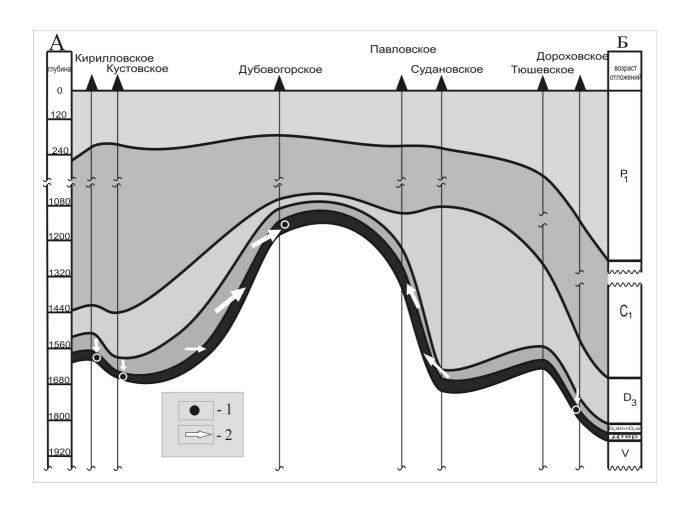

Условные обозначения: 1 – нефтенасыщенный коллектор; 2 – водонасыщенный коллектор; 3 – замещение коллектора плотными породами.


Рис.6. Палепрофиль по линии А-Б


Условные обозначения: 1 — залежи углеводородов; 2 — вероятные пути миграции; положение линии палеопрофиля см. рис. 1.


Таблица 1 Генерационные показатели терригенного девона

теперационные полазатели террин ениого девона											
№ Сој скв %	Conr	Н,	Qов,	Qген,	Qэмг,	№ Сор	Сорг,	Н,	Qов,	Qген,	Qэмг,
	_	Дтер,	МЛН	МЛН	МЛН			Дтер,	МЛН	МЛН	МЛН
	70	M	T/KM ²	T/KM ²	T/KM ²		70	M	T/KM ²	T/KM ²	T/KM ²
1	2	3	4	5	6	1	2	3	4	5	6
1	0,36	73	0,662	0,029	0,001	25	1,31	166	5,480	0,241	0,008
2	0,68	84	1,439	0,063	0,002	26	1,81	21	0,958	0,042	0,001
3	0,48	48	0,581	0,026	0,001	27	0,6	23	0,348	0,015	0,001
4	0,3	39	0,295	0,013	0,000	28	0,62	31	0,484	0,021	0,001
5	0,72	46	0,835	0,037	0,001	29	0,6	26	0,393	0,017	0,001
6	1,3	185	6,061	0,267	0,009	30	0,45	15	0,170	0,007	0,000
7	1,39	112	3,923	0,173	0,006	31	1,8	88	3,992	0,176	0,006
8	0,64	103	1,661	0,073	0,003	32	0,46	30	0,348	0,015	0,001
9	0,35	64	0,564	0,025	0,001	33	0,45	137	1,554	0,068	0,002
10	0,5	83	1,046	0,046	0,002	34	0,48	124	1,500	0,066	0,002
11	0,75	154	2,911	0,128	0,004	35	1,16	82	2,397	0,105	0,004
12	0,63	50	0,794	0,035	0,001	36	0,8	165	3,326	0,146	0,005
13	2	48	2,419	0,106	0,004	37	0,56	177	2,498	0,110	0,004
14	0,8	52	1,048	0,046	0,002	38	0,48	36	0,435	0,019	0,001
15	0,78	50	0,983	0,043	0,002	39	0,42	32	0,339	0,015	0,001
16	1,37	27	0,932	0,041	0,001	40	0,6	37	0,559	0,025	0,001
17	0,71	94	1,682	0,074	0,003	41	0,39	35	0,344	0,015	0,001
18	0,8	87	1,754	0,077	0,003	42	1,77	66	2,944	0,130	0,005
19	0,57	89	1,278	0,056	0,002	43	0,36	61	0,553	0,024	0,001
20	0,6	21	0,318	0,014	0,000	44	0,59	64	0,952	0,042	0,001
21	0,3	30	0,227	0,010	0,000	45	1,29	22	0,715	0,031	0,001
22	1,08	82	2,232	0,098	0,003	46	0,7	34	0,600	0,026	0,001
23	2,16	82	4,463	0,196	0,007	47	0,55	86	1,192	0,052	0,002
24	1,89	70	3,334	0,147	0,005	48	0,8	120	2,419	0,106	0,004



пласт	тип I	тип II	тип III	тип IV	тип V	тип VI
ДО	***					
Д1						
Д2	***					

-2 -3

