УДК 541.68

ПРЕДЕЛЫ СКОРОСТИ ТВЕРДОФАЗНОЙ ДЕТОНАЦИИ

С. С. Бацанов¹, Ю. А. Гордополов²

 1 Центр высоких динамических давлений ВНИИФТРИ, 141570 Менделеево, batsanov@gol.ru

Оценены диапазоны скоростей твердофазной детонации исходя из объемной скорости звука в реагирующей среде (нижний предел) и волновой скорости, соответствующей давлению полиморфного превращения продукта с образованием более плотной фазы (верхний предел). Последние значения согласуются с газодинамическими оценками скоростей детонации и коррелируют со скоростями детонации типичных взрывчатых веществ.

Ключевые слова: твердофазная детонация, ударные адиабаты смесей.

В работах [1, 2] предсказано возникновение детонации в результате протекания твердофазной реакции синтеза в ударно-волновом режиме с выделением тепла и увеличением объема системы, а в [3] реализована твердофазная детонация (ТФД) в реагирующей смеси порошков ${\rm Zn + S}$ со средней скоростью 2.2 ± 0.2 км/с на базе 200 мм. Этот результат определяется конкретными условиями опыта — размером частиц, пористостью, диаметром образца, интенсивностью инициирующей ударной волны. Представляет интерес оценить теоретические пределы скорости ТФД в монолитной среде (D_0) при идеальной постановке опыта. В качестве объектов исследования взяты халькогениды Be, Zn и Cd, кристаллизующиеся в структуре ВЗ, образование которых из смесей компонентов сопровождается выделением большого количества энергии и увеличением объема при нормальном или незначительно повышенном давлении (ZnS).

По определению детонация есть сверхзвуковой процесс, поэтому минимальная скорость $T\Phi\Pi$ должна превышать объемную скорость звука в исходной смеси, т. е. коэффициент a в уравнении Γ югонио

$$D = a + bU. (1)$$

Ударные адиабаты смесей рассчитывались по принципу аддитивности с использованием известных экспериментальных ударных адиабат элементов [4], а также определенной по данным механических измерений [5] адиабате Se:

S:
$$D = 2.334 + 1.588U$$
,
Se: $D = 1.80 + 1.325U$,
Te: $D = 3.242 + 0.888U$,
Be: $D = 7.993 + 1.132U$,
Zn: $D = 3.031 + 1.608U$,
Cd: $D = 2.434 + 1.759U$.

Результаты расчета представлены в табл. 1.

Увеличение скорости волнового фронта за счет «подпитки» энергией, выделяющейся при химической реакции, будет происходить до определенного предела, а именно до давления p_{tr} , при котором в продукте наступит фазовый переход типа $B3 \rightarrow B1$ с уменьшением объема на $20 \div 25$ %. Как только плотность продукта станет больше плотности исходной смеси, главное условие возникновения детонации исчезнет и скорость ударной волны станет резко

 ${\rm Ta}\, {\rm б}\, \pi \, u \, u \, a \, \, 1$ Ударные адиабаты монолитных смесей халькогенидов Be, Zn и Cd

Смесь	а, км/с	b		
Be + S	2.73	1.87		
Be + Se	2.20	2.03		
Be + Te	3.65	0.93		
Zn + S	2.09	1.87		
Zn + Se	1.98	2.01		
Zn + Te	3.18	1.07		
Cd + S	1.90	1.95		
Cd + Se	1.87	2.06		
Cd + Te	2.87	1.31		

²Институт структурной макрокинетики и материаловедения РАН, 142432 Черноголовка

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 06-08-01454).

Вещество	<i>a</i> , км/с	b	ρ_0 , Γ/cm^3	$p_{tr},\ \Gamma\Pi { m a}$	$D_{ m min},~{ m км/c}$	$D_{ m max}$, км/с	D_{gas} , км/с	q, кДж/г
BeS	6.656	1.125	2.37	51	2.73	9.27	7.13	5.72
${\bf BeSe}$	4.625	1.25	4.31	56	2.20	6.96	4.47	1.90
BeTe	3.612	1.25	5.12	35	3.65	5.24	3.60	0.92
ZnS	4.314	1.35	4.10	15.7	2.09	5.29	5.81	2.11
\mathbf{ZnSe}	3.478	1.35	5.29	13.6	1.98	4.29	4.54	1.14
ZnTe	2.977	1.475	5.64	9.5	3.18	3.65	3.73	0.62
CdS	3.646	1.50	4.84	3.2	1.90	3.90	4.42	1.08
CdSe	3.095	1.575	5.74	2.0	1.87	3.26	3.89	0.75
CdTe	2.729	1.75	5.87	3.4	2.87	3.06	3.23	0.42

 ${\rm T}\, a\, \delta\, \pi\, u\, u\, a\, \, 2$ Физико-химические характеристики халькогенидов

падать (см. [6]). При падении динамического давления в халькогенидах Ве, Zn и Cd произойдут обратные фазовые переходы, объемы продуктов снова превысят объемы смесей и движущая сила детонации возобновится; в результате процесс ТФД будет носить колебательный характер, что и наблюдалось в опыте [3]. Таким образом, полиморфное превращение продукта твердофазной реакции ограничивает верхний предел скорости ТФД.

В табл. 2 приведены значения коэффициента a ударных адиабат смесей (D_{\min}) и параметры экспериментальных или восстановленных по данным ультразвуковых измерений ударных адиабат рассматриваемых халькогенидов, давления фазовых переходов по данным [7–9] и соответствующие этим давлениям скорости ударных волн (D_{\max}), вычисленные по формуле

$$D = \frac{a}{2} + \sqrt{\left(\frac{a}{2}\right)^2 + \frac{p_{tr}b}{\rho}},\tag{2}$$

полученной комбинацией уравнения (1) и закона сохранения импульса

$$p = \rho Du \tag{3}$$

 $(\rho - \text{плотность}, u - \text{массовая скорость}).$

Максимальные скорости ТФД хорошо соответствуют зависимости, характерной для типичных взрывчатых веществ:

$$D = 1.17 + 3.14\sqrt{q},\tag{4}$$

где q — теплота образования соединения, кДж/г, что указывает на реальность полученных значений D_{\max} .

Если данная модель верна, то можно ожидать повышения верхнего предела скорости детонации за счет перехода к наноразмерным частицам, которые не только улучшают кинетику реакций, но и могут повысить давление фазового перехода [10–12]. Еще одно следствие этой модели состоит в том, что кристаллические соединения, обладающие необратимым фазовым переходом (например, MnS), неблагоприятны в качестве объекта ТФД, так как после превращения с увеличением плотности условия для детонации исчезают. Таким образом, возникает правило отбора кандидатов на ТФЛ.

Как видно из табл. 2, разница между нижним и верхним пределами скорости ТФД уменьшается при переходе от сульфидов к теллуридам, т. е. по мере уменьшения теплового эффекта реакции синтеза. Интересно сопоставить эти значения со скоростями детонации, вычисленными по уравнению

$$D^2 = 2(n^2 - 1)q, (5)$$

выведенному газодинамическим методом в [13], где n — коэффициент сил отталкивания атомов продуктов детонации, связанный с параметром b уравнения (1): n=2b-1. Учитывая малочисленность изученных ударных адиабат соединений, большой разброс значений b в известных адиабатах одних и тех же веществ, определенных разными авторами, а также возможность реализации в ряде случаев значений b < 1, целесообразно определить n независимым методом. В настоящей работе использовался ионный подход, в котором энергия от-

талкивания электронных оболочек ионов пропорциональна $1/r^n$. Для рассматриваемых соединений коэффициенты n равны: BeS — 7, BeSe — 7.5, BeTe — 8.5, ZnS — 9, ZnSe — 9.5, ZnTe — 10.5, CdS — 9.5, CdSe — 10, CdTe — 11. Поскольку в уравнении (5) n относится к объему, представленные значения надо поделить на 3 и тогда расчет по уравнению (5) даст теоретические значения, которые в табл. 2 обозначены D_{gas} . Эти значения близки к скоростям $T\Phi \Pi$, регулируемым фазовыми переходами продуктов детонации.

ЛИТЕРАТУРА

- Bennett L. S., Horie Y. Shock-induced inorganic reactions and condensed phase detonations // Shock Waves. 1994. V. 4, N 3. P. 127–136.
- 2. Гордополов Ю. А., Трофимов В. С., Мержанов А. Г. О возможности безгазовой детонации конденсированных систем // Докл. АН. Физика. 1995. Т. 341, № 3. С. 327–329.
- Guriev D. L., Gordopolov Y. A., Batsanov S. S., et al. Solid-state detonation in the zinc-sulfur system // Appl. Phys. Lett. 2006. V. 88. 024102.
- 4. **Batsanov S. S.** Effects of Explosions on Materials. New York: Springer-Verlag, 1994.
- Бацанов С. С. Изменение природы химической связи при сжатии кристаллов // Журн. структур. химии. 2005. Т. 46, № 2. С. 314-322.

- 6. Долгобородов А. Ю., Воскобойников И. М., Гогуля М. Ф., Толстов И. К. Затухание ударных волн в смесях магния и алюминия с окислами // V Всесоюз. совещ. по детонации. Красноярск, 5–12 августа 1991 г. С. 140–144.
- Narayana C., Nesamony V. J., Ruoff A. L. Phase transformation of BeS and equation-of state studies to 96 GPa // Phys. Rev. 1997. V. B56, N 22. P. 14338–14343.
- 8. Mashimo T. Shock-induced phase transition and EOS of some topical compounds // New Diamond and Frontier Carbon Techn. 2003. V. 13, N 3. P. 143–152.
- 9. **Бацанов С. С.** Структурная химия. Факты и зависимости. М.: Диалог-МГУ, 2000.
- Tolbert S. H., Alivisatos A. P. The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure // J. Chem. Phys. 1995. V. 102, N 11. P. 4642–4656.
- 11. Jiang J. Z., Gerward L., Frost D., et al. Grain-size effect on pressure-induced semiconductor-to-metal transition in ZnS // J. Appl. Phys. 1999. V. 86, N 11. P. 6608–6610.
- 12. **He Y., Liu J. F., Chen W., et al.** Highpressure behavior of SnO₂ nanocrystals // Phys. Rev. 2005. V. B72, N 21. 212102.
- 13. **Болховитинов Л. Г.**, **Бацанов С. С.** К теории твердофазной детонации // Физика горения и взрыва. 2007. Т. 43, № 2. С. 108–110.

Поступила в редакцию 17/V 2006 г.