2009. Том 50, № 2

Март – апрель

C. 357 – 361

КРАТКИЕ СООБЩЕНИЯ

УДК 544.33

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ВОДОРОДНЫХ АТОМОВ ОСНОВНОГО КАРБОНАТА СВИНЦА ГИДРОЦЕРУССИТА КВАНТОВО-ХИМИЧЕСКИМИ МЕТОДАМИ И МОДЕЛИРОВАНИЕ ЕГО КОЛЕБАТЕЛЬНЫХ СПЕКТРОВ

© 2009 М.Р. Бисенгалиева*

Институт проблем комплексного освоения недр, Караганда, Казахстан

Статья поступила 25 августа 2008 г.

Квантово-химическим методом PM5 выполнено определение положения водородных атомов в кристаллической структуре основного карбоната свинца гидроцеруссита, для которого рассчитаны спектр комбинационного рассеяния, инфракрасный спектр и термодинамические функции. Расчет проводили по теории динамики кристаллической решетки.

Ключевые слова: атомные позиции, кристаллическая структура, колебательные спектры, термодинамические функции, квантово-химический расчет.

Исследование природного основного карбоната свинца гидроцеруссита Pb₃[CO₃]₂(OH)₂ или 2PbCO₃·Pb(OH)₂ является продолжением систематических исследований термодинамических свойств тяжелых цветных металлов в ряду медь—свинец—цинк, направленных на изучение природных минералов с целью разработки технологических схем переработки окисленных и смешанных руд.

В ряде работ различными авторами изучены свойства и структура синтетического основного карбоната свинца. В [1] описано электронографическое исследование его кристаллической структуры. В [2] электронографически исследовано искусственное соединение, сходное по химическому составу с основным карбонатом свинца. В [3] исследованы физико-химические характеристики (плотность, давление паров воды, коэффициенты преломления, инфракрасные спектры и др.) основного карбоната свинца и гидроксокарбоната свинца и натрия и приведены результаты рентгенометрического анализа всех изученных авторами карбонатов свинца. В последующем рентгенографически была уточнена кристаллическая структура синтетического соеновного карбоната свинца [4].

Для определения термодинамических констант основного карбоната свинца (гидроцеруссита) через экспериментальные данные спектров ИК и КР необходимо знание атомных позиций водорода в кристаллической решетке, которые отсутствуют в вышеназванных работах. В ряде работ [5—9] приведены ИК и КР спектры, которые послужили основой расчета термодинамических параметров этого соединения.

Цель настоящей работы — определение положения водородных атомов основного карбоната свинца гидроцеруссита квантово-химическими методами, моделирование его колебательных спектров и расчет на их основе термодинамических свойств соединения. Актуальность исследования обусловлена широким применением основного карбоната свинца в изготовлении пигментов, красок. Знание термодинамических свойств этого соединения очень важно в геологии и геохимии, построении диаграмм состояния. Присутствие этого соединения необходимо учитывать в технологиях переработки свинецсодержащих руд.

^{*} E-mail: mirabis@ipkon.kz

Элементарная ячейка гидроцеруссита

В данной работе предпринята попытка вычисления атомных позиций водорода в гидроцеруссите и расчета на основе полученного атомного набора ряда колебательных параметров минерала. Оптимизацию положений водородных атомов выполняли полуэмпирическим методом квантово-химического расчета PM5 с помощью пакета программ MOPAC [10]. Расчет колебательных состояний производили в программе LADY [11] в рамках теории динамики кристаллической решетки.

Экспериментальная часть. В кристаллографическом отношении гидроцеруссит принадлежит к тригональной сингонии с пространственной группой $R\overline{3}m$. Параметры элементарной ячейки: a = b = 5,2465, c = 23,702 Å, полное количество атомов 45, число формульных единиц в ячейке Z = 3 [4]. В таком описании атомного набора гидроцеруссита отсутствуют данные о координатах атомов водорода.

На основании построенного в программе LADY атомного набора гидроцеруссита по известным атомным координатам из работы [4] в кристаллической структуре соединения были определены точки, в которых располагаются атомы водорода гидроксильных групп. Для этих точек были найдены ориентировочные значения внутренних координат атомов водорода. Оптимизацию положений водородных атомов проводили для одиночной элементарной ячейки (45 атомов) с заданными трансляционными векторами квантово-химическим

методом PM5. После перевода значений положений атомов водорода из декартовой системы координат во внутренние кристаллографические координаты получен набор положений атомов водорода в кристаллической структуре гидроцеруссита, с которым были проведены дальнейшие расчеты в программах LADY и MOPAC (см. рисунок).

Расчет колебательных состояний производили в программе LADY по модели центрального силового поля в рамках теории динамики кристаллической решетки [11]. Окончательное согласование расчетных спектров ИК и КР с экспериментальными достигалось численной вариацией параметров межатомного потенциала. Рассчитанные в программе LADY спектры ИК и КР приводили в соответствие с экспериментальными спектрами, опубликованными в работах [5—9].

На основае расчета колебательных состояний гидроцеруссита с помощью программы LADY проведен также расчет температурной зависимости термодинамических функций соединения. Расчет термодинамических функций с помощью программы МОРАС проводили для кластера размером 5,25 × 10,50 × 23,70 Å, содержащего две элементарные ячейки гидроцеруссита (90 атомов).

Результаты и их обсуждение. Оптимизированные положения водородных атомов в элементарной ячейке гидроцеруссита показывают, что атомы водорода располагаются в атомном слое, содержащем атомы кислорода гидроксильных групп (x/a = 0,6085(40), y/b = 0,3887(40), z/c = 0,0058(8), заселенность 1/3). Относительные погрешности рассчитанных положений водородных атомов соответствуют относительным погрешностям положений атомов кислорода гидроксильных групп. Атомы водорода координируются водородными связями от наиболее близкого атома кислорода гидроксильной группы и от двух ближайших кислородных атомов карбонат-иона. В табл. 1 приведены межатомные расстояния для атомов водорода и близлежащих атомов.

Таблица 1

Пара атомов	Расстояние, Å	Пара атомов	Расстояние, Å	Пара атомов	Расстояние, Å
$Pb(2)^{i}$ — H^{i} $Pb(2)^{iii}$ — H^{i}	2,782 2 714	$O(1)^{x}$ —H ⁱ $O(1)^{xi}$ —H ⁱ	3,068 2,723	$O(1)^{xiv}$ — H^i $O(1)^{xv}$ — H^i	3,090 3,096
C^{iv} H^{i} H^{i}	2,493	$O(1)^{xii}$ H^{i} $O(1)^{xii}$ H^{i}	2,717	$O(2)^{i} - H^{i}$ $O(2)^{ii} - H^{i}$	0,944
с —п	5,517	О(I) —п	5,495	H^{i} H^{i} H^{i}	2,944 3,840

Межатомные расстояния в гидроцеруссите относительно атома водорода

Так как полная элементарная ячейка гидроцеруссита содержит 45 атомов с координационным числом свинца, равным 9, подробное описание валентных связей и углов представляет собой достаточно сложную задачу. В связи с этим было опробовано несколько различных подходов к моделированию колебательных спектров.

На первом этапе использовали модель валентно-силового поля с ограниченным набором силовых констант, относящихся в основном к валентным связям. Первоначальные значения диагональных силовых постоянных валентных связей были найдены с помощью квантовохимического расчета полуэмпирическим методом PM5. Однако, как показали результаты моделирования, использование такого подхода не позволяет воздействовать на положения групп линий, зависящих от силовых констант валентных углов.

Таблица 2

	Сп	ектр]	ктр КР ИК спектр					Спектр КР			ИК спектр						
v_{pac4}	v _{эксп} v _{эксп}					v_{pac4}	V _{эксп}			V _{эксп}							
	[5]	[6]	[7]	[3]	[5]	[6]	[8]	[9]		[5]	[6]	[7]	[3]	[5]	[6]	[8]	[9]
49	49 5								914		887			930			
67	74								1003	1028							
	106								1045	1048,9	1031	1052	1045	1045	1060		1040-45
138	126								1046	1052,6	1053			1053		1090	
150		152							1393	1363	1365	1371		1350	1381	1360	1390—1420
178		177							1394		1375						
212		221							1394		1378						
335	325	318	321						1395	1395	1420		1420	1400		1400	
353		376			366				1397		1479				1446	1430	
		391		390	392					1645	1679						
428	415	417	421		405						1705						
477					471					1735	1736			1738	1731		1735—50
		671				675	676	670									2280-2300
681	681	681		683	683		687	682	3569	3533	3536	3534	3537	3530	3535	3535	3535
713	695	694			693			690	3575		3576				3574		
713	705			691	706		700		3589								
	770	737		781	775				3640								
856		837		839	837	834	834		3655								
875					857		850		3658								
876	865	866			869												

Расчетные и экспериментальные [3, 5—9] *колебательные состояния* v, см⁻¹ *гидроцеруссита*

Т	а	б	Л	И	Ш	а	- 3
-	~	~	••		-	~	-

	Расчет	PM5	Расчет	LADY		Расчет	PM5	Расчет LADY	
<i>Т</i> , К	C_{p}	$H_{\rm T}^{\rm o} - H_{\rm 0}^{\rm o}$,	C_{p}	$S_{\rm T}^{\rm o}$,	<i>Т</i> , К	C_{p}	$H_{\rm T}^{\rm o} - H_{\rm 0}^{\rm o}$,	C_{p}	$S_{\rm T}^{\rm o}$,
	Дж/моль · К	Дж/моль	Дж/моль · К	Дж/моль·К		Дж/моль · К	Дж/моль	Дж/моль · К	Дж/моль·К
10	12,86	73	3,03	0,84	180	211,29	23928	215,76	236,20
20	30,77	287	22,10	8,17	190	215,59	26062	221,20	248,01
30	52,35	701	42,24	21,07	200	219,66	28239	226,26	259,49
40	74,11	1335	59,79	35,65	210	223,53	30455	230,99	270,64
50	94,10	2177	76,82	50,82	220	227,23	32709	235,42	281,49
60	111,75	3209	93,55	66,32	230	230,77	34999	239,58	292,05
70	127,06	4405	109,50	81,95	240	234,17	37324	243,51	302,33
80	140,26	5743	124,33	97,55	250	237,44	39682	247,23	312,34
90	151,64	7204	137,89	112,99	260	240,60	42072	250,76	322,11
100	161,53	8771	150,22	128,17	270	243,66	44494	254,12	331,64
110	170,19	10430	161,38	143,02	280	246,61	46945	257,33	340,94
120	177,86	12171	171,48	157,50	290	249,48	49426	260,39	350,02
130	184,72	13985	180,64	171,59	298,15	251,71	51430	262,80	357,27
140	190,93	15863	188,97	185,29	300	252,26	51934	263,33	358,90
150	196,61	17802	196,56	198,59	310	254,96	54470	266,14	367,58
160	201,85	19794	203,51	211,50	320	257,59	57033	268,84	376,07
170	206,72	21837	209,88	224,03					

Расчетные значения теплоемкости, энтропии и энтальпии гидроцеруссита в интервале 10—320 К

На втором этапе работы использовали модель центрального силового поля, которая основана на предположении о том, что силы, удерживающие атомы в равновесных положениях, зависят только от расстояний между атомами и действуют вдоль прямой, соединяющей пары атомов. Параметры межатомного потенциала вида $u(r) = ae^{-r/b}$ задавали отдельно для каждого типа атомов. Для согласования экспериментального и расчетного спектров гидроцеруссита проводили вариацию параметров межатомного потенциала *a* и *b* для описания взаимодействий валентно-несвязанных атомов.

Полученный расчетный набор частот колебаний кристаллической решетки гидроцеруссита, активных в спектрах комбинационного рассеяния света и в инфракрасных спектрах, представлен в табл. 2 в сравнении с рядом экспериментальных данных [3, 5—9].

На основе полученного набора колебательных состояний гидроцеруссита в программе LADY и квантово-химическим методом PM5 были вычислены значения теплоемкости соединения в интервале 10—320 К. На основании температурной зависимости теплоемкости гидроцеруссита рассчитана его стандартная энтропия $S_{298,15}^{0}$ и прирост энтальпии при стандартных условиях $H_{298,15}^{0} - H_{0}^{0}$, которые составили $S_{298,15}^{0} = 357,27 \, \text{Дж/моль} \cdot \text{K}$ и $H_{298,15}^{0} - H_{0}^{0} = 51,43 \, \text{кДж/моль}$. Найденные значения теплоемкости, энтропии и изменения энтальпии гидроцеруссита в интервале температур 10—320 К приведены в табл. 3.

При расчете с применением модели центрального силового поля и квантово-химических методов определено и оптимизировано положение атомов водорода в кристаллической структуре гидроцеруссита; на основании полученных данных проведен расчет колебательных состояний и термодинамических функций минерала. Значения температурной зависимости теплоемкости и энтропии соединения, вычисленные различными методами, совпадают между собой с удовлетворительной точностью.

СПИСОК ЛИТЕРАТУРЫ

- 1. Cowley J.M. // Acta Crystallogr. 1956. 9. P. 391.
- 2. Воронова А.А., Вайнштейн Б.К. // Кристаллография. 1964. 9, № 2. С. 197.
- 3. *Булахова В.И., Беньяш Е.Я., Шокарев М.М., Вершинина Ф.И. //* Журн. неорган. химии. 1972. 17, № 1. С. 23.
- 4. Martinetto P., Anne M., Dooryhée E. et al. // Acta Crystallogr. 2002. C58. P. i82.
- 5. Brooker M.H., Sunder S., Taylor P., Lopata V.J. // Canad. J. Chem. 1983. 61. P. 494.
- 6. Frost R., Martens W., Kloprogge T., Ding Z. // Spectrochim. Acta. 2003. A59. P. 2705.
- 7. Bouchard M., Smith D.C. // Ibid. P. 2247.
- 8. Farmer V.C. (Ed.). The Infrared Spectra of Minerals. Mineralogical Society Monograph 4. L., 1974.
- 9. Gadsden J.A. Infrared spectra of minerals and related inorganic compounds. L.: Butterworths, 1975.
- 10. http://www.fqs.pl.
- 11. Smirnov M.B., Kazimirov V.Yu. LADY: Software for Lattice Dynamics Simulations. Communication of the Joint Institute for Nuclear Research. Dubna, 2001.