2014. Том 55, № 3

Май – июнь

C. 566 – 574

УДК 548.737

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ЦИКЛИЧЕСКИХ СУЛЬФИН- И СУЛЬФОНАМИДОВ ТИАЗИНОВОГО РЯДА: КОНФОРМАЦИЯ, ВНУТРИ- И МЕЖМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ

Е.В. Миронова¹, О.А. Лодочникова¹, Д.Б. Криволапов¹, Я.В. Веремейчик², В.В. Племенков², И.А. Литвинов¹

¹Институт органической и физической химии им. А.Е. Арбузова КазНЦ РАН, Казань E-mail: katy@iopc.ru ²Балтийский федеральный университет им. И. Канта, Калининград

Статья поступила 27 мая 2013 г.

С доработки — 3 сентября 2013 г.

Выполнено рентгеноструктурное исследование одного нового и обсуждена структура пяти сульфин- и сульфонамидов тиазинового ряда. Конформация тиазинового цикла во всех структурах — искаженная ванна, стабилизируется внутримолекулярным взаимодействием С—Н...N типа. Атом азота тиазинового цикла имеет пирамидальную конфигурацию. Геометрия изолированных молекул рассчитана в рамках теории функционала плотности (PBE1PBE, 6-31G(d,p)) и сопоставлена с наблюдаемой в кристаллах. В кристаллических структурах реализуются различные упаковочные мотивы с образованием супрамолекулярных ассоциатов разного типа за счет классических водородных связей N—H...O типа.

Ключевые слова: сульфинамиды, сульфонамиды, кристаллическая и молекулярная структура, рентгеноструктурный анализ, водородные связи, DFT-расчеты, топологический анализ.

Открытие в 30-е годы прошлого столетия антибактериальных свойств пронтозила Герхардом Домагком [1] послужило началом развития целого класса медицинских препаратов сульфонамидов (стрептоцид, норсульфазол, сульфадиметоксин и др.). Некоторые из них не потеряли своего значения и в эпоху широкомасштабного применения антибиотиков — особенно это касается терапии инфекционных заболеваний, вызванных грамположительными и грамотрицательными бактериями, некоторыми простейшими (возбудители малярии и токсоплазмоза) и хламидиями [2]. В настоящее время соединения сульфонамидного характера получили новый импульс развития. Исследования в этом направлении идут по пути расширения структурного спектра этих веществ, и как следствие, расширения спектра медико-биологической активности: кроме антибактериальной активности, они оказались перспективными в нейротерапии [3, 4], при лечении лейкемии [5], ВИЧ инфекционных заболеваний [6], астмы [7], тромбофилии [8] и др.

Самостоятельный интерес к кристаллизации сульфонамидов вызван в основном подбором оптимальных форм для лекарственных средств на их основе. Этим обстоятельством вызван рост публикаций, посвященных кристаллической структуре сульфон-, а также сульфинамидов. В этом плане в основном исследована кристаллизация сульфонамидов, содержащих в качестве обоих заместителей ароматические фрагменты [9—11]. Для сульфинамидов обнаружена способность к образованию сокристаллов за счет взаимодействия NH...O=S типа [12].

[©] Миронова Е.В., Лодочникова О.А., Криволапов Д.Б., Веремейчик Я.В., Племенков В.В., Литвинов И.А., 2014

В данной публикации мы представляем кристаллическую структуру сульфон- и сульфинамидов 1—5 (см. схему), ключевой тиазиновый цикл в которых конденсирован с норборнановым фрагментом, с одной стороны, и различным образом замещенным фенильным циклом, с другой.

Схема

Структурные формулы исследованных соединений 1-5

Синтез соединений **1**—**5** описан нами ранее [13—15], также ранее нами была обнаружена их значительная бактерицидная активность в отношении *Escherichia coli*, *Staphylococcus sp.*, *Pseudomonas sp.* [16]. Кристаллографические данные соединений **1**, **2** и **4** представлены в работе [13], соединения **3**— в работе [14].

Рентгеноструктурный анализ проведен на автоматическом дифрактометре Bruker Smart APEX II CCD: графитовый монохроматор $\lambda MoK_{\alpha} = 0,71073$ Å, ω -сканирование, температура 150 K для структур **3** и **5**. Проведен полуэмпирический учет поглощения с помощью программы SADABS [17]. Параметры кристаллов для соединений **1—5** и условия рентгеноструктурных экспериментов приведены в табл. 1. Структуры расшифрованы прямым методом по программе SIR [18]. Атом водорода при атоме азота N(6) в структурах **1—5** выявлен из разностных рядов Фурье и уточнен изотропно. Остальные атомы водорода в структурах помещены в геометрически рассчитанные положения и включены в уточнение по модели "наездника". Структура **5** уточнялась с картами TWIN (с использованием матрицы рацемического двойника –1 0 0 0 –1 0 0 0 –1) и BASF (равен параметру Флака (0,39(7)). Все расчеты выполнены по программе SHELX-97 [19] и WinGX [20].

Сбор, редактирование данных и уточнение параметров элементарных ячеек проведены по программе APEX2 [21]. Анализ межмолекулярных взаимодействий и рисунки выполнены с использованием программы PLATON [22]. Координаты атомов структур и их температурные параметры депонированы в Кембриджской базе кристаллоструктурных данных (КБСД, http://www.ccdc.cam.ac.uk; номер депозитов ССDС см. табл. 1). Избранные геометрические параметры молекул **1—5** приведены в табл. 2.

Квантово-химические расчеты в рамках теории функционала плотности выполняли с помощью пакета программ Gaussian-03 [23]. Оптимизацию геометрии выполняли без ограничений по симметрии. Использовали гибридный функционал PBE1PBE [24] и стандартный базисный набор 6-31G(d,p). Топологический анализ функции распределения электронной плотности выполняли в рамках теории "Атомы в молекулах" [25] с использованием программы AIMAll [26].

Т	а	б	л	и	п	а	1
1	а	υ	11	¥1	ц	а	1

Соединение	1 [13]	2 [13]	3 [14]	4 [13]	5		
Цвет, габитус	Бесцветные, призматической формы						
Брутто формула	C ₁₄ H ₁₇ NOS	$C_{14}H_{15}NO_2S$	$C_{13}H_{13}NO_3S$	$C_{14}H_{17}NO_2S$	$C_{13}H_{14}N_2O_4S$		
Сингония	Моноклинная	Ромбическая	Моноклинная	Триклинная	Ромбическая		
Пространственная группа	C2/c	Pbca	$P2_{1}/c$	<i>P</i> -1	$P2_{1}2_{1}2_{1}$		
Параметры элементарной	a 28,904(6)	<i>a</i> 13,183(3)	a 12,866(4)	a 7,905(4)	a 9,370(3)		
ячейки, Å, углы, град.	<i>b</i> 5,809(1)	<i>b</i> 7,282(1)	<i>b</i> 10,469(3)	<i>b</i> 9,431(5)	<i>b</i> 9,730(3)		
	<i>c</i> 15,807(4)	<i>c</i> 26,024(5)	<i>c</i> 8,853(3)	<i>c</i> 10,051(6)	<i>c</i> 13,959(4)		
	β 108,987(2)		β 105,572(4)	α 67,431(5)			
				β 73,019(6)			
				γ 87,867(6)			
Объем, Å ³	2509(1)	2498,2(8)	1148,7(6)	659,4(6)	1272,7(6)		
Ζ	8	8	4	2	4		
Молекулярный вес	247,35	261,33	263,30	263,35	294,32		
$d_{\rm выч}, \Gamma/{\rm cm}^3$	1,309	1,390	1,522	1,326	1,536		
Коэффициент поглощения и. см ⁻¹	2,41	2,52	2,81	2,39	2,70		
$\theta_{\min} / \theta_{\max}$	2,7 / 27,0	3,01 / 26,0	2,6 / 26,0	2,3 / 26,0	2,6 / 27,5		
Количество измеренных	2733	2448	2251	2567	2901		
отражений (R_{int})	(0,0270)	(0,0542)	(0,0796)	(0,0166)	(0,0529)		
Количество отражений с $I \ge 2\sigma(I)$	2277	1927	1778	2318	2360		
Число уточняемых параметров	159	168	168	168	186		
Окончательные значения	R_1 0,0381,	R_1 0,0422,	R_1 0,0512,	R_1 0,0344,	$R_1 0,0359,$		
факторов расходимо- сти	$\omega R_2 0,1085$	$\omega R_2 0,1169$	$\omega R_2 0,1449$	$\omega R_2 0,1039$	$\omega R_2 0,0683$		
Номер в КБСД	ZEQBUU	ZEQCAB	917575	ZEQCEF	905369		

Параметры кристаллов соединений 1—5 и условия рентгеноструктурных экспериментов

Таблица 2

Параметр	1	2 ^a	3 ⁶	4	5 ^в
S(5)—O(5)	1,493(1)	1,494(2)	1,436(2)	1,432(2)	1,429(2)
S(5)—O(6)	_	_	1,429(2)	1,439(2)	1,428(2)
S(5)—N(6)	1,668(1)	1,657(2)	1,613(2)	1,627(2)	1,640(2)
S(5)—C(12)	1,800(2)	1,809(2)	1,772(2)	1,766(2)	1,760(2)
N(6)—C(13)	1,425(2)	1,421(3)	1,418(3)	1,426(2)	1,408(2)
C(13)—C(14)	1,395(2)	1,385(3)	1,398(3)	1,392(2)	1,391(3)
C(14)—C(15)	1,514(2)	1,511(3)	1,512(3)	1,518(2)	1,520(3)
C(15)—C(12)	1,556(3)	1,558(3)	1,571(3)	1,570(3)	1,570(2)

Избранные длины связей (Å) для молекул 1—5 в кристалле

^a O(9)—C(9) 1,372(3) Å, O(9)—C(16) 1,414(3) Å. ⁶ O(2)—C(2) 1,449(3) Å, O(2)—C(3) 1,447(3) Å. ^B N(1)—O(1) 1,207(2) Å, N(1)—O(2) 1,232(2) Å.

Рис. 1. Геометрия молекул соединений 1—5 в кристалле

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По данным PCA, соединения 1—5 при сходной геометрии молекул кристаллизуются в различных пространственных группах, изоструктурные кристаллы не найдены (см. табл. 1), на рис. 1 показана геометрия молекул в кристалле.

Конформация тиазинового цикла в молекулах 1—5 одинакова — *искаженная ванна*, отклонения атомов от базовой плоскости приведены в табл. 3.

Возможно, что такая конформация цикла во всех пяти молекулах стабилизируется внутримолекулярным взаимодействием C(11)—H(11)…N(6) с несколько различными параметрами (табл. 4).

Таблица З

Соеди- нение	Фрагмент N(6)C(13)C(14)C(15) плоский в пределах, Å	Отклонение атома S(5), Å	Отклонение атома С(12), Å	Конформация тиазинового цикла
1	0.010(2)	1.0244(4)	0.225(2)	<i>U an an a an un a</i>
1	0,019(2)	1,0344(4)	0,323(2)	искаженная
2	0,017(2)	1,0363(6)	0,422(2)	ванна
3	0,025(3)	0,9211(6)	0,319(3)	
4	0,003(2)	0,9905(4)	0,345(2)	
5	0,036(2)	1,0424(5)	0,339(2)	

Конформация тиазинового гетероцикла в молекулах 1—5 и отклонения атомов

Таблица 4

Таблица 5

Параметры внутримолекулярного взаимодействия С—Н...N по данным РСА и квантово-топологического подхода в соединениях 1—5

Молекула	H…N, Å		∠C—H…N, град.		$o(r)^a e \cdot Bh^{-3}$	$\nabla^2 \alpha(r)^a \mathrm{e} \cdot \mathrm{Bh}^{-5}$	$-V(r)^a$ at en	$E_{\rm c}^{\rm a}$ kkal·moul ⁻¹
wiosiekysia	DFT	PCA	DFT	PCA	p(r), c Bi	v p(r), e Bli	, (r), ui. ed.	E _{mt} , kitasi mosib
1	2 40	2.55	100	126	10.0129	10.0405	0.0004	2.50
1	2,48	2,33	122	126	+0,0128	+0,0405	-0,0084	2,50
2	2,40	2,48	126	130	+0,0148	+0,0449	-0,0099	3,09
3	2,49	2,57	125	127	+0,0389	+0,0389	-0,0081	2,55
4	2,53	2,63	123	125	+0,0118	+0,0369	-0,0075	2,36
5	2,55	2,54	122	126	+0,0113	+0,0357	-0,0072	2,26

Примечание: ^а $\rho(r)$ — электронная плотность, $\nabla^2 \rho(r)$ — лапласиан (сумма собственных значений матрицы вторых производных); V(r) — плотность потенциальной энергии; E_{int} — энергия взаимодействия. Перечисленные топологические характеристики относятся только к геометрическим параметрам взаимодействия, полученным в рамках квантово-топологического подхода.

С реализацией такого взаимодействия непосредственно связана существенная пирамидализация атома азота N(6): так, сумма валентных углов при этом атоме для структур 1, 2 и 4, 5 существенно меньше 360° (табл. 5), НЭП атома азота при этом ориентирована в сторону атома водорода метиленового мостика (рис. 2, взаимодействие показано на примере молекулы 1). Самое короткое расстояние H(11)…N(6) обнаружено в молекуле сульфоксида 2, для этого же крис-

Степень пирамидализации атома азота N(6) в молекулах 1—5 по данным PCA и квантово-химических расчетов

Соеди-	Сумма валентных углов у атома азота N(6)				
нение	PCA	DFT			
1	340(1)	339			
2	348(2)	339			
3	359(2)	343			
4	350(2)	343			
5	352(2)	346			

Рис. 2. С(11)—Н(11)…N(6)-взаимодействие на примере кристалла 1 (для кристаллов 2—5 картина полностью аналогична)

талла отмечены наибольшие отклонения атомов S(5) и C(12) от плоскости четырехатомного фрагмента, в то время как самые слабые параметры контакта $H(11)\cdots N(6)$ зафиксированы в молекуле сульфона 4 (см. табл. 4).

Можно отметить, что параметры взаимодействия С—Н…N напрямую не коррелируют со степенью пирамидальности атома азота N(6). Представляло интерес выяснить, связано ли упрочнение (ослабление) контакта С—Н…N с особенностями структуры молекулы (природой заместителей), либо с различными мотивами межмолекулярных взаимодействий, которые будут обсуждаться ниже.

С целью ответа на этот вопрос нами проведены квантово-химические расчеты изолированных молекул 1—5 с привлечением топологического подхода.

По данным квантово-химических расчетов, во всех пяти молекулах наблюдается некоторая пирамидализация атома N(6), примерно одинаковая для обоих сульфоксидов 1 и 2, с одной стороны, и для трех сульфонов 3, 4, 5, с другой стороны (см. табл. 5), как и в кристаллах соответствующих соединений. Таким образом, внутримолекулярное взаимодействие С—H…N реализуется и в кристаллах, и в свободном состоянии молекул 1—5.

По данным топологического анализа, выполненного в рамках программы AIMAll, для внутримолекулярного контакта С—H…N типа во всех пяти молекулах локализована критическая точка (3, -1), наличие которой подтверждает связывающий характер взаимодействия. Анализ значений топологических характеристик электронной плотности в критических точках (3, -1), соответствующих выявленным взаимодействиям, показал, что они образованы по типу закрытых оболочек ($h_e(r) > 0$, $\nabla^2(r) > 0$), что позволяет оценить их энергию в рамках подхода Лекомта—Эспинозы [27]. Как параметры, так и энергия взаимодействия различны для пяти молекул (см. табл. 4), при этом прослеживается явная зависимость их от природы заместителя в ароматическом цикле. Так, самая прочная связь С—H…N реализуется в молекуле 2, содержащей в качестве заместителя при фенильном цикле электронодонорную группу CH₃O—, в то время как самое слабое взаимодействие такого рода наблюдается в молекуле 5, содержащей электроноакцепторный заместитель — нитрогруппу.

В свою очередь, можно сделать вывод, что различие в степени пирамидализации атома азота N(6) в кристаллах 1—5, очевидно, связано скорее не с химической природой молекулы, а с мотивом межмолекулярных водородных связей, в которые вовлечена NH-группа в кристалле. Рассмотрим характер межмолекулярных взаимодействий подробнее.

Так, в кристаллах 1—5 наблюдаются различные упаковочные мотивы с образованием супрамолекулярных ассоциатов разного типа за счет классических водородных связей N—H···O.

Посредством взаимодействия N—H···O=S в кристалле сульфоксида 1 молекулы образуют гомохиральные цепочки вдоль винтовой оси 2_1 (рис. 3, табл. 6), в то время как в кристалле структурно родственного сульфоксида 2 аналогичные взаимодействия приводят к формированию гетерохиральных цепочек молекул вдоль плоскости скользящего отражения (рис. 4, см. табл. 6).

Отметим несколько необычное расположение взаимодействующих фрагментов молекул **1** в кристалле. Так, атом O(5) — акцептор протона — оказывается сближенным в пространстве не

Таблица б

Кристалл	N—H…O	N—H, Å	H…O, Å	N…O, Å	∠N—H…O, град.	Операции симметрии
1	N(6)—H(6)····O(5)	0,86(2)	2,15(2)	2,898(2)	146(2)	1/2-x, -1/2+y, 1/2-z
2	N(6)—H(6)····O(5)	0,81(2)	2,12(2)	2,911(2)	167(2)	3/2-x, $1/2+y$, z
3	N(6)—H(6)····O(5)	0,80(3)	2,12(3)	2,884(3)	160(3)	x, 3/2-y, 1/2+z
4	N(6)—H(6)···O(6)	0,84(3)	2,05(3)	2,889(3)	174(2)	1-x, 1-y, 1-z
5	N(6)-H(6)····O(2)	0,79(2)	2,35(2)	3,090(3)	158(2)	1/2-x, 2-y, -1/2+z

Параметры межмолекулярных связей N—H···O в кристаллах 1—5

Рис. 3. Цепочка молекул **1** вдоль винтовой оси 2₁, штриховой линией обозначены водородные связи, а штрих-пунктирной — вторичные S····O-взаимодействия

Рис. 4. Цепочка молекул 2 вдоль плоскости скользящего отражения, штриховой линией обозначены водородные связи

только с донорной группой N—H соседней молекулы, но также и с атомом серы с коротким расстоянием $O(5)\cdots S(5)$ 3,166(1)Å (углы $O(5)\cdots S(5)$ —C(12) 161,4(1), $S(5)=O(5)\cdots S(5)$ 138,2(1)°), что, скорее всего, соответствует взаимодействию HЭП атома кислорода с разрыхляющей орбиталью связи S—C (взаимодействие $n \to \sigma^*$ -типа [28]). Совместное проявление этих двух типов взаимодействий приводит к некоторому разрыхлению связи N(5)—S(5) в кристалле соединения 1 по сравнению с кристаллом 2 (см. табл. 2). Водородная связь характеризуется более прочными параметрами в кристалле 1 (см. табл. 6), видимо, также в связи с наличием дополнительного взаимодействия между молекулами в составе цепочки. В кристалле 2 можно отметить существенное уплощение пирамидальной конфигурации азота, видимо, связанное с межмолекулярными взаимодействиями, в то время как для молекулы 1 наблюдается наибольшая в ряду 1—5 пирамидализация атома азота, количественно одинаковая в кристалле и газовой фазе.

В кристаллах сульфонов важный вопрос заключается в том, какая из связей S=O будет выступать в роли акцептора протона. Атом кислорода O(5) (*pro-S*) занимает аксиальное положение относительно гетероцикла, а атом O(6) (*pro-R*) — экваториальное, и оба доступны для образования водородных связей.

Как показывает анализ упаковки, в сульфонамидах **3** и **4** эта проблема решается по-разному. В сульфоне **3** в роли акцептора протона выступает атом кислорода O(5), посредством классических водородных связей образуется гетерохиральная цепочка молекул вдоль плоскости скользящего отражения (рис. 5). В то же время в сульфоне **4** акцептором протона выступает атом кислорода O(6), посредством водородных связей образуются циклические центросимметричные димеры (рис. 6).

Несмотря на различные мотивы водородных связей, параметры взаимодействий свидетельствуют о примерно одинаковой их прочности (см. табл. 6). Для обеих молекул в кристалле можно отметить удлинение связи S=O, участвующей в водородном связывании, по сравнению с неассоциированной группой S=O (см. табл. 2).

В кристалле сульфонамида 5 (пространственная группа *P*2₁2₁2₁) реализуется принципиально другая система водородных связей — в роли акцептора протона выступает атом кислорода нитрогруппы (рис. 7). Соответственно симметрии группы, бесконечные цепочки молекул, образующиеся посредством такого взаимодействия, являются гомохиральными, однако полного

Рис. 6. Центросимметричный димер молекул 4 в кристалле, штриховыми линиями обозначены водородные связи

разделения энантиомеров не происходит, о чем свидетельствует значение параметра Флака, равное 0,39(7). На примере кристаллов соединения 5 мы имеем дело с так называемым рацемическим двойникованием (см. экспериментальную часть) [29, 30].

В молекуле 5 в кристалле существенно удлинена связь N—O нитрогруппы, участвующая в водородном связывании, по сравнению с аналогичной связью, не участвующей во взаимодействии (см. табл. 2).

В кристаллах сульфонамидов **3**—**5** при переходе от газовой фазы к кристаллам происходит уплощение пирамиды при атоме азота N(6), очевидно, вследствие вовлеченности группы N—H в межмолекулярные водородные связи N—H····O.

Таким образом, методом РСА исследована структура пяти сульфин- и сульфонамидов тиазинового ряда. Установлено, что тиазиновый цикл во всех структурах находится в конформации *искаженная ванна*, которая стабилизируется внутримолекулярным взаимодействием типа С—Н…N. Энергия этого взаимодействия определяется природой заместителя в ароматическом цикле. Показано, что существенная пирамидализация атома азота, характерная для всех пяти соединений в газовой фазе, уменьшается при переходе к кристаллическому состоянию вследствие участия группы N—H в межмолекулярных взаимодействиях. В кристаллах при сходной геометрии молекул наблюдаются различные упаковочные мотивы с образованием разных супрамолекулярных ассоциатов за счет классических водородных связей типа N—H…O.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 12-03-00898-а) и Минобрнауки РФ (ГК № 14.740.11.1027).

СПИСОК ЛИТЕРАТУРЫ

- 1. Беликов В.Г. Амидированные производные бензосульфокислот. М.: МЕДпресс-информ, 2007.
- 2. Машковский М.Д. Лекарственные средства. Т. 2. М.: Новая волна, 2005.
- 3. Maryanoff B.E. // J. Med. Chem. 2009. 52, N 11. P. 3431.
- 4. Hopkins C.R. // ACS Chem. Neurosci. 2012. 3, N 3. P. 149.
- 5. Page B.D.G., Khoury H., Laister R.C. et al. // J. Med. Chem. 2012. 55, N 3. P. 1047.
- 6. Huang D., Caflisch A. // J. Chem. Theory Comput. 2012. 8, N 5. P. 1786.
- 7. Liu Jiwen, Li An-Rong, Wang Yingcai et al. // ACS Med. Chem. Lett. 2011. 2, N 5. P. 326.
- 8. Miller M.W., Basra S., Kulp D.W. et al. // PNAS. 2009. 106, N 3. P. 719.
- 9. Perlovich G.L., Ryzhakov A.M., Tkachev V.V., Hansen L.K. // Crystal Growth & Design. 2011. 11, N 4. P. 1067.
- 10. Gelbrich T., Hursthouse M.B., Threlfall T.L. // Acta Crystallogr. 2007. B63. P. 621.
- 11. Sanphui P., Sarma B., Nangia A. // Crystal Growth & Design. 2010. 10, N 10. P. 4550.
- 12. Eccles K.S., Elcoate C.J., Stokes S.P. et al. // Crystal Growth & Design. 2010. 10, N 10. P. 4243.
- 13. Веремейчик Я.В., Мерабов П.В., Лодочникова О.А. и др. // Журн. общ. химии. 2012. **82**, N 8. Р. 1343.
- 14. Веремейчик Я.В., Мерабов П.В., Чуйко А.В. и др. // Журн. орг. химии. 2013. 49, № 10. С. 1627.
- 15. Веремейчик Я.В., Мороз Н.Е., Казимирченко О.В. и др. // Тез. докл. Кластера конф. орг. химии. "Орг-Хим-2013". – СПб., 2013. – С. 63.
- 16. Veremeychik Ya.V., Plemenkov V.V., Kazimirchenko O.V. et al. // Тез. докл. Международной конф. "International Congress on Organic Chemistry". – Казань, 2011. – Р. 381.
- 17. Sheldrick G.M. SADABS, Bruker AXS Inc., Madison, WI-53719, USA, 1997.
- 18. Altomare A., Cascarano G., Giacovazzo C., Viterbo D. // Acta Crystallogr. Sec. A. 1991. 47, N 4. P. 744.
- 19. *Sheldrick G.M.* SHELX-97, program for crystal structure refinement. Göttingen (Germany): Univ. of Göttingen, 1997. **1**, **2**.
- 20. Farrugia L.J. // J. Appl. Crystal. 1999. 32. P. 837.
- APEX2 (Version 2.1), SAINTPlus. Data Reduction and Correction Program (Version 7.31A, Bruker Advansed X-ray Solutions, BrukerAXS Inc., Madison, Wisconsin, USA, 2006.
- 22. Spek A.L. // Acta Crystallogr. Sec. A. 1990. 46, N 1. P. 34.
- 23. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03, Revision B.04, Gaussian, Inc., Pittsburgh PA, 2003.
- 24. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. 77. P. 3865.
- 25. Bader R.F.W. Atoms in Molecules: A Quantum theory. New York, Oxford University Press, 1990.
- 26. *Keith T.A.* AIM ALL (version 10.05.04). URL: http://aim.tkgristmill.com.
- 27. Espinosa E., Mollins E., Lecomte C. // Chem. Phys. Lett. 1998. 285. P. 170.
- 28. Iwaoka M., Takemoto S., Tomoda S. // J. Amer. Chem. Soc. 2002. 124. P. 10613.
- 29. Dufour F., Gervais C., Petit M.-N. et al. // J. Chem. Soc., Perk. Trans. 2. 2001. I10. P. 2022.
- 30. Torbeev V.Yu., Lyssenko K.A., Kharybin O.N. et al. // J. Phys. Chem. 2003. B107. P. 13523.