УДК 533.6.011.55

Аэродинамические характеристики возвращаемых аппаратов при сверхзвуковых скоростях

Н.П. Адамов¹, А.М. Харитонов¹, Е.А. Часовников¹, А.А. Дядькин², М.И. Казаков², А.Н. Крылов², А.Ю. Скороваров²

¹Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

²ОАО «Энергия», Королёв, Московская область

E-mail: khar@itam.nsc.ru

Дано описание моделей перспективных возвращаемых космических летательных аппаратов, экспериментального оборудования и программы испытаний. Изложена методика определения суммарных аэродинамических характеристик моделей на механических весах AB-313 в сверхзвуковой аэродинамической трубе T-313, а также методика численных расчетов. Получены аэродинамические коэффициенты объектов в широком диапазоне чисел Маха и углов атаки. Проведено сопоставление экспериментальных данных с расчетными.

Ключевые слова: возвращаемый аппарат и головной блок системы аварийного спасения, весовые испытания, численные исследования, аэродинамические коэффициенты.

Введение

Перспективы развития космонавтики, эксплуатация космических станций, совершенствование систем космической связи, навигации, наблюдения за состоянием окружающей среды обуславливают необходимость разработки и создания нового поколения транспортных систем, существенно снижающих стоимость доставки грузов и людей на орбиту. Актуальной становится проблема возвращения из космоса аварийных и отработавших конструкций, так как его засорение становится все более заметным и в будущем грозит стать серьезной экологической проблемой.

Современные научно-технические разработки в области больших скоростей полета, существующие в странах с развитыми авиационно-космическими технологиями, определяют потенциальную возможность создания широкого спектра гиперзвуковых воздушно-реактивных летательных аппаратов различного назначения. Стремление решить перечисленные проблемы стимулирует дальнейшее изучение, анализ и разработку различных концепций космических транспортных систем. Продолжаются интенсивные исследования оптимальных компоновок возвращаемых космических аппаратов [1–4], успешная реализация которых в значительной степени зависит от решения задач аэротермодинамики и газодинамики. Общими для всех рассматриваемых концепций транспортных систем наряду с другими являются следующие проблемы:

[©] Адамов Н.П., Харитонов А.М., Часовников Е.А., Дядькин А.А., Казаков М.И., Крылов А.Н., Скороваров А.Ю., 2015

 – аэрогазодинамика внешнего обтекания при взаимодействии скачков уплотнения с пограничным слоем, когда образуются отрывные течения;

- аэродинамический нагрев и тепловая защита;

 – газодинамика внутренних течений в камере сгорания и смешения при больших температурах и давлениях;

- моделирование эффектов реального газа.

Настоящая статья посвящена экспериментальному исследованию аэродинамических характеристик возвращаемого аппарата (ВА) и головного блока системы аварийного спасения (ОГБ), а также валидации численных методов расчета.

1. Экспериментальное оборудование, модели, условия испытаний, методика численных расчетов

Экспериментальные исследования проводились в сверхзвуковой аэродинамической трубе Т-313 ИТПМ СО РАН. Подробно ее описание дано в работе [5].

Аэродинамические нагрузки определялись в весовой системе координат при помощи четырехкомпонентных механических весов AB-313 [5], диапазоны измерения которых по каждой из компонент составляют: сила лобового сопротивления — 0-150 кг, подъемная сила — 0-500 кг, момент крена — 0-60 кгм и момент тангажа — 0-80 кгм. Весы оснащены весовыми элементами компенсационного типа с предельной погрешностью от 0,2 до 0,02 % максимальной нагрузки. Диапазон углов атаки составляет от -4 до 22° и измеряется с точностью до $\pm 1,5'$.

Модель ВА представляет собой капсулу в виде сферического лобового щита с обратным усеченным конусом с углом полураствора 20° (рис. 1). Были изготовлены две модели, в масштабах 1:37 (диаметр миделя 120,9 мм) и 1:30 (диаметр миделя 149,2 мм) натурного объекта. Необходимость такого решения диктовалась следующими соображениями и оценками. При испытаниях в аэродинамической трубе T-313 при числах Маха M = 1,75-4 реализуются большие скоростные напоры, достигающие величин q = 7500 кг/м² и, соответственно, большие нагрузки. Поэтому масштаб малой модели (1:37) выбирался из условия достижения лобовой силы, предельной для весов величины $X_a = 150$ кг. При M = 5-7 скоростные напоры в T-313 и аэродинамические нагрузки гораздо меньше (q = 1200 кг/м²). Оценки показали, что для малой модели погрешности определения

Рис. 1. Конструктивная схема модели ВА. *а* — прямая державка, *b* — изогнутая державка. Обозначения см. в тексте.

коэффициента момента тангажа при этих числах Маха оказались бы очень большими — $\pm 2\sigma \sim \pm 30$ %. Модель бо́льшего масштаба (1:30) при M = 5–7 позволяет повысить точность измерения коэффициента момента тангажа в два раза. Конструктивная схема модели меньшего размера с поддерживающими устройствами для испытаний при углах атаки $\alpha = 0-20^{\circ}$ представлена на рис. 1*а*. Корпус модели *1* изготовлен из алюминиевого сплава и с помощью державки 2 и обтекателя 3 устанавливается в саблевидную подвеску механических весов AB-313. Для испытаний при углах атаки $\alpha = 20-40^{\circ}$ была спроектирована изогнутая державка 4 с углом заклинения 20° (рис. 1*b*).

Модель ОГБ (рис. 2) включает капсулу ВА 3, сопряженную через переходной конус 2 с силовой установкой, которая состоит из цилиндрического головного блока 1 с двумя рядами имитаторов сопел. Промежуточный фланец 4 предназначен для крепления корпуса модели к державке 5 и формирования донного стаканчика. Державка модели 5 закрыта обтекателем 6, они устанавливаются в саблевидную подвеску механических весов АВ-313.

Испытания моделей проводились при числах Маха набегающего потока M = 1,75, 2, 2,25, 2,5, 2,75, 3, 3,5, 4, 5, 6, 7. Углы атаки для ВА и ОГБ изменялись в диапазонах $\alpha = 0-40^\circ$, $160-180^\circ$ и $\alpha = 0-20^\circ$ соответственно. Число Рейнольдса, рассчитанное по характерной длине модели, составляло Re = $(1-5)\cdot10^6$ для ВА и Re = $(4-20)\cdot10^6$ для ОГБ. При обработке результатов измерений использовалась традиционная методика, учитывающая поправки на взаимное влияние компонентов весов, на обдув элементов весов, на донное давление и на деформацию державки.

Характерные геометрические параметры моделей, используемые при расчете аэродинамических коэффициентов, составляли для модели ВА: площадь $S = 0,0115, 0,0174 \text{ m}^2$, длина l = 0,103, 0,127 m; для модели ОГБ: площадь $S = 0,0115, 0,0174 \text{ m}^2$, длина l = 0,412, 0,509 m.

Коэффициенты аэродинамических сил представлены в связанной системе координат О*хуz*, начало которой расположено на оси симметрии моделей: в концевом шпангоуте для ВА и в вершине силовой установки для ОГБ, ось Ох направлена по оси симметрии вперед, ось Оу — вверх. Коэффициент момента тангажа для ВА рассчитан относительно центра масс. Центр масс ВА в связанной системе координат О*хуz* имеет нормированные координаты: $x_{\text{цм}}/l = 0,65$, $y_{\text{цм}}/l = -0,04$ (центровка), где $x_{\text{цм}}$ и $y_{\text{цм}}$ — координаты центра масс. Коэффициент момента тангажа для ОГБ рассчитан относительно начала связанной системы координат. Доверительные интервалы $\pm 2\sigma$ (при доверительной вероятности 95 %) определения аэродинамических коэффициентов сведены в табл. 1, 2.

Рис. 2. Конструктивная схема модели ОГБ. Обозначения см. в тексте.

Таблица 1

М	C_x	C_y	m_z	Модель
1,75–4	±0,0024	±0,0020	±0,0052	Малая
5-7	±0,0063	± 0.0074	±0,0158	Большая

Ловерительные интервалы для молели ОГБ

Доверительные интервалы для модели ВА

Таблица 2

М	C_x	C_y	m_z	Модель			
1,75–4	±0,0017	±0,0020	±0,0013	Малая			
6	+0.0031	+0.0074	± 0.0039	Большая			

Расчеты обтекания натурных ВА и ОГБ в рамках уравнений турбулентного вязкого сжимаемого газа проведены с использованием программного комплекса Aero-Shape 3D [6]. В этой программе реализована технология аддитивных прямоугольных сеток. В основе метода лежит конечно-объемная разностная схема, получающаяся в результате интегроинтерполяционной пространственно-временной аппроксимации, покрывающей расчетную область вместе с находящимся в ней телом произвольной формы. Применяемая конечно-объемная разностная схема является всюду консервативной и монотонной, она обеспечивает второй порядок аппроксимации дифференциальных уравнений и граничных условий на поверхности компоновки в областях достаточной гладкости решения. В областях течения, характеризующихся большими градиентами параметров потока, обусловленных скачками уплотнения, контактными разрывами, пограничными слоями, осуществляется дробление исходных ячеек с целью адекватного разрешения особенностей течения. Вблизи поверхности компоновки осуществляется адаптация формы ячеек к границе, и их форма в этом случае уже не является прямоугольной. Стационарные решения строятся установлением по квазивремени, приращение которого находится в каждой ячейки индивидуально из условия Куранта-Фридрихса-Леви. В расчетах использована $k-\varepsilon$ модель турбулентности. Все расчеты выполнены на кластерах предприятия РКК «Энергия» и Московского физико-технического института. Общее число ячеек расчетной сетки составляло порядка 0.4-4 млн в зависимости от режима течения.

Расчеты аэродинамических характеристик ВА и ОГБ выполнены в диапазоне чисел Маха от 0,3 до 10 при круговом обдуве по углу атаки ($\alpha = 0-180^\circ$) в плоскости тангажа (симметрии) аппарата. Число Рейнольдса изменялось в диапазоне $1,5\cdot10^7-6\cdot10^7$ для ВА и $2,6\cdot10^6-1,2\cdot10^8$ — для ОГБ.

2. Обсуждение результатов испытаний

2.1. Возвращаемый аппарат

На рис. 3a, 3b в качестве примера приведены выборочные теневые снимки модели, а на рис. 3c — характерное расчетное поле градиентов давления и скоростей для натурного объекта. На рис. 4, 5 представлены примеры сравнения расчетных и экспериментальных аэродинамических характеристик C_x , C_y и m_z .

Вертикальные метки на рис. 4, 5 (и далее на рис. 9, 10) отображают дорожки разброса характеристик, определенных на основании сравнения экспериментальных данных, полученных на моделях разного масштаба одинаковой геометрии в аэродинамических трубах ЦНИИмаш, ЦАГИ и ИТПМ СО РАН, а также по результатам дублирующих расчетов с использованием различных программных комплексов [4].

Наблюдается хорошее согласование данных при различных углах атаки коэффициентов C_x и C_y (рис. 4) и удовлетворительное согласование коэффициента момента тангажа m_z (рис. 5).

Рис. 3. Картина обтекания при M = 2. *а* — модель при $\alpha = 0^\circ$, *b* — модель при $\alpha = 40^\circ$, *c* — натура при $\alpha = 40^\circ$.

Анализ экспериментальных зависимостей коэффициента момента тангажа от угла атаки показывает, что они близки к линейным в диапазоне углов атаки от 0° до 40° (рис. 6), что позволяет представить их двумя характеристиками — производной m_z^{α} и балансировочным углом атаки α_{bal} . Зависимость этих характеристик от числа Маха приведена на рис. 7. Характерно, что зависимости $m_z^{\alpha} = f(M)$ и $\alpha_{bal} = f(M)$ имеют экстремум при $M \approx 3,5$.

a, *b*, *c* — M = 2, 4, 6 соответственно; *l* — расчет, *2* — эксперимент.

Рис. 6. Зависимости коэффициента момента тангажа от угла атаки.
а, b, c, d — M = 2, 3, 4, 6 соответственно; l — испытания на прямой державке при α = 0–22°,
2 — испытания на изогнутой державке при α = 16–40°, 3 — аппроксимация линейной зависимостью; вертикальные метки отображают доверительные интервалы (± 2 σ).

Рис. 7. Зависимости балансировочного угла атаки и производной m_z^{α} от числа Маха. *1, 3* — прямая державка при $\alpha = 0-22^{\circ}$, *2, 4* — державка с заклинением при $\alpha = 16-40^{\circ}$, *5* — аппроксимация кубической зависимостью.

2.2. Отделяемый головной блок

Выборочные теневые снимки модели и расчеты визуализации обтекания натурного объекта (распределение градиентов плотности и скорости) при M = 4 приведены на рис. 8. Видно, что структура обтекания является очень сложной и характеризуется образованием множества ударных волн и зон отрыва потока, конфигурация которых варьируется с изменением числа Маха и углов атаки.

Результаты сравнения расчетных аэродинамических коэффициентов C_x , C_y и m_z с экспериментальными представлены на рис. 9, 10. Следует отметить хорошее согласование данных во всем исследованном диапазоне чисел Маха и углов атаки.

Заключение

Экспериментальным и численным методами получены аэродинамические коэффициенты ВА и ОГБ в интервале чисел Маха 1,75–7 и широком диапазоне углов атаки при установившемся обтекании. Сравнение эксперимента с расчетом показало, что коэффициенты продольной и нормальной силы хорошо, а продольного момента удовлетворительно согласуются между собой, несмотря на большую разницу чисел Рейнольдса для моделей (эксперимент) и натурных объектов (расчет). Последнее, по-видимому, свидетельствует об автомодельности аэродинамических характеристик по числу Рейнольдса.

Выявлено, что возвращаемый аппарат при полете в атмосфере земли обладает статической устойчивостью на всех обследованных режимах. Обнаружено, что экспериментальные зависимости коэффициента момента тангажа от угла атаки в окрестности балансировочных углов близки к линейным, а зависимости производных m_z^{α} и балансировочных углов атаки α_{bal} от числа Маха имеют экстремальные значения в районе M \approx 3,5.

Результаты экспериментальных исследований подтвердили правильность численного моделирования аэродинамических характеристик ВА и ОГБ, что дает возможность эффективного использования программного комплекса AeroShape 3D для исследований аэродинамических характеристик тел подобной конфигурации на самых ранних этапах проектирования перспективных возвращаемых космических аппаратов.

Рис. 8. Картина обтекания при M = 4. *а* — модель при $\alpha = 0^{\circ}$, *b* — модель при $\alpha = 20^{\circ}$, *c* — натура при $\alpha = 20^{\circ}$.

Адамов Н.П., Харитонов А.М., Часовников Е.А., Дядькин А.А., Казаков М.И. и др.

 $\frac{c}{30}$

40

50

 α°

0

0,2 -0,2 -0,4 -0,6 -0,8 -1,0 -1,2 m_z 10

20

Список литературы

- 1. Андреев В.Н., Боровков А.И., Войнов И.Б., Дроздов С.М., Дядькин А.А., Казаков М.И., Казаков М.Н., Михайлов М.В. Особенности аэрогазодинамики отделяемого головного блока системы аварийного спасения с работающими двигательными установками // Космическая техника и технологии. 2014. Т. 7, № 4. С. 10–20.
- 2. Адамов Н.П., Пузырев Л.Н., Харитонов А.М., Часовников Е.А., Дядькин А.А., Крылов А.Н. Аэродинамические производные модели головного блока системы аварийного спасения при гиперзвуковых скоростях // Теплофизика и аэромеханика. 2013. Т. 20, № 6. С. 749–758.
- 3. Адамов Н.П., Пузырев Л.Н., Харитонов А.М., Часовников Е.А., Дядькин А.А., Крылов А.Н. Демпфирующие характеристики возвращаемого аппарата при гиперзвуковых скоростях // Прикладная механика и техническая физика. 2014. Т. 55, № 5. С. 165–171.
- 4. Алабова Н.П., Брюханов Н.А., Дядькин А.А., Крылов А.Н., Симакова Т.В. Роль компьютерного моделирования и физического эксперимента в исследованиях аэрогазодинамики ракетно-космических систем в процессе проектирования // Космическая техника и технологии, 2014. Т. 6, № 3. С. 14–21.
- 5. Харитонов А.М. Техника и методы аэрофизического эксперимента. Новосибирск: НГТУ, 2011. 643 с.
- Gavriliouk V.N., Lipatnikov A.V., Kozlyaev A.N., Odintsov E.V. et cet. Computation modelling of the combastion problems with the use of "Aeroshape 3D" // Numerical Technique ISTS 94-d-27, 1994.

Статья поступила в редакцию 1 апреля 2015 г.