2010. Том 51, № 2

Март – апрель

C. 383 – 386

КРАТКИЕ СООБЩЕНИЯ

УДК 541.6:544.144.2

СТРУКТУРА БИЦИКЛО[2.2.0]ГЕКС-1(4)-ЕНА И ЕГО ДИМЕРОВ: КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ

© 2010 К.К. Калниньш¹*, С.Г. Семенов²

¹Институт высокомолекулярных соединений РАН, Санкт-Петербург ²Санкт-Петербургский государственный университет

Статья поступила 18 апреля 2009 г.

Квантово-химическими методами RHF, B3LYP и PBE0/6-311G** определены точечная группа симметрии и равновесная структура бицикло[2.2.0]гекс-1(4)-ена (I, D_{2h}), двух его устойчивых димеров: трицикло[4.2.2.2^{2,5}]додека-1,5-диена (II, D_{2h}) и 2,5-диметилентрицикло[4.2.2.0^{1,6}]декана (III, C_2), а также пентацикло[4.2.2.2^{2,5}]додекана (IV, D_2) — гипотетического интермедиата реакции димеризации молекул I. Получено соотношение полных, с учетом нулевых колебаний, энергий: E(III) < E(II) << 2E(I).

Ключевые слова: напряженные полициклические углеводороды, структура, RHF, B3LYP, PBE0, 6-311G**.

Изучение природы химической связи в напряженных молекулах, определение структурных параметров таких молекул и интермедиатов химических реакций с их участием является одним из приоритетных направлений современной химии. Много внимания уделялось, в частности, синтезу и структурным исследованиям полициклических органических молекул, которые представляют собой углеродные нанокластеры с гидрированной поверхностью. Наряду с тщательно изучавшимися углеводородами предельно высокой симметрии, такими как, например, кубан и додекаэдран, синтезированы и менее известные напряженные полициклические углеводороды, обладающие необычными химическими свойствами.

К наночастицам такого типа принадлежат исследованные в настоящей работе бицикло[2.2.0]гекс-1(4)-ен (I) и его димеры. Названный мономер был получен электрохимическим восстановлением 1-бром-4-хлорбицикло[2.2.0]гексана и изучен методами ЯМР, ИК и рамановской спектроскопии при низких температурах [1]. Он сохраняется при –200 °C, при –23 °C полимеризуется ($\tau_{1/2} < 10$ с [2]), а в разбавленных растворах (0,002 М) быстро димеризуется [2]. Структурные параметры одного из димеров были определены методом PCA [3].

Квантово-химические расчеты равновесных структур (табл. 1) и энергий молекул мономера I (рис. 1), димеров II и III (рис. 2, 3) и гипотетического интермедиата реакции димеризации IV (рис. 4) выполнены методами RHF, B3LYP и PBE0/6-311G** с использованием компьютерной программы GAMESS [4, 5]. Соответствие вычисленных равновесных конфигураций минимуму энергии подтверждается отсутствием мнимых волновых чисел в колебательном спектре каждой молекулы. Мономер I и продукт II характеризуются симметрией D_{2h} , продукт III — более низкой симметрией C_2 , интермедиат IV — симметрией D_{2h} , если расчет выполняется методами B3LYP и PBE0/6-311G**, и симметрией D_2 при использовании метода RHF/6-311G**, причем в последнем случае все четырехчленные циклы оказываются неплоскими.

Самое низкое волновое число в расчетном колебательном спектре мономера I (86 см⁻¹) отвечает отклонению двугранного угла между плоскими четырехчленными циклами от равнове-

^{*} E-mail: karl@lp1884.spb.edu

Таблица 1

Мо- ле- кула	Атом	x	у	Z	Мо- ле- кула	Атом	x	у	Ζ	Мо- ле- кула	Атом	x	у	Ζ
Ι	С	1,5252	0,8032	0,0000	II	С	1,4548	1,2401	0,8027	IV	С	1,5952	1,3311	0,7879
	С	0,0000	0,6580	0,0000		С	0,6750	0,0000	1,2055		С	0,7888	0,0000	0,7747
	Н	1,9750	1,2543	0,8891		Н	1,0179	2,1637	1,1799		Н	1,0898	2,1846	1,2431
						Н	2,4821	1,1941	1,1730		Н	2,5836	1,2474	1,2472

Декартовы координаты ядер неэквивалентных атомов в высокосимметричных молекулах I, II и IV, вычисленные методом B3LYP/6-311G*, Å

сного значения 180°. Для димеров расчеты предсказывают наличие низкочастотных деформационных колебаний с волновыми числами 107 (II), 81 (III) и 51 см⁻¹ (IV) при расчете методом B3LYP или 79 (II), 84 (III) и 34 см⁻¹ (IV) в случае PBE0. Это свидетельствует о малой структурной жесткости молекул.

Методы B3LYP и PBE0 дали близкие структурные параметры, хорошо согласующиеся с экспериментальными результатами PCA монокристалла димера II [3], в то время как метод RHF занижает длины двойных связей (*d*) на 0,022 Å (табл. 2). Расчет методом RHF/STO-3G [4] приводит к еще большему расхождению с экспериментом: 1,328 вместо 1,354 Å.

Рис. 1. Структура молекулы бицикло[2.2.0] гекс-1(4)-ена (I)

Рис. 3. Структура молекулы 2,5-диметилентрицикло[4.2.2.0^{1,6}]декана (III)

Рис. 2. Структура молекулы трицикло[4.2.2.2^{2,5}]додека-1,5-диена (II)

Рис. 4. Структура молекулы пентацикло[4.2.2.2^{2,5}]додекана (IV)

Таблица 2

Молекула	Связь или угол α	RHF	B3LYP	PBE0	Эксп. [3, 6]
I	a	1 295	1 316	1 315	
1	h	1,299	1,510	1,515	
	c	1,598	1 606	1,593	
	i	1.085	1.094	1.095	
	α	180,00	180,00	180,00	_
II	а	2,403	2,411	2,388	2,395
	b	1,520	1,519	1,510	1,516—1,521
	С	1,594	1,605	1,592	1,595; 1,596
	d	1,332	1,350	1,347	1,354
	i	1,080	1,089	1,090	0,981—1,038
	j	1,085	1,093	1,094	0,981—1,038
	α	115,17	115,67	115,85	—
IV	а	1,525	1,549	1,542	—
	b	1,552	1,556	1,546	—
	С	1,571	1,576	1,565	—
	d	1,571	1,578	1,566	—
	i	1,083	1,091	1,093	—
	j	1,085	1,093	1,094	—
	α	—	117,58	117,69	—
C_2H_4	CC	1,316	1,327	1,325	1,337
	СН	1,077	1,084	1,086	1,103
C_2H_6	CC	1,527	1,530	1,522	1,534
	СН	1,086	1,093	1,094	1,112

Равновесные длины связей (Å) и двугранные углы bab (а, град), вычисленные квантово-химическими методами RHF, B3LYP, PBE0/6-311G**, и экспериментальные структурные параметры молекулы II

Стерические затруднения, дестабилизирующие связи C=C в молекулах I и II, по-разному проявляются в их длинах. Дестабилизация двойной связи, обусловленная неплоской структурой фрагментов >C=C< в димере II, структурно проявляется в ее растяжении до 1,35 Å (на 0,02 Å больше, чем в этилене), а химически — в реакциях Дильса—Альдера, наблюдаемых при комнатной температуре [3]. В исходном мономере I двойная связь, активированная в химическом отношении четырьмя аномально малыми углами \angle C=C—C, наоборот, укорочена до 1,315—1,316 Å. Вследствие внутримолекулярного взаимодействия двойных связей в димере II вычисленное волновое число соответствующего полносимметричного колебания больше волнового числа антисимметричного колебания на 16 см⁻¹ (B3LYP) или 15 см⁻¹ (PBE0).

Равновесные длины связей С—С более чувствительны к внутримолекулярным взаимодействиям, чем длины двойных связей С=С. Углерод-углеродные связи С—С (*c*) в молекулах I и II сильно растянуты, но не длиннее связей С—С в изученной нами ранее молекуле перфтортрицикло[4.2.0.0^{2,5}]октана [7]. Расчетные данные (см. табл. 2) показывают, что в димере II имеет место сокращение равновесных длин углерод-водородных связей (*i*) на 0,005 Å по сравнению со связями (*j*). Этот структурный эффект можно объяснить тем, что расстояние между ядрами атомов H_i меньше удвоенного ван-дер-ваальсового радиуса атомов водорода 2,32 Å [8], в то время как расстояние между ядрами H_i больше указанного значения. КРАТКИЕ СООБЩЕНИЯ

Таблица З

Связь	RHF	B3LYP	PBE0	Связь	RHF	B3LYP	PBE0	Связь	RHF	B3LYP	PBE0
a h	1,561	1,581 1 564	1,571	f o	1,514	1,515	1,506	j' k	1,085	1,093	1,094
b'	1,545	1,555	1,544	8 i	1,085	1,092	1,093	l	1,077	1,085	1,086
c d	1,551 1,505	1,557 1,500	1,547 1,493	i' j	1,082 1,085	1,090 1,093	1,091 1,094	m n	1,085 1,089	1,093 1,098	1,094 1,099
е	1,321	1,334	1,332								

Равновесные длины связей в низкосимметричном димере III, вычисленные квантово-химическими методами RHF, B3LYP, PBE0 /6-311G**, Å

Таблица 4

Относительные энергии молекул I—IV, ккал/моль

Молекулы	RHF/STO-3G [3]	RHF/6-311G**	B3LYP/6-311G**	PBE0/6-311G**
$2 I \rightarrow IV$	-54	-39	-39	-53
$\mathrm{IV} \to \mathrm{II}$	-81	-65	-66	-60
$2 \text{ I} \rightarrow \text{II}$	-135	-105	-105	-112
$2 \text{ I} \rightarrow \text{III}$		-122	-112	-116
$\mathrm{II} \rightarrow \mathrm{III}$		-17	-7	-4

Квантово-химические расчеты свидетельствуют об экзотермическом характере реакции димеризации бицикло[2.2.0]гекс-1(4)-ена. Энергия конечных димерных продуктов II и III намного ниже удвоенной энергии мономера I. В соответствии с экспериментальными данными [2], в нашей работе низкосимметричный димер III (табл. 3) в энергетическом отношении предпочтительнее высокосимметричного димера II. Вычисленная методами B3LYP и PBE0 разность энергий двух изомеров (табл. 4) близка к экспериментальному значению $\Delta H = 4,7\pm \pm 0,2$ ккал/моль.

СПИСОК ЛИТЕРАТУРЫ

- 1. Casanova J., Bragin J., Cottrell F.D. // J. Amer. Chem. Soc. 1978. 100, N 7. P. 2264 2265.
- 2. Wiberg K.B., Matturro M.G., Okarma P.J., Jason M.E. // Ibid. 1984. 106, N 7. P. 2194 2200.
- 3. Wiberg K.B., Adams R.D., Okarma P.J. et al. // Ibid. 1984. 106, N 7. P. 2200 2206.
- 4. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. 14, N 11. P. 1347 1363.
- 5. *Granovsky A.A.* // http:// classic.chem.msu.su/gran/games/index.html.
- 6. Вилков Л.В., Мастрюков В.С., Садова Н.И. Определение геометрической структуры свободных молекул. – М.: Мир, 1983.
- 7. Калниньш К.К., Семенов С.Г. // Журн. структур. химии. 2008. 49, № 6. С. 1147 1149.
- 8. Зефиров Ю.В., Зоркий П.М. // Там же. 1974. 15, № 1. С. 118 122.