УДК 662.74:681.142.2

Сравнение надмолекулярной организации бурых углей различных месторождений

П. Н. КУЗНЕЦОВ, Л. И. КУЗНЕЦОВА, С. М. КОЛЕСНИКОВА, Я. В. ОБУХОВ

Институт химии и химической технологии Сибирского отделения РАН, ул. К. Маркса, 42, Красноярск 660049 (Россия) E-mail: kuzpn@krsk.infotel.ru

(Поступила 25.01.2001; после доработки 11.03.2001)

Аннотация

Установлена связь показателей надмолекулярного строения бурых углей с содержанием в них кальция. Показано, что катионы кальция (и поливалентные катионы других щелочноземельных металлов), выполняют роль ионных мостиковых сшивок органической массы, затрудняют формирование графитоподобной фазы в угле, уменьшают степень межслоевой упорядоченности пакетов в этой фазе, придают жесткость надмолекулярной структуре и уменьшают содержание экстрагируемых спиртобензолом веществ и способность к набуханию в ТГФ. Выявлены соответствующие линейные корреляционные соотношения.

введение

Установление взаимосвязей между составом, строением и реакционной способностью углей - центральная задача углехимии, с решением которой связывается прогресс в создании новых эффективных процессов их глубокой переработки. Органическую массу угля (ОМУ) можно рассматривать как природный самоассоциированный полимер нерегулярного состава со сложным молекулярным строением [1]. Его пространственная надмолекулярная структура включает аморфные (неупорядоченные) и кристаллические (сравнительно упорядоченные) участки, различающиеся плотностью упаковки, подвижностью фрагментов и их средним размером. К настоящему времени накоплено достаточно данных [2-4], указывающих на то, что надмолекулярное строение является фактором, который во многом определяет термохимические превращения углей.

В формировании пространственной структуры наряду с валентными мостиковыми связями значительную роль играют множественные межмолекулярные взаимодействия между различными функциональными группами и структурными фрагментами. В природных углях присутствуют также соединения различных металлов, которые могут находиться в виде дискретных минералов либо входить в состав ОМУ. В бурых углях часто повышено содержание соединений щелочноземельных металлов преимущественно в виде солей карбоновых кислот [5, 6], которые могут оказывать влияние как на строение, так и на реакционную способность ОМУ.

В наших ранее выполненных работах [7-11] для установления взаимосвязи реакционной способности углей с их строением был применен подход, базирующийся на предварительном химическом модифицировании отдельных функциональных групп и структурных фрагментов в угле с помощью селективных реагентов. На примере регулярных серий селективно модифицированных образцов бурых углей Канско-Ачинского бассейна (КАБ) было установлено, что в формирование их надмолекулярного строения значительный вклад вносят поливалентные катионы металлов (среди которых преобладают катионы кальция) [10, 11]. Установлены корреляционные зависимости степени превращения угля в реакции гидрогенизации от коэффициента набухания в тетрагидрофуране (ТГФ), который отражает особенности надмолекулярного строения. Показано, что наличие этой связи обусловлено стерическими ограничениями при диффузии молекул растворителя к реакционноспособным фрагментам, находящимся в объеме надмолекулярной матрицы ОМУ.

Следует отметить, что надмолекулярное строение, по-видимому, играет важную роль в других реакциях углей, в частности при пиролизе, коксовании, газификации и брикетировании [12, 13]. Поэтому получение новых данных о пространственном надмолекулярном строении углей имеет важное значение для развития научных основ процессов их химической переработки.

В настоящей статье представлены результаты исследования различными методами особенностей надмолекулярного строения природных бурых углей разных месторождений. Использовали бурые угли Бородинского, Абанского и Березовского месторождений Канско-Ачинского бассейна, Кангаласского месторождения Ленского бассейна, а также бурый уголь месторождения Яллоурн в Австралии. Последний существенно отличается по составу от углей Канско-Ачинского и Ленского бассейнов и рассматривается в качестве перспективного сырья для целого ряда процессов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Отобранные пробы углей измельчали, отбирали фракцию с размером частиц 0.5-0.25 мм и высушивали в вакуумном сушильном шкафу. Состав органической массы углей определяли методами элементного и функционального анализа. Содержание гидроксильных групп анализировали методом ацетилирования, карбоксильных групп – титрованием уксусной кислоты, образующейся при обработке угля ацетатом кальция. Содержание основных золообразующих макрокомпонентов (кальция, кремния, железа) определяли методом рентгеноспектрального флуоресцентного анализа. Особенности надмолекулярного строения углей изучали методами рентгеновской дифракции, экстракции и набухания в органических растворителях. Рентгеновская дифракция дает информацию о строении кристаллических (упорядоченных) участков ОМУ. Выход экстракта и способность к набуханию характеризуют особенности строения всей ОМУ, степень сшитости структуры. По данным кинетики набухания можно судить также о механизме проникновения молекул растворителя в ОМУ, о гибкости цепей макромолекул.

Экстракцию угля проводили в аппарате Сокслета смесью этанола с бензолом в соотношении 1:1. Способность к набуханию определяли волюмометрическим методом. В качестве растворителей использовали этанол и тетрагидрофуран, различающиеся параметром растворимости и размером молекул. Коэффициент набухания *Q* оценивали отношением высоты столба набухшего угля в стеклянной ампуле к высоте столба сухого угля перед добавлением растворителя. Кинетику набухания анализировали по начальному участку кривой с использованием уравнения [14]

$$(Q_t - 1) / (Q_{eq} - 1) = k t^r$$

где Q_t – коэффициент набухания в момент времени t, Q_{eq} – равновесный коэффициент набухания, k – константа скорости, r – экспериментальный показатель, который отражает механизм диффузии растворителя в упле. Сопласно [14], значение r равно 0.45, если набухание контролируется физической диффузией молекул растворителя в сферическую частицу по порам. Если транспорт лимитируется процессом релаксации цепей угольных макромолекул, то показатель r равен 0.85.

Параметры кристаллической структуры ОМУ рассчитывали по дифрактограммам по основному рефлексу (002), обусловленному наличием упорядоченной графитоподобной фазы. Дифрактограммы снимали на приборе ДРОН-3 в СиҚа-излучении. Вычитание линии фона и выделение рефлекса (002) проводили по методике [15]. Содержание графитоподобной фазы S₀₀₂ оценивали по площади этого рефлекса. Степень деформированности в упаковке углеродных пакетов в этой фазе характеризовали отношением h/1, где h – высота максимума (002), 1 – его ширина на полувысоте. Дифракционный рефлекс с индексом (10) для бурых углей слабо проявляется, поэтому его не анализировали. Съемку дифрактограмм всех образцов углей проводили в одинаковых условиях.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Перечень использованных образцов углей и содержание в них основных золообразующих элементов приведены в табл. 1. Образцы имеют зольность от 1.0 % (уголь месторождения Яллоурн) до 9.2 % (Бородинское месторождение). При этом концентрация Са в углях изменяется от 0.15 % (в угле Яллоурн) до 2.10 % (в абанском угле), Mg – от 0.07 до 0.40 %, а Fe – от 0.06 до 0.73 %.

Элементный состав органической массы различается в меньшей степени. Так, содержание углерода, водорода и кислорода в пробах углей из месторождений Канско-Ачинского бассейна составляет 67.9-71.3, 4.6-4.9 и 22.8-26.4 % соответственно (табл. 2). Для угля Кангаласского месторождения характерно несколько более высокое содержание водорода (5.5 %). Австралийский уголь отличается повышенным содержанием кислорода (28.8 % против 22.3-26.4 % у других образцов углей). По данным функционального анализа, концентрация фенольных гидроксилов в углях КАБ составляет 6.3-8.0 %, карбоксильных – 1.9-3.2 %. Австралийский уголь отличается более высоким содержанием карбоксильных групп (6.6 %).

На рентгенограммах углей наблюдается широкий дифракционный максимум с индексом (002), который асимметричен в малоугловой области из-за 9-полосы, возникающей вследствие упорядоченности в периферийной части графитоподобной фазы ОМУ. Значения рентгеноструктурных параметров, определенных по основному рефлексу (002) после выделения 9-полосы, приведены в табл. 3. Межплоскостное расстояние d_{002} колеблется в пределах 3.70-3.87 Å, толщина углеродных пакетов L_c – от 7.8 до 8.8 Å, а число слоев *n* в пакетах – от 3.0 до 3.3. Образцы существенно различаются по показателю h/1, харак-

ТАБЛИЦА 1

~		<u></u>			~			5
$(\ \cap \Pi \cap \mathcal{O} \to \mathcal{O}$	ACHABULIV	$v_{\rm MIIIOI}$ $v_{\rm CONDOUT}$		Ð	DIDLIV	VDDDV	NADTINITY	MACHANAWHAUM
Содержание	UCHUBHBA	SOULOODASVOUNT	SUCMERICA	ъ		V L'JIAA	Dasjinandia	MECTODOWTERN
					- 0 1	0	1	<u>-</u>

Месторождение, шифр образца		Зольность,	Массовая дој	Массовая доля, %					
		A ^d , %*	Ca	Мg	Fe				
Бород	цинское, Ка	7.2	1.80	0.15	0.28				
»	Kaı	4.4	0.75	0.10	0.10				
»	Ka ₂	6.2	1.25	0.30	0.06				
»	Ka ₃	7.8	1.34	0.20	0.08				
»	Ka4	4.9	1.08	-	-				
»	Ka ₅	4.3	1.30	0.08	0.08				
»	Ka ₆	5.1	1.13	0.30	0.15				
»	Ka ₇	3.9	0.80	-	-				
»	Ka ₈	7.7	1.75	0.40	0.15				
»	Ka ₁₂	8.6	1.90	0.18	0.37				
»	Ka ₁₃	6.2	1.37	0.07	0.09				
»	Ka ₁₄	4.3	1.88	0.30	0.28				
»	Ka ₁₅	9,2	1.38	-	-				
»	Ka ₁₆	5.5	1.59	-	-				
»	Ka ₁₉	3.6	0.90	-	-				
Берез	вовское, Ка ₉	3.9	1.40	0.20	0.50				
Абанс	ское, Ка ₁₁	5.8	2.10	0.28	0.61				
Канга	ласское, Ка ₂₀	7.8	1.65	0.30	0.73				
Яллоз	урн, А ₁₀	1.0	0.15	0.16	0.40				

*В расчете на сухую массу образца.

Характеристика	состава	органической	массы	<i>б</i>VD_bIX	vrлей	различных	месторожлений

Уголь	Элемен	Элементный состав, массовая доля, %					Функциональный состав, массовая доля, %			
	С	Н	Ν	S	0*	О _{соон}	О _{он}	Другие		
Ка	69.6	4.7	0.9	0.2	24.6	3.1	6.9	14.6		
Ka ₁₂	71.3	4.8	0.9	0.2	22.8	2.8	6.3	13.7		
Ka ₁₃	67.9	4.6	0.9	0.2	26.4	3.2	6.9	16.3		
Ka ₁₄	69.7	4.9	0.8	0.3	24.3	2.8	7.2	14.3		
Ka ₁₁	71.3	4.8	0.9	0.2	22.8	1.9	7.9	13.0		
Ka,	69.2	4.7	0.7	0.2	25.2	2.5	8.0	14.7		
Ka ₂₀	71.0	5.5	0.8	0.4	22.3	-	-	-		
A ₁₀	65.7	4.7	0.5	0.3	28.8	6.6	8.3	13.9		

* Определен по разности.

теризующему межслоевую упорядоченность: его значение изменяется от 0.36 до 0.54. Интегральная интенсивность рефлекса S_{002} изменяется в интервале 79–121 отн. ед. Степень графитизации, рассчитанная по [16], находится в пределах 0.16–0.22.

Анализ приведенных в табл. 3 рентгеноструктурных характеристик и их сопоставление с характеристиками состава (см. табл. 1 и 2) показывают, что существует определенная связь между интенсивностью S_{002} рефлекса (002), значением показателя h/1 для этого рефлекса и содержанием Са в образцах. Чем больше в угле кальция, тем меньше графитоподобной фазы и тем сильнее она деформирована. В графической форме эта зависимость показана на рис. 1. Наличие данной взаимосвязи может указывать на то, что соединения Са, находящиеся в ОМУ преимуще-

ственно в составе солей карбоновых кислот и выполняющие функцию ионных мостиковых сшивок между фрагментами структуры, затрудняют упаковку ламелей (слоев) в пакеты и нарушают межслоевую упорядоченность.

Выход спиртобензольного экстракта и коэффициенты набухания углей в ТГФ и этаноле приведены в табл. 4. Выход экстракта невелик (колеблется от 0.8 % для кангаласского угля до 4.8 % для бородинского угля Ка₁), что указывает на достаточно высокую степень сшитости структуры. Наблюдается обратно пропорциональная зависимость выхода экстракта от содержания Са (рис. 2). Исключение составляет австралийский уголь.

Коэффициент набухания углей в этаноле (Q₃) варьирует от 1.43 до 1.85. Этот показатель для канско-ачинских углей в подавляю-

Уголь	d ₀₀₂ , Å	L_c , Å	п	h/l	$S_{_{002}}$	Степень графитизации
						1 1 1
Ka ₁	3.78	8.8	3.3	0.54	113	0.20
Ka ₂	3.74	8.5	3.3	0.42	91	0.22
Ka ₃	3.81	7.8	3.0	0.40	95	0.17
Ka ₄	3.74	8.1	3.1	0.42	103	0.21
Ka ₅	3.74	8.1	3.2	0.41	96	0.21
Ka ₆	3.77	8.1	3.1	0.41	93	0.19
Ka ₇	3.74	8.2	3.2	0.44	97	0.21
Ka ₂₀	3.87	8.6	3.2	0.36	79	0.16
A ₁₀	3.70	7.8	3.1	0.50	121	0.22

ТАБЛИЦА 3 Рентгеноструктурные характеристики бурых углей

ТАБЛИЦА 2

Рис. 1. Изменение интенсивности S_{002} дифракционного рефлекса (002) (1) и межслоевой упорядоченности h/l (2) для бурых углей в зависимости от содержания в них кальция.

щем большинстве находится в узком интервале со средним значением 1.60. Отклонения от него, за небольшим исключением, находятся в пределах ошибки определения ± 0.04 . Значения $Q_{\rm TTO}$ имеют более широкий интервал – от 1.41 до 2.01.

таблица 4

Выход спиртобензольного экстракта и коэффициенты набухания углей в этаноле и ТГФ

Уголь	Выход,	Q _э	Q _{TTΦ}
	массовая		
	доля, %		
Ка	1.5	1.65	1.66
Каı	4.8	1.55	1.91
Ka ₂	2,7	1.58	1.90
Ка _з	3.5	1.65	1.68
Ka4	4.6	1.43	1.78
Ка ₅	4.2	1.64	1.71
Ка ₆	2.4	1.60	1.66
Ka ₇	4.1	1.63	1.90
Ка ₈	2.5	1.56	1.62
Ка ₉	2.5	1.62	1.91
Ka ₁₁	-	1.56	1.41
Ka ₁₂	-	1.56	1.46
Ka ₁₃	-	1.64	1.80
Ka ₁₄	-	1.61	1.60
Ka ₁₅	-	1.62	1.61
Ka ₁₆	-	1.59	1.52
Ka ₁₉	-	1.71	1.92
Ka ₂₀	0.8	-	-
A ₁₀	3.3	1.85	2.01

Рис. 2. Выход спиртобензольного экстракта (массовая доля) в зависимости от содержания в угле Са.

По величине набухания, т.е. по приросту объема угля с учетом значения мольного объема растворителя V_m , было рассчитано количество внедрившегося в уголь растворителя по формуле

$$N = (Q_{eq} - 1) / V_{n}$$

где N - количество растворителя, отнесенное к единице объема угля, моль /см³.

При допущении одинаковой стехиометрии реакции взаимодействия растворителей с межмолекулярными сшивками величина N, фактически отражающая число разорванных межмолекулярных сшивок в набухшем угле, более адекватно характеризует действие растворителей с разным молекулярным размером. Оказалось, что этанол разрушает, как правило, больше сшивок в угле, чем ТГФ (табл. 5). Наиболее заметное различие в значениях N наблюдается для образцов с повышенным содержанием Ca.

На рис. 3 представлена зависимость *Q* от концентрации Са в образцах. Видно, что при набухании угля в ТГФ имеет место определенная корреляция, которая описывается (коэффициент корреляции *R* = -0.85) уравнением регрессии вида

$Q_{\rm TF\Phi} = 2.17 - 0.33 C_{\rm Ca}$

Интересно отметить, что в ранее выполненной работе [11] для регулярной серии образцов, полученных из одного и того же угля путем его обработки водными растворами HCl (содержание Са в образцах изменялось от 0.006 до 1.8 %), найдена линейная зависимость $Q_{\rm TTP}$ от логарифма концентрации кальция, при

ТАБЛИЦА 5

	N. MMOILE/CM ³	
	Этанол	ΤΓΦ
Ка	11	8
Ka ₁	9	11
Ka ₂	11	11
Ka ₃	11	8
Ka4	7	10
Ka ₅	10	9
Ka ₆	11	8
Ka ₇	11	11
Ka ₈	10	8
Ka ₉	11	11
Ka ₁₁	10	5
Ka ₁₂	10	6
Ka ₁₃	10	10
Ka ₁₄	10	7
Ka ₁₅	11	7
Ka ₁₆	10	6
Ka ₁₉	12	11
A ₁₀	14	12

Количество этанола и ТГФ (N), поглощенное при набухании углей

этом коэффициент корреляции возрастал до -0.99.

Кинетика набухания в ТГФ трех образцов бурого угля с разным содержанием Са приведена на рис. 4. Значения показателя *r*, определенные по углу наклона прямой для на-

Рис. 3. Зависимость коэффициентов набухания (Q) углей в ТГФ и этаноле от содержания в угле Са.

Рис. 4. Кинетика набухания утлей Ка (1), Ка, (2) и Ка, (3).

чального участка кинетической зависимости, находятся в пределах 0.30-0.46. Для образцов Ка, и Ка, r равно 0.45-0.46, что соответствует механизму, согласно которому набухание контролируется скоростью проникновения в ОМУ молекул ТГФ посредством физической диффузии в порах. Константа скорости набухания для образца Ка₁ (содержание Са 0.75%) равна 0.138 мин^{-0.5}, а для Ка₃, в котором содержится больше Са (1.34 %), ее значение в 2 раза меньше (0.063 мин^{-0.5}). В случае образца Ка с высоким содержанием Са (1.80 %) кинетика набухания не согласуется с моделью, предполагающей лимитирование процесса скоростью транспорта молекул растворителя посредством физической диффузии по порам либо за счет релаксации цепей макромолекул. Одна из причин отклонения кинетики от модели может быть связана с тем, что при высокой концентрации прочных ионных металл-карбоксилатных сшивок в угле формируются поры с малыми размерами, через которые транспорт молекулы ТГФ с жесткой структурой может осуществляться посредством активированной диффузии.

ЗАКЛЮЧЕНИЕ

Из полученных количественных данных следует, что на физическое строение природных бурых углей существенное влияние оказывают соединения Са, которые находятся преимущественно в составе органической массы угля в виде карбоксилатных комплексов и выполняют роль ионных сшивок между ароматическими фрагментами. В среде ТГФ эти сшивки, как показали проведенные ранее исследования [10, 11], по-видимому, существенно не нарушаются, надмолекулярная организация сохраняет жесткую структуру и молекулы ТГФ проникают в объем ОМУ преимущественно через открытые поры. Только после удаления из угля катионов кальция (и других поливалентных катионов) до концентрации менее 0.45 % путем обработки раствором HCl надмолекулярная решетка ОМУ становится достаточно лабильной, макромолекулярные цепи приобретают гибкость, что приводит к значительному увеличению выхода экстракта (в 2-4 раза) и скорости набухания с переходом к механизму транспорта молекул ТГФ за счет процесса релаксации цепей.

В отношении набухания в этаноле природные бурые угли различных месторождений мало специфичны. Это обусловлено тем, что малые молекулы этанола способны легко проникать в объем ОМУ[11], где они, сольватируя различные кислородсодержащие фрагменты (в первую очередь гидроксильные и карбоксильные группы, а также металл-карбоксилатные комплексы), разрушают (или ослабляют) межмолекулярные сшивки и вызывают набухание. Более высокий коэффициент набухания австралийского угля, повидимому, обусловлен повышенным содержанием в нем кислорода. Скорость процесса набухания, как установлено ранее [11], лимитируется транспортом молекул этанола в ОМУ вследствие релаксации цепей макромолекул.

Авторы выражают признательность В.Г.Чумакову и Г.А. Моисеевой за съемку рентгенограмм и сотрудникам Исследовательской лаборатории в Такасаго (фирма Nippon Brown Coal Liquefaction, Япония) за предоставление образца бурого угля месторождения Яллоурн.

СПИСОК ЛИТЕРАТУРЫ

- 1 А. А. Кричко, С. Г. Гагарин, С. С. Макарьев, *Химия* твердого топлива, 6 (1993) 27.
- 2 M. W. Haenel, Fuel, 71 (1992) 1211.
- 3 P. R. Solomon, T. H. Fletcher, R. J. Pugmire, *Ibid.*, 72 (1993) 587.
- 4 П. Н. Кузнецов, Я. Бимер, П. Д. Салбут, ДАН, 339, 1 (1994) 55.
- 5 Р. Я. Биргауз, Т. А. Кухаренко, Химия и переработка топлив: Сб. трудов ИГИ, Москва, 1971, т. XXVII, вп. 1, с. 3.
- 6 М. Я. Шпирт, И. Х. Володарский, Л. А. Зекель, *Рос. хим. журн.*, 38, 5 (1994) 43.
- 7 P. N. Kuznetsov, G. I. Sukhova, J. Bimer *et al.*, *Fuel*, 70, 9 (1991) 1031.
- 8 P. N. Kuznetsov, J. Bimer, P. D. Salbut, *Ibid.*, 73 (1994) 901.
- 9 P. N.Kuznetsov, J. Bimer, P. D. Salbut, Fuel Processing Technology, 50 (1997) 139.
- 10 P.N. Kuznetsov, L.I. Kuznetsova, J. Bimer, Fuel, 76, 2 (1997) 89.
- 11 П. Н. Кузнецов, Химия твердого топлива, 3 (1998) 53.
- 12 M. Nishioka, Fuel, 71 (1992) 941.
- 13 K. H. Heek and W. Hodek, Ibid., 73 (1994) 886.
- 14 Y. Otake, E. M. Suuberg, Ibid., 68 (1989) 1609.
- 15 В. И. Саранчук, А. Т. Айруни, К. Е. Ковалев, Надмолекулярная организация, структура и свойства угля, Наукова думка, Киев, 1988.
- 16 А. Ф. Луковников, Ю. М. Королев, Г. С. Головин, Химия твердого топлива, 5 (1996) 3.