УДК 544.478.1 DOI: 10.15372/KhUR20150416

Изучение влияния катионного и анионного модифицирования на активность CuZnAlO-катализатора в реакции окислительного обессеривания дибензотиофена в модельном дизельном топливе

С. А. ЯШНИК¹, А. В. САЛЬНИКОВ¹, М. А. КЕРЖЕНЦЕВ¹, З. Р. ИСМАГИЛОВ^{1,2}, YAMING JIN³, О. R. KOSEOGLU³

¹Институт катализа им. Г. К. Борескова Сибирского отделения РАН, проспект Академика Лаврентьева, 5, Новосибирск 630090 (Россия)

E-mail: zri@catalysis.ru

²Институт углехимии и химического материаловедения Сибирского отделения РАН, проспект Советский, 18, Кемерово 650000 (Россия)

E-mail: zinfer1@mail.ru

³Saudi Aramco Research and Development Center, Bldg. 9172, Dhahran 31311 (Saudi Arabia)

Аннотация

С целью поиска активных катализаторов для получения дизельного топлива с низким содержанием серы изучена активность образцов, полученных путем модифицирования CuZnAlO-катализатора различными анионными и катионными добавками в реакции окислительного обессеривания дибензотиофена, растворенного в толуоле. Показано, что совместное модифицирование анионными добавками BO_2^- и MoO_4^{2-} способствует увеличению эффективности окислительного обессеривания дибензотиофена за счет его окисления кислородом воздуха в паровой фазе.

Ключевые слова: дибензотиофен, десульфуризация, окислительное обессеривание, CuZnAlO-катализаторы, модифицирование

введение

В настоящее время во всех развитых странах регламентируемое содержание серы в дизельном топливе ограничивается 10 м. д. Изменения нормативов по содержанию серы в моторном топливе требуют совершенствования существующих методов очистки и разработки новых технологий. В настоящее время на большинстве нефтеперерабатывающих заводов для удаления серы из углеводородного топлива используют процесс гидрообессеривания [1]. Однако данный метод позволяет удалять термостабильные соединения серы, такие как дибензотиофен (ДБТ) и его метилзамещенные производные, только при повышенных температурах и давлении водорода. Большой интерес в настоящее время представляют методы окислительного обессеривания дизельных топлив в присутствии катализаторов [2]. В качестве окислителей в данном процессе применяют H_2O_2 , O_2 , O_3 , но практическое применяют H_2O_2 , O_2 , O_3 , но практическое применение нашел пока только пероксид водорода [3–5]. Главными недостатками данного метода является высокая стоимость окислителя, а также образование сульфонов и сульфоксидов в процессе реакции. В этой связи необходимо вводить дополнительную стадию экстракции или адсорбции серосодержащих продуктов окисления, что

© Яшник С. А., Сальников А. В., Керженцев М. А., Исмагилов З. Р., Jin Yaming, Koseoglu O. R., 2015

влечет увеличение затрат на получение низкосернистого топлива. Вместо дорогостоящего пероксида водорода в качестве окислителя может быть использован кислород атмосферного воздуха. Результаты единичных исследований [6-8] свидетельствуют о перспективности метода окислительного обессеривания кислородом атмосферного воздуха. К основным преимуществам этого метода относится использование дешевого окислителя и окисление серосодержащих соединений дизельного топлива непосредственно до SO₂. Для практического применения требуется поиск эффективных катализаторов и оптимальных условий процесса, обеспечивающих селективное окисление серосодержащих молекул и высокий выход дизельной фракции с требуемыми характеристиками [2]. В предыдущей работе [9] мы разработали CuZnAlOкатализатор, позволяющий окислять ДБТ, растворенный в толуоле (модельное дизельное топливо), но его максимальная каталитическая активность не превышала 45 %. Кроме того, катализатор быстро дезактивировался продуктами поликонденсации.

Цель данной работы – изучение влияния модифицирующих катионных (Mg^{2+}, Ca^{2+}) и анионных $(PO_4^{3-}, BO_2^{-}, WO_4^{2-}, MoO_4^{2-})$ добавок на повышение активности CuZnAlO-катализатора в реакции окислительного обессеривания ДБТ в парогазовой фазе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез катализаторов

Катализатор CuO-ZnO-Al₂O₃ синтезирован осаждением согласно [10]. После прокаливания катализатор содержал 50 мас. % CuO, 15 мас. % ZnO, 30 мас. % Al₂O₃, остальное – вода и $CO_3^{2^-}$. Далее его модифицировали добавками Mg²⁺, Ca²⁺, PO₄³⁻, BO₂⁻, WO₄²⁻ и MoO₄²⁻, которые вводили методом пропитки растворов водорастворимых реактивов по влагоемкости с целью повышения сорбционной способности и регулирования его кислотности. Температуры сушки и прокаливания модифицированных катализаторов составляли 110 и 500 °С соответственно.

Исследование физико-химических характеристик катализаторов

Химический состав свежих катализаторов исследовали методом атомно-адсорбционной спектроскопии с индуктивно связанной плазмой с помощью OPTIMA 4300DV спектрометра (Perkin Elmer) после растворения образцов в растворе серной кислоты (45 мас. %).

Содержания углерода, водорода и серы (CHS) в отработанных катализаторах определяли с помощью анализатора Vario MicroCube (Elementar Analysensysteme GmbH, Германия) путем сжигания пробы в атмосфере кислорода, разделения продуктов температурнопрограммируемой десорбцией и последующего детектирования с помощью детектора по теплопроводности.

Текстурные характеристики катализаторов: удельная поверхность $S_{\text{БЭТ}}$, объем пор V_{Σ} и диаметр пор d – изучали методом низкотемпературной адсорбции азота. Измерения изотерм адсорбции – десорбции N_2 проводили на автоматической волюметрической установке ASAP-2400 (Micromeritics, США).

Фазовый состав катализаторов определяли методом рентгеновской дифракции. Порошковые дифрактограммы записывали с помощью дифрактометра HZG-4C (Freiberger Prazisionmechanik, Германия) в диапазоне углов $2\theta = 10-70^{\circ}$ с использованием монохроматического Со K_{α} -излучения. Идентификация фаз проводилась с использованием кристаллографической базы данных X-ray Powder Diffraction File JCPDS-ICDD.

Эксперименты по температурно-программируемому восстановлению водородом (TПВ-H₂) проводили в проточной установке, оснащенной детектором по теплопроводности. Образец массой 50 мг с фракционным составом 0.25-0.50 мм предварительно выдерживали в потоке кислорода (30 см³/мин) при 500 °С в течение 30 мин для удаления адсорбированной воды и карбонатов. Далее его охлаждали до комнатной температуры и продували аргоном для удаления кислорода из пор катализатора. В качестве восстанавливающего агента использовали смесь 90 об. % Ar + 10 об. % Н₂, которую подавали на слой катализатора со скоростью 30 см³/мин. Диапазон температур и скорость нагрева составляли 20-800 °C и 10 °C/мин соответственно. Воду, образующуюся в процессе реакции, вымораживали в ловушке при температуре -60 °C.

Тестирование катализаторов в окислительном обессеривании ДБТ

Катализаторы тестировали в реакции окисления серосодержащей молекулы кислородом. В качестве серосодержащей молекулы использовали ДБТ, растворенный в толуоле в количестве 0.1 мас. % в расчете на серу. В экспериментах использовали проточный реактор, помещенный в печь с кипящим слоем кварцевого песка для равномерного распределения температуры в реакторе. Навеска катализатора составляла 2 г, фракционный состав 0.5-1.0 мм. Молярное соотношение O_2/S равно 120, объемная скорость потока газа (gas hour space velocity, GHSV) 3000 ч⁻¹, массовая скорость подачи топлива (liquid hour space velocity, LHSV) 6 u^{-1} , диапазон температур 245-430 °С. Температура катализатора измерялась хромель-алюмелевой термопарой, помещенной в слой катализатора. Точность измерения температуры составляла 0.5 %. Подачу модельного топлива в реактор производили снизу вверх. Смесь кислорода в гелии и толуол подавали в слой катализатора раздельно для предотвращения газофазного горения толуола вне слоя катализатора. Жидкие продукты реакции собирали в пробоприемнике путем их охлаждения в обратном холодильнике при температуре 5 °С.

Общее содержание серы в толуоле и в жидких продуктах реакции определяли с помощью рентгеновского энергодисперсионного анализатора серы АСЭ-2 (НПП "Буревестник", Россия), обеспечивающего определение серы в интервале 0–1000 м. д. с точностью измерения 10 %. Состав индивидуальных углеводородов и серосодержащих соединений в жидких продуктах реакции определяли на масс-спектрометре Agilent 7000 Triple Quad (Agilent, США). Анализ компонентов газовой фазы проводили с помощью хроматографа

ТАБЛИЦА 1

Фазовый состав	исходных	катализаторов	ии	ſХ	текстурные	характеристики
1 doobbiii coolab	JIOINO MIDIN	na racinoa ropob		***	ronor, pribro	naparrepreting

Катализаторы	Фазовый состав	Текстурные характеристики				
		$\overline{S_{\mathrm{BET}}}$, м $^2/r$	V_{Σ} , см $^3/г$	<i>D</i> _{пор} , нм		
CuZnAlO	$(Cu, Zn)Al_2O_4^*, a = 7.981 \text{ Å}$					
	CuO (5-661)	50	0.19	15.2		
Mg ²⁺ /CuZnAlO	(Cu, Zn)Al ₂ O ₄ *, $a = 7.995 \text{ Å}$					
	CuO (5-661)	79	0.23	12.1		
Ca ²⁺ /CuZnAlO	(Cu, Zn)Al ₂ O ₄ *, $a = 7.995 \text{ Å}$	$O_4^*, a = 7.995 \text{ Å}$				
	CuO (5-661)	69	0.26	15.1		
PO ₄ ³⁻ /CuZnAlO	(Cu, Zn)Al ₂ O ₄ [*] , $a = 7.998$ Å	$Al_2O_4^*, \ a = 7.998 \text{ Å}$				
	CuO (5-661)	62	0.21	13.6		
BO ₂ /CuZnAlO	(Cu, Zn)Al ₂ O ₄ [*] , $a = 7.998 \text{ Å}$					
	CuO (5-661)	39	0.14	14.3		
WO ₄ ²⁻ /CuZnAlO	(Cu, Zn)Al ₂ O ₄ [*] , $a = 7.896$ Å					
	CuO (5-661)					
	CuWO _{4 - x} (21-307)**	53	0.29	21.5		
MoO ₄ ²⁻ /CuZnAlO	(Cu, Zn)Al ₂ O ₄ [*] , $a = 7.998 \text{ Å}$					
	CuO (5-661)	82	0.33	16.1		
$\mathrm{BO}_2^ \mathrm{MoO}_4^{2-} / \mathrm{CuZnAlO}$	(Cu, Zn)Al ₂ O ₄ [*] , $a = 7.896 \text{ Å}$					
	CuO (5-661)					
	MoO_3 (35-609)**	38	0.16	18.1		

* Высокодисперсная фаза со структурой шпинели.

** Следы.

"Кристалл-2000М" (ЗАО "СКБ Хроматек", Россия) с детектором по теплопроводности для анализа O₂, CO₂ и CH₄ и пламенно-фотометрическим детектором для анализа H₂S, COS и SO₂.

Реакционную способность серосодержащей молекулы к окислению в присутствии модифицированных CuZnAlO-катализаторов анализировали по эффективности удаления серы из жидкой фазы, степени превращения серосодержащей молекулы в SO₂, предполагая, что в реакторе протекают реакции глубокого окисления. Эффективность удаления ДБТ из жидких продуктов реакции X_S рассчитывали по формуле

$$X_{\rm s} = (C_{\rm s}^0 - C_{\rm s}) / C_{\rm s}^0 \cdot 100 \%$$
 (1)

где $C_{\rm S}^0$, $C_{\rm S}$ – содержание серы в исходном сырье и в жидком топливе после реакции соответственно, об. %. Степень превращения серосодержащей молекулы до SO₂ $X_{\rm S\to SO_2}$ рассчитывали как

$$X_{S \to SO_2} = C_{SO_2} / C_S^0 \cdot 100 \%$$
 (2)

где C_{SO_2} – количество SO₂, образующееся в ходе реакции, об. %.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Влияние модифицирующих добавок на окислительно-восстановительные свойства CuZnAlO-катализатора

Фазовый состав и текстурные характеристики исходных немодифицированного и модифицированных CuZnAlO-катализаторов представлены в табл. 1. По данным рентгенофазового анализа (РФА), катализаторы в качестве фазы содержат высокодисперсную шпинель (Cu,Zn)Al₂O₄ и окристаллизованный оксид CuO. Катализаторы, модифицированные анионами WO_4^{2-} и MoO_4^{2-} , содержат также фазу CuWO_{4-x} и MoO_3 в следовых количествах.

Формирование высокодисперсного оксида MoO_3 приводит к увеличению удельной поверхности и объема пор CuZnAlO-катализатора. В то же время BO_2^- снижает его удельную поверхность, а введение остальных анионных добавок слабо влияет на текстурные характеристики. Катионные добавки Mg^{2+} и Ca²⁺ способствуют повышению удельной поверх-

Рис. 1. Поглощение водорода (в расчете на 1 г меди) CuZnAlO-катализатором в ТПВ-H₂ экспериментах: 1 – немодифицированный (H₂/Cu = 1.05), 2, 3 – модифицированный катионными добавками Mg^{2+} (1.24) и Ca²⁺ (1.22) соответственно.

Рис. 2. Поглощение водорода (в расчете на 1 г меди) CuZnAlO-катализатором в TПВ-H₂ экспериментах: 1 – немодифицированный (H₂/Cu = 1.05), 2–5 – модифицированный анионными добавками $PO_4^{3^-}$ (1.5), BO_2^- (1.27), $MOQ_4^{2^-}$ (1.27), $WO_4^{2^-}$ (H₂/Cu = 1.06) соответственно.

ности и объема пор, что, вероятно, связано со стабилизацией Al_2O_3 в γ-модификации [11].

На рис. 1, 2 приведены кривые поглощения водорода в ходе ТПВ-Н₂ эксперимента с образцами немодифицированного и модифицированного анионными и катионными добавками CuZnAlO-катализатора, по которым можно судить об их окислительно-восстановительных свойствах.

Ранее [9] мы показали, что CuZnAlO-катализатор с содержанием меди 45 мас. % обладает оптимальными каталитическими характеристиками в реакции окислительного обессеривания ДБТ, растворенного в толуоле. Его восстановление характеризуется одиночным пиком поглощения водорода и завершается при температуре примерно 300 °C. Стехиометрическое соотношение $H_2/Cu = 1.05$ и близко к стехиометрическому восстановлению Cu(II) до металла ($H_2/Cu = 1$). Согласно данным [12, 13], окристаллизованный оксид меди восстанавливается в одну стадию с максимумом поглощения водорода при температуре 285 °C.

Введение модифицирующих добавок обычно оказывает влияние на окислительно-восстановительные свойства Си-оксидных катализаторов, так как изменяет характер взаимодействия CuO с материалом носителя. Введение добавок модифицирующих оксидов, имеющих бо́льшее сродство к взаимодействию с носителем (Al₂O₃, ZrO₂), чем катион Cu(II), ослабляет взаимодействие CuO с носителем (например, при модифицировании Al₂O₃ оксидом La, Mg [14]) и снижает температуру восстановления CuO. Введение модифицирующих добавок, образующих с CuO новые фазы (CuCr₂O₄ либо твердый раствор), может как улучшать, так и ухудшать его способность к восстановлению в водороде, что определяется окислительно-восстановительными свойствами новой фазы, как в случае CeO₂ [15, 17] и ZrO₂ [16, 17].

Некоторые изменения окислительно-восстановительных свойств CuZnAlO-катализатора наблюдаются после модифицирования. Согласно данным TПВ-H₂, полное восстановление частиц CuO в модифицированных CuZnAlO-катализаторах происходит в температурном интервале 150-400 °C и зависит от природы модифицирующей добавки (см. рис. 1, 2). Температурный интервал полного восстановления модифицированных CuZnAlOкатализаторов шире по сравнению с таковым для немодифицированного катализатора. Наблюдаемое для всех модифицированных катализаторов соотношение H_2/Cu также несколько выше, чем для немодифицированного катализатора, и составляет 1.15–1.25. Превышение стехиометрического значения для CuO ($H_2/Cu = 1$) может быть связано с восстановлением модифицирующего компонента, которое реализуется в том же температурном интервале.

Из данных рис. 1 видно, что в результате модифицирования CuZnAlO-катализатора добавками Ca²⁺ или Mg²⁺ формируются два типа частиц, содержащих катионы Cu(II), с различной температурой восстановления. Так, для Mg²⁺-содержащего образца эти частицы восстанавливаются при 215 и 265 °C, а для Ca²⁺модифицирующего образца - при 250 и 282 °С. Учитывая данные о температурах восстановления массивных частиц CuO и CuAl₂O₄, можно предположить, что в Mg²⁺- и Ca²⁺-модифицированных катализаторах катионы меди входят в состав шпинели (Cu,Zn)Al₂O₄ и грубодисперсных частиц CuO, которые восстанавливаются при температурах 250-265 и 280 °C соответственно. Помимо них в Mg²⁺-модифицированном катализаторе катионы меди присутствуют в составе высокодисперсных частиц CuO, которые хорошо взаимодействуют с носителем и восстанавливаются при более низких температурах (218 °С) [16-21].

Модифицирующие добавки кислотного характера (см. рис. 2) оказывают различное влияние на окислительно-восстановительные свойства катализатора. Добавки PO₄³⁻ и BO₂⁻, которые могут взаимодействовать с ОН-группами CuZnAlO-катализатора, ухудшают способность к восстановлению медьсодержащих частиц (см. рис. 2, кривые 2 и 3). Так, модифицированные PO₄³⁻ и BO₂⁻ CuZnAlO-катализаторы восстанавливаются в интервале температур 200-350 и 250-350 °C соответственно, что несколько шире, чем для немодифицированного катализатора. По-видимому, вследствие уменьшения числа поверхностных центров в Al₂O₃, которые могут взаимодействовать с катионами меди (II), формируются более грубодисперсные частицы CuO.

Введение модифицирующей добавки WO₄²⁻ не приводит к изменению восстановительных свойств CuZnAlO-катализатора (см. рис. 2, кривая 5), в то время как добавка $MoO_4^{2^-}$ ухудшает его восстановительную способность (кривая 4). В частности, максимумы восстановления смещаются с 250 до 290–320 °С. Кроме того, для $WO_4^{2^-}$ -модифицированного образца соотношение H_2/Cu близко к стехиометрическому значению для Cu(II) ($H_2/Cu = 1$), а для $MoO_4^{2^-}$ -модифицированного CuZnAlO-катализатора оно несколько выше (1.27). Анализируя данные TПВ- H_2 , можно предположить, что пик в области 200–350 °С на кривых TПВ- H_2 $MoO_4^{2^-}$ -модифицированного катализатора является суперпозицией поглощения водорода на восстановление катионов меди (II) в составе шпинели (250-275 °C) и грубодисперсного CuO (270-290 °C) до металлических частиц меди и восстановления высокодисперсных частиц MoO₃ до MoO₂ (310-320 °C).

Последнее предположение хорошо согласуется с данными TПВ- H_2 для образца CuZnAlO-катализатора, который содержит двойную модифицирующую добавку – $BO_2^$ и MoO_4^{2-} . Оба компонента могут взаимодействовать с поверхностными группами оксида алюминия, что затрудняет восстановление частиц CuO и смещает максимум поглощения водорода в более высокотемпературную область – с 250 до 310–350 °C.

Таким образом, введение модифицирующих добавок влияет на окислительно-восста-

Рис. 3. Образование SO_2 (*a*) и эффективность удаления ДБТ из жидких продуктов реакции (б) при окислительном обессеривании ДБТ, растворенного в толуоле, в зависимости от температуры на CuZnAlO-катализаторе, немодифицированном и модифицированном катионными добавками (Mg²⁺ и Ca²⁺).

Рис. 4. Образование SO₂ (*a*) и эффективность удаления ДБТ из жидких продуктов реакции (б) при окислительном обессеривании ДБТ, растворенного в толуоле, в зависимости от температуры на CuZnAlO-катализаторе, немодифицированном и модифицированном анионными добавками ($PO_4^{3^-}$, BO_2^- , $MOQ_4^{2^-}$, $MO_4^{2^-}$, $MO_2^{2^-}$).

новительные свойства CuZnAlO-катализатора, особенно в случае BO_2^- и $M_0O_4^{2-}$. Изменение окислительно-восстановительных свойств может сказаться на его каталитических свойствах в реакциях окислительного обессеривания серосодержащих молекул, протекающих в слабовосстановительных средах.

Каталитические свойства модифицированных CuZnAlO-катализаторов в окислительном обессеривании ДБТ

Основные продукты реакции окислительного обессеривания ДБТ в толуоле – CO₂ и SO₂, присутствующие в газовой фазе. При этом в жидкой фазе зафиксирован только непрореагировавший ДБТ, а серосодержащие соединения, такие как растворенный H₂S, сульфоны и сульфоксиды, не обнаружены. Ранее в нашей работе [22] сообщалось, что в ходе реакции окисления ДБТ, растворенного в толуоле, на поверхности немодифицированного CuZnAlO-катализатора накапливаются углерод и сера. С помощью ДТА-ТГ-МС-анализа установлено, что сера в отработанном катализаторе находится в виде поверхностных сульфидов/полисульфидов меди и цинка и сульфатов меди, цинка и алюминия. В отработанных CuZnAlO-катализаторах, модифицированных катионными и анионны-

ТАБЛИЦА 2

Химический и фазовый состав катализаторов после тестирования в окислительном обессеривании ДБТ, растворенного в толуоле, и их структурные характеристики

Катализаторы	Содержание CHS, мас. %			Фазовый состав	Текстурные характеристики		
	С	Н	s		$S_{\rm BET}$, м $^2/r$	V_{Σ} , см $^3/г$	$D_{\rm пор}$, нм
CuZnAlO	5.15	0.43	1.85	(Cu, Zn)Al ₂ O ₄ *, $a = 7.964$ Å		0.14	
				Cu ₂ O (34–1354), $H_{49.5} = 20$	47		11.6
				Cu^0 (4–836), $H_{50.7} = 940$	11		
				ZnO (36-1451)			
Mg ²⁺ /CuZnAlO	11.5	0.42	2.13	$(Cu,Zn)Al_2O_4^*, a = 8.105 \text{ Å}$			
				Cu ₂ O (34–1354), $H_{49.5} = 170$	34	0.09	11.1
				Cu^0 (4–836), $H_{50.7} = 90$	51		
Ca ²⁺ /CuZnAlO	8.57	0.40	2.71	$(Cu,Zn)Al_2O_4^*,$		0.16	14.7
				Cu ₂ O(34–1354), $H_{49.5} = 100$	44		
				Cu^0 (4–836), $H_{50.7} = 80$	II		
PO ₄ ³⁻ /CuZnAlO	7.95	0.46	1.34	(Cu,Zn)Al ₂ O ₄ *, $a = 8.083$ Å			
				Cu ₂ O (34–1354), $H_{49.5} = 80$			
				Cu^0 (4–836), $H_{50.7} = 170$	40	0.18	18.2
BO_2^- /CuZnAlO	6.01	0.42	1.13	$(Cu,Zn)Al_2O_4^*, a = 8.080 \text{ Å}$			
				Cu ₂ O (34–1354), $H_{49.5} = 40$			
				Cu^0 (4–836), $H_{50.7} = 360$	11	0.05	18.1
WO4 ²⁻ /CuZnAlO	7.97	0.35	1.46	$(Cu,Zn)Al_2O_4^*, a = 8.074 \text{ Å}$			
				Cu ₂ O (5–567), $H_{49.5} = 135$			
				Cu^0 (4–836), $H_{50.7} = 20$	41	0.15	15.0
MoO ₄ ²⁻ /CuZnAlO	7.49	0.48	1.64	$(Cu,Zn)Al_2O_4^*, a = 8.105 \text{ Å}$			
				Cu ₂ O (34–1354), $H_{49.5} = 60$	51	0.19	14.9
				Cu^0 (4–836), $H_{50.7} = 215$			
$BO_2^ MoO_4^{2-} / CuZnAlO$	3.90	0.42	1.96	$(Cu,Zn)Al_2O_4^*, a = 8.095 \text{ Å}$			
				Cu ₂ O (34–1354), H _{49.5} =160	31	0.14	18.1

Примечание. Н - интенсивность рефлекса при указанной величине угла 20.

* Высокодисперсная фаза со структурой шпинели.

ми добавками, методом CHS также обнаружены углерод и сера.

На рис. 3, 4 приведены данные по активности немодифицированного и модифицированных CuZnAlO-катализаторов, которую определяли по селективности образования SO₂ и эффективности удаления ДБТ из жидких продуктов реакции в реакции окислительного обессеривания ДБТ, растворенного в толуоле. Химический и фазовый состав немодифицированного и модифицированных CuZnAlO-катализаторов после исследования в окислительном обессеривании ДБТ охарактеризованы в табл. 2.

Вне зависимости от модифицирующей добавки CuZnAlO-катализаторы проявляют активность в реакции окисления ДБТ при температурах выше 300 °С. Введение катионов щелочно-земельных металлов (Mg^{2+} и Ca^{2+}) приводит к снижению каталитической активности как в образовании SO₂, так и в удалении ДБТ из жидких продуктов реакции. CHSанализ отработанных образцов, модифицированных Mg²⁺ или Ca²⁺, выявил высокую концентрацию углерода (11.5 и 8.57 мас. % соответственно) и серы (2.13 и 2.71 мас. % соответственно). При модифицировании CuZnAlOкатализатора добавками кислотного характера его активность в реакции окисления ДБТ зависит от вводимого компонента. Так, при модифицировании РО₄³⁻ она практически не изменяется, а при допировании ВО₂ при температурах 350-400 °C она возрастает по сравнению с немодифицированным катализатором: в среднем на 10-15~% в образовании SO_2 и на 10 % в удалении ДБТ из жидких продуктов реакции. По данным CHS-анализа, для РО₄³⁻ - и ВО₂⁻ -модифицированных катализаторов содержание серы в образцах после реакции окисления ДБТ низкое и составляет 1.34 и 1.19 мас. % соответственно. Введение WO₄²⁻ существенно не влияет на эффективность извлечения серы по сравнению с немодифицированным CuZnAlO-катализатором, но CHS-анализ фиксирует высокие концентрации углерода (7.97 мас.%) и незначительное накопление серы (1.5 мас. %) в отработанном катализаторе. Введение МоО4- повышает эффективность удаления серы из парогазовой фазы в среднем на 5-10 % при температурах 350-400 °C. При этом на поверхности

отработанного МоО₄²⁻ модифицированного катализатора образуются сера и углерод в количестве 7.49 и 1.64 мас. % соответственно, что сопоставимо с данными для WO₄²⁻. Как видно из данных рис. 4, совместное введение BO₂⁻ и MoO₄²⁻ слабо влияет на увеличение образования SO2 в газовой фазе, в то время как удаление ДБТ из жидких продуктов реакции повышается на 15 % при температурах 400–430 °С. Этот эффект можно связать с повышением сорбционной емкости катализатора, на что указывает некоторое увеличение содержания серы в отработанном катализаторе. Результаты CHS-анализа показывают, что совместное введение добавок BO₂⁻ и MoO₄²⁻ позволяет уменьшить накопление углерода на катализаторе до 3.9 мас. %.

выводы

1. Введение щелочно-земельных добавок приводит к уменьшению активности катализатора в реакции окисления ДБТ. Кроме того, введение Mg²⁺ или Ca²⁺ способствует высокой сорбции углерода в ходе реакции окислительного обессеривания ДБТ, что может влиять на длительность эксплуатации катализаторов.

2. Модифицирование катализатора кислотными добавками $PO_4^{3^-}$, $WO_4^{2^-}$ незначительно изменяет его каталитическую активность. Однако при введении BO_2^- или $MoO_4^{2^-}$ активность катализатора возрастает на 10-15 %, как в удалении ДБТ из жидких продуктов реакции, так и в реакции образования SO_2 в газовую фазу.

3. Совместное модифицирование катализатора BO_2^- и MoO_4^{2-} приводит к повышению активности в реакции удаления ДБТ из жидких продуктов реакции. Накопление углерода на данном катализаторе минимально. Максимальная каталитическая активность в реакции удаления ДБТ из жидких продуктов реакции составила порядка 60 %. Однако для данного катализатора снижается образование SO_2 в газовую фазу по сравнению с катализаторами, модифицированными одной из этих добавок.

СПИСОК ЛИТЕРАТУРЫ

- Stanislaus A., Marafi A., Mohan S. R. // Catal. Today. 2010. Vol. 153. P. 1–68.
- 2 Ismagilov Z. R., Yashnik S. A., Kerzhentsev M. A., Parmon V. N., Bourane A., Al-Shahrani F. M., Hajji A. A., Koseoglu O. R. // Catal. Rev.: Sci. and Eng. 2011. Vol. 53. P. 199–255.
- 3 Te M., Fairbridge C., Ring Z. // Appl. Catal. A: Gen. 2001. Vol. 219. P. 267–280.
- 4 Ramirez-Verduzco L. F., Murrieta-Guevera F., Garcia-Gutierrez J. L., Saint Martin-Castanon R., Martinez-Guerrero M., Montiel-Pacheco M., Mata-Diaz R. // Petrol. Sci. Technol. 2004. Vol. 22. P. 129–139.
- 5 Al-Shahrani F., Xiao T., Llewellyn S. A., Barri S., Jiang Z., Shi H., Martinie G., Green M. L. H. // Appl. Catal. B: Environ. 2007. Vol. 73. P.311–316.
- 6 Ito E., Rob van Veen J.A. // Catal. Today. 2006. Vol. 116. P. 446.
- 7 Gao L., Tang Y., Xue Q., Liu Ye, Lu Y. // Energy and Fuels. 2009. Vol. 23. P. 624.
- 8 Lu Y., Wang Y., Gao L., Chen J., Mao J., Xue Q., Liu Y., Wu H., Gao G., He M. // ChemSusChem. 2008. Vol. 1. P. 302.
- 9 Яшник С. А., Керженцев М. А., Сальников А. В., Исмагилов З. Р., Bourane A., Koseoglu O. R. // Кинетика и катализ. 2015. № 4.
- 10 US Pat. No. 5 753 102, 2013.

- 11 Корябкина Н. А., Шкрабина Р. А. Ушаков В. А., Исмагилов З. Р. // Кинетика и катализ. 2000. Т. 44. С. 728–735.
- 12 Rodriguez J. A., Kim J. Y., Hanson J. C., Perez M., Frenkel A. I. // Catal. Lett. Vol. 85. P. 247.
- 13 Tang Y., Liu Y., Zhu P., Xue Q., Chen L., Lu Y. // AIChE J. 2009. Vol. 55. P. 3214.
- 14 Wang Z, Wan H, Liu B, Zhao X., Li X., Zhu H, Xu X., Ji F., Sun K., Dong L, Chen Y. // Colloid and Interface Sci. 2008. Vol. 320. P. 520–526.
- 15 Moretti E., Lenarda M., Storaro L., Talon A., Frattini R., Polizzi S., Rodrguez-Castellon E., Jimenez-Lopez A. // Appl. Catal. B: Environ. 2007. Vol. 72. P. 149–156.
- 16 Yu Q., Yao X., Zhang H., Gao F., Dong. L. // Appl. Catal. A: Gen. 2012. Vol. 423–424. P. 42–51.
- 17 Yu Q., Liu L., Dong L., Li D., Liu B., Gao F., Sun K., Donga L., Chen Y. // App. Catal. B: Environ. 2010. Vol. 96. P. 350-360.
- 18 Dow W.-P., Wang Y.-P., Huang T.-J. // J. Catal. 1996. Vol. 160. P. 155–170.
- 19 Dow W.-P., Wang Y.-P., Huang T.-J. // Appl. Catal. A: Gen. 2000. Vol. 190. P. 25–34.
- 20 Damyanova S., Pawelec B., Arishtirova K., Fierro J. L.G. // J. Hydrogen Energy. 2011. Vol. 36. P. 10635–10647.
- 21 Bang Y., Han S. J., Yoo J., Choi J. H., Lee J. K., Song J. H., Lee J., Song I. K. // Appl. Catal. B: Environ. 2014. Vol. 148–149. P. 269–280.
- 22 Яшник С. А., Сальников А. В., Керженцев М. А., Хицова Л. М., Малышева В. Ю., Теряева Т. Н., Исмагилов З. Р. // Вестн. КузГТУ. 2014. Т. 5. С. 96–101.