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Abstract— Homogenized melt inclusions in olivine were studied in Archean komatiites from the Barberton Greenstone Belt, Welte-
vreden Formation in South Africa (3.3 Ga), Abitibi Greenstone Belt in Canada (2.72 Ga), and the Belingwe Greenstone Belt in Zimbabwe
(2.69 Ga). Contamination of the komatiite melts with crustal material enriched in Rb, Cl, and H,O during the crystallization of olivine is
demonstrated. Uncontaminated melts have mantle Rb/Nb ratios but are significantly enriched in Cl and H,O relative to K and Ce, respec-
tively, exhibiting similar incompatibility during crystallization and partial mantle melting. These observations suggest the presence of a
chlorine- and water-enriched mantle source before 3.3 Ga. The excess Cl and H,O contents in the komatiites are assumed to result from
the interaction of partially molten mantle plumes with the mantle transition zone. The most likely source of Cl and H,O enriching the deep
mantle is the oceanic lithosphere that endured a seafloor alteration. We conclude that the recycling of the altered oceanic lithosphere into
the mantle, probably via subduction, began in the first billion years of the Earth’s history. Delamination of the Archean crust could not cause
transport of chlorine and water into the deep mantle.
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plate tectonics

INTRODUCTION

Earth possesses unique, unknown for any other planets
features, such as life, water in three states on its surface, and
the regime of global plate tectonics. The plate tectonics con-
trols the matter and energy exchange between the mantle
and surface reservoirs and probably caused the first two fea-
tures. The causes and time of the plate tectonics initiation
remain open questions (Korenaga, 2008).

One possibility to solve this problem is to determine the
start of global exchange between the interior of the planet
and its surface, which can be done by tracing the temporal
evolution of typical crustal element concentrations in the
deep mantle. Komatiites — ultramafic magmas formed by
high degree of mantle melting — are perspective for such
study as they contain information the deep mantle compo-
sition since at least 3.6 Ga (Arndt et al., 2008; Herzberg,
2016). However, Archean rocks lack the information about
the characteristic crustal components such as mobile ele-
ments (U, Pb, Rb, Sr) and volatiles (H, C, Cl) due to crustal
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contamination, degassing, and post-magmatic alteration.
A possible solution of this problem is study of melt inclu-
sions in minerals that are formed during crystallization of
magma and protected from the external processes by their
hosts (Sobolev, 1996). The perspectives of melt inclusion
studies in komatiites have been demonstrated in a number of
studies, which allowed to identify the significant excess of
H,O and deficiency of Pb in the deep mantle starting at least
from 3.3 Ga (Kamenetsky et al., 2010; Gurenko et al., 2011,
2016; Sobolev et al., 2016, 2019; Asafov et al., 2018).

In this paper, we used the methods of melt inclusion stud-
ies to characterize the behavior of chlorine in the mantle
sources and at crystallization of komatiites. The obtained
results suggest a significant chlorine enrichment in the
Earth’s deep mantle and provide further evidence for the
proposed start of the global recycling of the upper oceanic
lithosphere in the Paleoarchean.

GEOLOGICAL BACKGROUND AND SAMPLES

Here we present the results obtained for komatiites from
three different Archean greenstone belts (Fig. 1).
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Fig. 1. World map showing major komatiite localities, modified after Arndt et al. (2008). Komatiites are present in almost all Archean cratons.
Legend: , Archean and Paleoproterozoic cratons (grey) and greenstone belts (black stripes); 2, Komatiite localities; 3, Komatiite localities associ-

ated with Ni-Fe-Cu-PGE sulfide ores.

Abitibi. Komatiites from the Abitibi Greenstone belt,
Canada have an age of 2.72+0.02 Ga (Pb-Pb method, (Bré-
vart et al., 1986)). Three samples of olivine cumulates were
collected during field works in the Munro Township area in
2014. Samples #805 and #810 are from the type locality
Pyke Hill outcrop (Pyke et al., 1973). Sample 823 was col-
lected from the Alexo flow, which belongs to the contempo-
raneous volcanic sequence. The Abitibi Greenstone Belt
predominantly consists of volcanic rocks that comprise
ultramafic, mafic and tholeiitic lavas. The detailed geologi-
cal background of the Munro area has been reported in a
number of papers (Pyke et al., 1973; Arndt et al., 1977; Muir
and Comba, 1979).

The Abitibi komatiite flows were subjected to low grade
metamorphism and partially or completely serpentinized,
and did not preserve the initial magmatic characteristics.
Nonetheless, the basal parts of these flows, namely the cu-
mulate layers, contain fresh magmatic olivine hosting rare
melt inlcusions.

Belingwe. The 2.69+0.01 Ga Belingwe Greenstone Belt,
Zimbabwe (Pb-Pb method, (Dupre and Arndt, 1990)) is lo-
cated within the southern part of the Zimbabwe craton and
consists of volcanigenic and sedimentary complexes. The
detailed geological background of the Belingwe Greenstone

Belt is discussed in a series of papers by Bickle et al. (1975,
1977, 1993) and Nisbet et al. (1977). In this study we exam-
ined olivine cumulate (sample #z6) hammered from the
Tony’s flow at the SASKMAR drill site. This flow belongs
to the Reliance Formation, the upper greenstone complex of
Belingwe (Bickle et al., 1993) and is one the most accessible
and well preserved komatiite flows in the Belingwe Green-
stone Belt. In contrast to many other komatiites as well as
other Archean rocks, the Belingwe komatiites are uniquely
fresh and contain abundant relicts of big and fresh magmatic
olivine grains plunged into altered groundmass.

Barberton, Weltevreden. The 3.26-3.55 Ga Barberton
Greenstone Belt, South Africa (Armstrong et al., 1990; Byer-
ly et al., 1996; Kroner et al., 1996) is located in the northeas-
tern part of the country within the ancient Kaapvaal Craton,
which forms the core of the southern part of Africa. Barber-
ton Greenstone Belt is one of the biggest among the five
Kaapvaal craton Archean greenstone belts. It is 15 km thick
and comprises three major groups — Onverwacht, Fig Tree
and Moodies groups. The detailed geological background of
this region is given in (Lowe and Byerly, 2007). A set of
komatiite samples for this study was collected from the 3.27+
+0.01 Ga (Re-Os, (Connolly et al., 2011)) Weltevreden for-
mation in the northern part of the Barberton Greenstone Belt.



E.V. Asafov et al. / Russian Geology and Geophysics 61 (2020) 937-950 939

The Weltevreden Formation is related to the Onverwacht
group and comprises komatiites, basalts, komatiitic tuffs and
ultramafic intrusions with a total thickness of a few kilome-
ters. Komatiite flows (10-500 m thick), sills and tuffs repre-
sent up to 80% of the formation. The exact structure and
stratigraphy of the Weltevreden Formation are poorly stud-
ied due to scarcity of outcrops (Lowe and Byerly, 2007).

The Weltevreden Formation rocks as well as the other
Onverwacht group units have been subjected to regional
metamorphism in the greenschist and locally amphibolite
facies. Nonetheless, Weltevreden komatiites are well pre-
served and contain abundant relicts of fresh olivine grains.
The groundmass of the examined samples is completely al-
tered. Here we report the results of studies of three Welte-
vreden komatiites samples: #1521 (Gary’s flow #2), #1522
(Keena’s flow #1) and #1523 (Keena’s flow #2) that repre-
sent the olivine cumulates, collected from the adjacent flows
in the Saw Mill area. The detailed description of the sam-
pling site is given in Sobolev et al. (2019).

METHODS

The sample preparation was carried out in the Vernadsky
Institute of analytical chemistry and geochemistry, Mos-
cow. The hand specimens were crushed manually or in jaw
crusher, sieved to fractions of <0.1 mm, 0.1-0.25 mm,
0.25-0.5 mm, and separated to magnetic and nonmagnetic
fractions with a hand magnet. Olivine relicts were collected
by handpicking from the non-magnetic fraction of 0.25—
0.5 mm size under a binocular microscope.

The most of the melt inclusions were found in central
parts of the olivine grains. The melt inclusions typically
have a rounded or ellipsoid shape. The maximal dimension
of the melt inclusions reaches 250 pm but mostly ranges
from 15 to 40 pm. The melt inclusions in the studied sam-
ples are partially crystallized and contain residual glass,
shrinkage bubble, spinel and clinopyroxene microcrystals
and olivine rim along on the inclusion walls (Fig. 2).

Fig. 2. Olivine hosted melt inclusions from Archean komatiites. a, b, melt inclusions from Abitibi komatiites, Canada: @, heated and quenched
(transmitted light); b, unheated (thin section, reflected light). ¢, d, Quenched melt inclusions from Weltevreden and Belingwe komatiite, respec-
tively (transmitted light). Numbers denote different phases: /, shrinkage bubble, 2, quenched glass, 3, spinel, 4, clinopyroxene.
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Melt inclusion homogenization. An important part of
this study was experimental homogenization of partially
crystallized melt inclusions in olivine, which allowed to
carry out high precision in situ analysis of the inclusions.

To homogenize the melt inclusions, the collected olivine
fractions were sealed in platinum capsules and heated in a
vertical high temperature furnace Nabertherm RHTV 1700
(Germany), modified for the effective quenching of experi-
mental products (Krasheninnikov et al., 2017). The heating
was conducted in a C-O-H atmosphere with controlled oxy-
gen fugacity that corresponded to the quartz-fayalite-magne-
tite buffer and more reduced conditions (QFM and QFM-1).
The first stage of experiments was a 5 min-long pre-heating
at 800 °C in the upper section of the furnace in order to flash
out all residual air from the capsules. On the second stage,
the sample was moved down into the central part of the fur-
nace and heated up to the operational temperature in 5 min-
utes. The operational temperatures ranged between 1250 to
1520 °C and were individually selected for each sample to
achieve the optimal conditions of homogenization depend-
ing on the host olivine composition. Quenching was per-
formed by dropping off the capsules in water. After quench-
ing, the melt inclusions were exposed to the surface of
olivine grains by grinding and polishing, and prepared for
further analyses.

Electron probe microanalysis. Melt inclusions and the
host olivine grains were mounted in epoxy and/or indium
and analyzed for major and minor element concentrations
using the JEOL JXA 8230 electron microprobe in ISTerre,
Grenoble, France and applying the method by (Sobolev et
al., 2007; Batanova et al., 2015, 2018, 2019). The detailed
technique and instrument settings are given in (Sobolev et
al., 2016, 2019; Asafov et al., 2018).

LA-ICP-MS. Trace element concentrations in the melt
inclusions and their host olivines were analyzed using the
quadrupole ICP-MS Agilent 7500s coupled with the 193 nm
Excimer laser ablation system GeoLas Pro (Coherent) at the
Institute of Geosciences of the Christian-Albrecht Universi-
ty in Kiel, Germany. Details of the analytical technique have
been reported elsewhere (Sobolev et al., 2016, 2019; Asafov
et al., 2018).

Data processing. Besides the correction for instrumental
drift throughout the analytical sessions, the analyzed com-
positions of melt inclusions were corrected for the effects of
in situ crystallization of olivine on the walls of inclusions
and for Fe—Mg exchange between the trapped melt and host
olivine, which results in Fe-loss from melt inclusion. These
effects and the ways of their correction are discussed in
Danyushevsky et al. (2000).

The reconstruction of the parental melt composition re-
quired consideration of both effects that was performed us-
ing PETROLOG3 software (Danyushevsky and Plechov,
2011). The olivine-melt models by Ford et al. (1983), and
Herzberg and O’Hara (2002) were used in the calculations.

The initial FeO concentrations for each melt inclusion
were established depending on the Fo content of the host

olivine and calculated by modeling the melt crystallization
for each sample series:

1) Crystallization of published primary melt was calcu-
lated for the Abitibi komatiites, Canada (Lahaye and Arndt,
1996);

2) For the Belingwe komatiites, Zimbabwe, crystallization
of primary melt relevant to Z11 sample was modelled (Bick-
le et al., 1993). This sample was collected from the chilled
margin of the komatiite flow top and represented the parental
melt that underwent the least fractional crystallization;

3) For the Barberton komatiites the crystallization of pub-
lished primary melt was modelled (Kareem, 2005).

RESULTS

The compositions of the Abitibi, Belingwe and Welte-
vreden melt inclusions and host olivines are described in
(Sobolev et al., 2016, 2019; Asafov et al., 2018). It is shown
that the komatiite melts were trapped by the most primitive
olivines at the earliest stages of magma crystallization. The
host olivine compositions range from Fo 92.5 to 90.9 mol.%
in Belingwe komatiites, Fo 94.6-92.4 mol.% in Abitibi
komatiites and Fo 95.3-93 mol.% in Weltevreden komati-
ites. For the specified ranges, olivine is the only liquidus
phase in the komatiite magma system. Thus, the evolution
of komatiite magma compositions within this interval is
controlled by olivine fractional crystallization and generally
follows so called olivine control line.

The peak equilibrium temperatures of the most MgO-rich
olivine-melt pairs in the studied samples that were calculat-
ed using model after Ford et al. (1983) and accounted for
the lowering effect of the measured water contents on the
liquidus temperature (Falloon and Danyushevsky, 2000),
are 1450 °C for Belingwe, 1500 °C for Abitibi and up to
1520 °C for Weltevreden (Sobolev et al., 2016, 2019;
Asafov et al., 2018).

Belingwe. The measured and corrected melt compositions
of the Belingwe komatiites have the lowest MgO contents
compared to Abitibi and Weltevreden. The most primitive
melt inclusions contain up to 23.6 wt.% MgO. The Al,O,/
TiO, ratio is used to distinguish the geochemical groups of
komatiites. In the Belingwe komatiites this ratio is 21, which
is comparable to the CI chondrites Al,O,/TiO, = 20 (Mc-
Donough and Sun, 1995; Inoue et al., 2000) and corresponds
to the Al-undepleted group (Nesbitt et al., 1979).

Abitibi. The melt inclusions from the Abitibi komatiites
contain from 22.8 to 28.6 wt.% MgO. The average Al,O,/
TiO, ratio of the Abitibi komatiites is 23 and corresponds to
the Al-undepleted group (Nesbitt et al., 1979). This is con-
sistent with the previous reports on the geochemistry of the
Pyke Hill and Alexo komatiites (Lahaye and Arndt, 1996;
Sproule et al., 2002; Arndt et al., 2008; Sossi et al., 2016).

Weltevreden. The measured and corrected compositions
of inclusions in olivine from the Weltevreden komatiites
contain 22.1-28.1 wt.% MgO and are characterized by
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markedly lower AL,O;, CaO u TiO, contents and higher
Si0, compared to Belingwe and Abitibi. Following the clas-
sification after Nesbitt et al. (1979) these komatiites fall into
the intermediate group between the Al-undepleted and Al-
enriched komatiites (Al,0,/TiO, > 50, (Byerly, 1999; Ka-
reem, 2005)).

The major, minor and trace element concentrations in the
melt inclusions of all studied samples generally correlate
with the MgO contents of the melt and Fo content of the
host olivine, and are controlled by the fractional crystalliza-
tion of olivine (Sobolev et al., 2016, 2019; Asafov et al.,
2018). Concentrations of elements, which are immobile at
secondary alteration, are consistent with the compositions of
whole rocks (Bickle et al., 1993; Lahaye and Arndt, 1996;
Sproule et al., 2002; Connolly et al., 2011; Robin-Popieul et
al., 2012; Sossi et al., 2016). However, some elements, in-
cluding Na, K, Rb, Sr, Ba, Cu, Pb, demonstrate enrichment
in more evolved melts trapped by less magnesian olivines,
which is inconsistent with the fractional crystallization mod-
el of magma evolution.

The Abitibi, Belingwe and Weltevreden melts demon-
strate significant enrichment in the volatile components such
as H,0 (Sobolev et al., 2016, 2019; Asafov et al., 2018) and
CI compared to the modern and primitive mantle (Lyubets-
kaya and Korenaga, 2007; Kendrick et al., 2017) (Fig. 3).
Yet, they have concentrations comparable with those the
mantle lithophile element for such elements as Rb (Rb/Nb
ratios correspond to those in the Phanerozoic upper mantle,
Fig. 3). CI/K and H,O/Ce ratios in the examined samples are
0.3-1.1 and 7500 respectively for Abitibi, for Belingwe

CI/K =1.3-2.5, H,0/Ce = 1300 and for Weltevreden CI/K =
2.7-6.3, H,0/Ce up to 5000, whereas the modern mantle is
characterized by CI/K < 0.2 and H,0/Ce <300 (Kendrick et
al., 2017).

CI/K ratios of the Abitibi and Weltevreden melts form
strong linear correlations with the Rb/Nb ratios (R° = 0.58
and 0.63 respectively, Fig. 3) and with Fo content of the
host olivines (Fig. 4). The data on the Phanerozoic ~90 Ma
Gorgona komatiites (Echeverria, 1980; Gurenko et al., 2011,
2016) demonstrate comparable to Archean komatiites CI/K
ratios (0.6—1.2) that exceed the typical mantle values and
correlate with the forsterite content of the host olivines
(Fig. 4). Notably, Cl, K, Rb and Nb are incompatible ele-
ments in olivine, and thus the observed correlations cannot
result from olivine fractional crystallization. The minimal
CI/K ratios are observed in the most primitive and MgO-rich
melt inclusions.

DISCUSSION

Chlorine and water contents in the Earth’s mantle. The
initial water, chlorine and other volatile element contents of
the Earth are uncertain (e.g., Marty, 2012). Yet, the volatile
element contents of the Phanerozoic upper mantle were esti-
mated using the compositions of the mid-ocean ridge basalt
(MORB) and ocean island basalt (OIB) glasses that possess
comparable ratios of H,0/Ce =200 + 100 and CI/K = 0.06
+ 0.01 (Dixon et al., 2017; Kendrick et al., 2017). As the
sources of these basalts are located in different parts of the
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mantle — in the upper mantle (MORB) and the lower mantle
(OIB) (e.g., French and Romanowicz, 2015), the observed
ratios are assumed to be typical for the silicate Earth in gen-
eral. However, the probable exception is the transition man-
tle zone located at 410-660 km depth, which contains the
stable high pressure olivine polymorphs — wadsleyite and
ringwoodite. The experimental data suggest (Roberge et al.,
2017; Fei and Katsura, 2020) the capability of these phases
to concentrate water and chlorine. The direct evidence of
high H,O contents a in ringwoodite inclusion hosted in a
diamond confirms the enrichment of the transition zone in
water at least beneath the Amazonian craton in the Protero-
zoic-Phanerozoic times (Pearson et al., 2014). Potentially
high Cl content in the deep mantle is suggested by the com-
position data on diamond hosted inclusions (Izraeli et al.,
2001; Logvinova et al., 2008; Sobolev et al., 2009) and un-
altered kimberlite melts (Kamenetsky et al., 2004).

The data shown in Figs. 3 and 4 as well as previous re-
sults on the H,O contents in these melt inclusions (Sobolev
etal., 2016, 2019; Asafov et al., 2018) show that the studied
melts were contaminated by the component enriched in Cl,
H,0, and, in the case of Weltevreden and Abitibi komatiites,
in Rb. Furthermore, Abitibi komatiites assimilated LREE
enriched component (Sobolev et al., 2016). The probable
source of the observed contamination in the Weltevrden and
Belingwe komatiites was serpentinite, possibly containing
seawater-derived brine. This is confirmed by the element
geochemistry and hydrogen isotope composition of the melt
inclusions (Asafov et al., 2018; Sobolev et al., 2019). In the

case of Abitibi komatiite, the assimilant was likely a serpen-
tinite (Sobolev et al., 2016). These data confirm high chlo-
rine activity in the Archean oceans.

The observed positive correlations between CI/K and Rb/
Nb ratios in the melt inclusions in olivine from the Welte-
vreden and Abitibi komatiites permit the estimation of the
least contaminated or not contaminated melts (Fig. 3). Melt
inclusions with the mantle-like Rb/Nb ratios were not or
only slightly contaminated and thus can represent the initial
komatiite melts for these provinces. The initial Abitibi melt
is estimated to have Rb/Nb = 0.45 and CI/K = 0.34, Welte-
vreden melt — Rb/Nb = 0.85 and CI/K = 1.2 (Table 1). The
olivine hosted melt inclusions from Belingwe komatiites
demonstrate rather constant CI/K and mantle-like Rb/Nb ra-
tios. Therefore, the initial melt is assumed to have Rb/Nb =
0.8 and CI/K = 1.64 at the lower limit of the melt inclusions
compositions (Table 1).

The calculated H,0O and Cl contents in the initial komati-
ite magma relative to elements with similar partition coeffi-
cient in the melt are shown in Fig. 5 and in Table 1. As
komatiites result from high degrees of mantle plume melting
(Sobolev et al., 2016, 2019), H,0/Ce and CI/K ratios of their
initial magmas should represent these ratios in the mantle
sources. However, the ratios obtained for komatiites exceed
manyfold those of MORB and OIB melts that represent the
Phanerozoic Earth’s mantle. Since the komatiite magmas
are derived from mantle plumes similarly with most OIBs,
the anomalous komatiite enrichment in water and chlorine
requires an explanation.
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In a series of earlier papers (Sobolev et al., 2016, 2019;
Asafov et al., 2018), we suggested that the excessive H,0
contents in komatiite initial melts could be related to the in-
teraction with the transition mantle zone enriched in water
(Pearson et al., 2014). In contrast to the common Phanero-
zoic mantle plumes, komatiites have high potential tempera-
tures over 1650 °C (Robin-Popieul et al., 2012; Sobolev et
al., 2019), which are sufficiently high for the partial melting
throughout the transition mantle zone (Andrault et al., 2018).
The melt forms an interstitial network within the ascending
Archean mantle plume and therefore effectively transports
water molecules from the enriched transition zone into the
plume, which is not the case for the less hot and solid Pha-
nerozoic mantle plumes. One exception is the Phanerozoic
Caribbean mantle plume (Trela et al., 2017) that reached
temperatures characteristic of the Archean plumes and thus
traversed the mantle transition zone in a partially molten
state and generated the Gorgona komatiites.

The chlorine excess in the komatiite mantle sources can
be explained by the same mechanism as for the water ex-
cess, namely draining of this component from the mantle
transition zone. In fact, the major mantle phases ringwoodite
and wadsleyite can contain high chlorine concentrations as
was demonstrated experimentally (Roberge et al., 2017).
Moreover, the microinclusions of Cl-bearing carbonatites in
diamonds suggest the high activity of the chlorine compo-
nent in mantle (Izraeli et al., 2001; Logvinova et al., 2008;
Sobolev et al., 2009).

The source of chlorine and water in the Earth’s mantle.
Chlorine and water are the major components of the seawa-
ter since at least 3.3 Ga. This is evidenced by the data on the
Weltevreden komatiites contaminated by chlorine and water
enriched material (Fig. 3) (this study; Sobolev et al. 2019).
The seafloor alteration via the reaction of oceanic crust with
the seawater results in formation of the low temperature en-
riched in H,O and Cl minerals of the serpentine and chlorite
group, e.g., Kodolanyi et al. (2011). Several researchers
point out that the seawater derived alteration may affect the
contemporary oceanic lithosphere to the depths of 10 km
and even deeper (e.g., Michael and Schilling 1989; Bazylev,
1992; Michael and Cornell, 1998). Subduction of the altered
oceanic lithosphere results in the loss of most water and a
significant fraction of chlorine into the mantle wedge and
subsequently into the suprasubduction magmas. However, a
substantial amount of these components is transported into
the deep mantle in the subducting slab down to the mantle
plume sources (Stroncik and Haase, 2004; Hanyu et al.,
2019; Page and Hattori, 2019). Therefore, it is plausible that
the excessive chlorine and water contents in the mantle tran-
sition zone and in the komatiite plume source originates
from the seawater altered oceanic lithosphere descended
into the deep mantle (Figs. 5, 6).

Implications for the Archean geodynamics on Earth.
An important result of this study and Sobolev et al. (2019) is
the evidence for the transport of seawater reworked material
into the deep mantle that began >3.3 Ga. So far such evi-

dence was provided only for the period of 2.5 Ga (Hanyu et
al., 2019). This result contributes to the understanding of the
Earth’s geodynamics during the first billion years of the
planet history.

Most researchers agree that the onset of the global plate
tectonics, which controls modern geodynamics of Earth,
took place at the turn of the Archean and Proterozoic eons or
later (Hawkesworth et al., 2017). Many researchers assume
that prior to plate tectonics, the stagnant lid regime operated
and involved descending lower crust fragments into the
deep mantle via delamination (e.g., review by Hawkesworth
et al. (2017)). To delaminate the upper crust reworked by
seawater, the crust needs to sink down to the boundary with
the lithospheric mantle and be eclogitized under low pres-
sures and high temperatures, i.e. under conditions of high
temperature gradient (Sizova et al., 2015; Gerya, 2019).
However, such a process would cause almost complete de-
gassing of the seawater derived volatile components from
the descending crust (Roman and Arndt, 2020) and thus is
inappropriate for explanation of the results obtained in this
study. The partial retaining of water and chlorine in the al-
tered crust is possible under subduction regime occurring at
low thermal gradient. Under these conditions, serpentinites
can keep and transport up to 15% CI and 5% H,O of the
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Fig. 5. The temporal evolution of H,0/Ce (a) and CI/K (b) in the initial
komatiite melts and Earth’s mantle reservoirs. Figure a was modified
after Sobolev et al. (2019). Initial komatiite melts: 7, Abitibi; 2, Belin-
gwe; 3, Weltevreden; 4, Gorgona. Ringwoodite composition shows the
diamond hosted inclusion after Pearson et al. (2014). Melt inclusion
data for Gorgona komatiites are after Gurenko et al. (2011, 2016). The
compositions of the bulk silicate Earth (BSE, black field) (Hofmann,
1988), hydrated transition zone of the mantle (HTZM, grey field) (So-
bolev et al., 2019), and Phanerozoic mantle (black field) (Kendrick et
al., 2017) are shown for reference.
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Fig. 6. The model of mantle plume enrichment by recycled chlorine and water. Partially molten Archean plume traverses the mantle transition
zone and captures its material. This material contains high pressure olivine polymorphs enriched in chlorine and water (Inoue, 2000; Bercovici
and Karato, 2003; Roberge et al., 2017). Water and chlorine are supplied into the transition zone with the subducted oceanic lithosphere altered
by seawater. As the mantle plume ascends, the olivine is transformed into the low pressure polymorph and loses Cl and H,O. The release of aque-
ous component from solid phases lowers the solidus temperature of the mantle peridotite that leads to the intensive partial melting and generation

of komatiite magma.

initial concentrations after the shallow dehydration into the
deep mantle (Shaw et al., 2008; Page and Hattori, 2019).
Stagnation of the subducted plates in the transition mantle
zone for hundreds million years could result in the signifi-
cant enrichment of this zone with chlorine and water and in
formation of the geochemical reservoir sourcing komatiites
(Fig. 6).

Our results suggest that the subduction-like process had
operated for several hundred million years before 3.3 Ga,
when the chlorine- and water-rich mantle source had
emerged in the Weltevreden komatiite initial magmas. This
regime was not necessarily identical to the modern plate tec-
tonics. It could be the regime of “minor plate tectonics”
(Dobretsov and Turkina, 2015) involving the mechanism of
retreating subduction zones (Sobolev and Brown, 2019). Ei-
ther way, our data demonstrate that seawater altered mate-
rial should have been able to descend to more than 400 km
depth in the first billion years of the Earth’s history.

CONCLUDING REMARKS

We report new data on the compositions of the homoge-
nized melt inclusions and host olivines from the Archean
komatiites of 3.3 Ga Barberton Greenstone Belt, Weltevreden
Formation, South Africa; 2.72 Ga Abitibi Greenstone Belt,
Canada; and 2.69 Ga Belingwe Greenstone Belt, Zimbabwe.

Olivine crystallization in the komatiite melts was accom-
panied by the assimilation of Rb, Cl and H,O enriched crust-
al material.

Uncontaminated komatiite melts possess the mantle-like
Rb/ND ratios, but exhibit large enrichment in Cl and H,0O
relative to similarly incompatible elements, K and Ce, re-
spectively.

The enrichment in Cl and H,O of the komatiite mantle
sources were observed in the Earth’s history since 3.3 Ga
and until at least 90 Ma.

The excessive Cl and H,O concentrations in the komati-
ite sources were supplied into the hot and partially molten
mantle plumes traversing the mantle transition zone.

The enrichment in Cl and H,O of the Earth’s deep mantle
originated from the seawater altered oceanic lithosphere.

The descending of altered oceanic lithosphere into the
deep mantle started in the first billion years of Earth’s history
via subduction process. Crustal delamination cannot explain
the transport of chlorine and water into the deep mantle.
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