УДК 539.374

## МЕХАНИЗМЫ ДЕФОРМАЦИИ И РАЗРУШЕНИЯ И СТРУКТУРНЫЕ ИЗМЕНЕНИЯ В КРУПНОКРИСТАЛЛИЧЕСКОЙ МЕДИ В УСЛОВИЯХ УДАРНО-ВОЛНОВОГО НАГРУЖЕНИЯ

Г. Г. Савенков, Ю. И. Мещеряков\*, Б. К. Барахтин, Н. В. Лебедева

Санкт-Петербургский государственный морской технический университет, 190008 Санкт-Петербург, Россия

\* Институт проблем машиноведения РАН, 199178 Санкт-Петербург, Россия

E-mails: sav-georgij@yandex.ru, ym38@mail.ru, BBarakhtin@mail.ru, nad\_L@rambler.ru

Представлены результаты экспериментов по ударно-волновому деформированию меди марки M2 в условиях одноосного нагружения. Методами световой, растровой и просвечивающей электронной микроскопии выявлены особенности механизмов деформации и разрушения меди при образовании откольной магистральной трещины. Определены параметры откольной прочности, поврежденности и самоподобия контура откольной трещины.

Ключевые слова: откольная прочность, самоподобие, фрактальная размерность.

Введение. При достижении критических условий ударно-волновое нагружение плоских твердых тел приводит к их откольному (динамическому) разрушению. Несмотря на большое количество работ, посвященных исследованию теории динамического разрушения, эту область механики твердого тела нельзя считать полностью изученной, что во многом обусловлено сложностью физических процессов, происходящих в достаточно малых (по сравнению с размерами образца) зонах нагружаемого тела.

Откольное разрушение материалов, являющееся частным случаем динамического разрушения твердых тел, имеет ряд особенностей [1–4]:

1) высокая скорость деформирования;

2) стадийность процессов при ударно-волновом деформировании: в общем случае после сжатия материала (первая стадия процесса) происходят нагрев и изменение его структуры;

3) неоднородное в поле скоростей частиц материала движение материала в волнах нагружения (на первой стадии) и разгрузки;

4) большое количество разномасштабных дефектов, имеющих размеры от единиц до сотен микрометров (в том числе дефектов, образующихся в фазе ударно-волнового сжатия при поперечном сдвиге и расположенных перпендикулярно фронту волны [4]), вследствие распределения частиц материала по скоростям на первой стадии откола, что позволяет считать эти дефекты принадлежащими мезомасштабному структурному уровню [5];

5) реализация на второй стадии откола (растяжение) строго одномерной деформации, эквивалентной идеальному "стеснению" материала, практически не достижимому в статических условиях. В общем случае распределение частиц материала по скоростям при сжатии и растяжении свидетельствует о неоднородности деформации в пространстве и времени. Неоднородность динамического деформационного процесса во времени (неустойчивость деформации) неоднократно наблюдалась на интерферограммах скорости свободной поверхности образцов [6]. При этом одним из проявлений неустойчивости при деформации и разрушении является возникновение самоподобных структур, основные характеристики которых сохраняются на различных масштабных уровнях и описываются в рамках теории фракталов [7]. Модель откольного разрушения с учетом указанной теории представлена в [8], в [9] приводятся данные о связи характеристик откола с фрактальной размерностью поверхности разрушения. В работе [8] показана важность учета функции распределения дефектов, образующихся в результате ударно-волнового нагружения, по размерам, а в [10] подчеркивается необходимость знания не только размера, но и формы и ориентации дефектов.

Целью настоящей работы является исследование физических механизмов динамического деформирования и разрушения крупнокристаллической меди, а также оценка морфологии повреждений в зоне откола и фрактальной размерности контура откольной щели. Характеристики меди, в том числе константы кинетических моделей откольного разрушения [11], хорошо известны [12]. Медь допускает большие пластические деформации как в квазистатических условиях нагружения, так и при повышенных скоростях деформации [13] и имеет небольшую сдвиговую прочность, что упрощает проведение экспериментов по ударному нагружению, поскольку в этом случае для разрушения образцов не требуются высокие скорости ударника. Кроме того, результаты определения фрактальной размерности в образцах из различных сталей [8, 9] показывают, что она изменялась существенно только в том случае, если скорости ударника различались не менее чем в два раза. Таким образом, представляет интерес изучение влияния пластических свойств меди на значения фрактальной размерности.

Исследуемый материал и методики проведения экспериментов. Ударное нагружение плоских образцов толщиной 5 мм и диаметром 52 мм, изготовленных из одного прутка высокопластичной меди марки M2 (предел прочности  $\sigma_{\rm B} = 220$  MПa, условный предел текучести  $\sigma_{0,2} = 140$  МПa, относительное удлинение образца после разрыва  $\delta_5 = 58$  %, относительное сужение образца после разрыва  $\psi = 88$  %, размеры зерен в образцах:  $d_{\rm max} = 450$  мкм,  $d_{\rm min} = 38$  мкм,  $\langle d \rangle = (180 \pm 10)$  мкм), осуществлялось с помощью пневматической пушки калибром 30 мм при скоростях ударника  $V_0 = 45 \div 400$  м/с. С помощью лазерного дифференциального интерферометра проводилось непрерывное (во времени) сканирование свободной поверхности образца, при этом регистрировались ее скорость, перепад скоростей в первом периоде колебаний  $\Delta V$ , а также ширина распределения скорости свободной поверхности  $\delta u$  [6, 13]. Далее ширину распределения скоростей  $\Delta u$ будем называть вариацией скоростей частиц. По соотношению

$$\sigma_{\rm p} = 0.5 \rho_0 C_0 \Delta V_s$$

где  $\rho_0$  — плотность материала образца;  $C_0$  — объемная скорость звука в образце, рассчитывалась откольная прочность меди  $\sigma_{\rm p}$ .

Исследования структуры меди выполнены на оборудовании Центра коллективного пользования Центрального научно-исследовательского института конструкционных материалов "Прометей" (Санкт-Петербург). По окончании ударного нагружения образцы разрезались по диаметру и выполнялась металлографическая шлифовка поверхности реза. Полученные шлифы подвергались детальному металлографическому анализу на световом микроскопе MMУ-9, электронном растровом микроскопе SEM 535 и просвечивающем электронном микроскопе УЭВМ-100. С использованием методов металлографии выявлялись и измерялись микро- и мезодефекты, расположенные как параллельно свободной поверхности, так и перпендикулярно ей. Для дефектов округлой формы функции распределения строились отдельно. Поскольку дефекты представляли собой круглые или эллипсовидные поры (в некоторых случаях идентификация формы была затруднена), функция распределения имела вид  $n/n_{\rm max} = f(S/S_{\rm max})$ , где  $S_{\rm max}$  — максимальная площадь мезодефекта;  $n_{\rm max}$  — количество мезодефектов, соответствующих максимальной площади. Определение точного закона распределения с помощью статистических моментов различного порядка для каждого вида дефектов не проводилось.

Методом вертикальных сечений [14] по фотографиям структуры откольной щели с различным увеличением (×12, ×100, ×1000) на основе зависимости  $D_f = \lg L/\lg N$  (L протяженность контура выбранного участка щели; N — масштаб увеличения) определялась фрактальная размерность контура  $D_f$ .

**Результаты экспериментов по ударному нагружению и их анализ.** Результаты экспериментов по ударному нагружению приведены в таблице и на рис. 1.

Следует отметить, что в диапазоне скоростей ударника  $V_0 = 117 \div 261$  м/с на кривой зависимости  $\sigma_p = f(V_0)$  имеется участок в виде плато, на котором откольная прочность практически постоянна. Ранее при исследовании металлов с гранецентрированной кубической решеткой (сталь марки 12X18H10T и никелевый сплав XH75BMЮ) такого плато не наблюдалось [8]. Для этих металлов зависимости откольной прочности от скорости удара

| $V_0$ , м/с | $\delta u$ , м/с | $\Delta u$ , м/с | $ σ_{\rm p}, \Gamma \Pi a $ |
|-------------|------------------|------------------|-----------------------------|
| 44          | 3,000            | 0                | $0,\!57$                    |
| 62          | 0                | 1,6              | 0,82                        |
| 94          | 2,220            | 11,5             | 0,85                        |
| 117         | -2,970           | 14,2             | 1,02                        |
| 140         | -3,600           | 13,6             | 1,03                        |
| 177         | 10,500           | 22,4             | 1,06                        |
| 184         | 0,234            | 14,4             | $1,\!19$                    |
| 189         | 3,360            | 28,2             | 1,00                        |
| 261         | $28,\!570$       | 49,4             | 1,01                        |
| 388         | 0,420            | 75,7             | 1,28                        |
|             |                  |                  |                             |

Результаты экспериментов по ударному нагружению меди марки М2



Рис. 1. Зависимость откольной прочности от скорости ударника



Рис. 2. Микроструктура образца после удара со скоростью  $V_0 = 62$  м/с (×100)

имели немонотонный характер. В целом можно утверждать, что с увеличением скорости удара (и соответственно скорости деформации  $\dot{\varepsilon}$ ) откольная прочность меди увеличивается. Полученные сведения об откольной прочности не противоречат известным данным [15], кроме того, значения  $\sigma_{\rm p}$ , полученные в настоящей работе, совпадают с данными [11].

Следует отметить, что в ряде случаев имеют место отрицательные значения дефекта скорости (см. таблицу). При этом уменьшается число колебаний сигнала на интерферограммах по сравнению с числом колебаний, соответствующим средней макроскопической скорости свободной поверхности. Данный факт свидетельствует о наличии на рассматриваемом участке образца-мишени, на который попал луч лазера диаметром 100 мкм, достаточно большого количества частиц, имеющих скорости, значительно превышающие среднюю скорость. Аналогично увеличивается локальная скорость частиц в мишенях из стали марки 30ХН4М и алюминиевого сплава Д16 [6]. Кроме того, анализ результатов, приведенных в таблице, показал, что зависимость дисперсии (вариации) скоростей частиц от скорости удара имеет немонотонный характер, несмотря на то что в большинстве случаев абсолютные значения дисперсии не превышают 5 % скорости удара (исключения составляют значения вариации при  $V_0 = 177, 261 \text{ м/с}$ ).

**Результаты структурных исследований и их обсуждение.** В результате ударного воздействия размер зерен в металле практически не изменился по сравнению с их размером в исходном состоянии. Форма зерен близка к равноосной. С увеличением скорости ударника в зернах появляются структурные элементы, ориентированные преимущественно под углом 40–45° к направлению фронта нагружения, а также межзеренные трещины.

Следует отметить, что при скорости ударника  $V_0 = 45$  м/с трещины малочисленны и их размер мал, но уже при скорости  $V_0 = 62$  м/с продольные и поперечные оси несплошностей достигают размера  $30 \times 100$  мкм (рис. 2), в дальнейшем трещины объединяются в крупномасштабные полости (откольные щели) (рис. 3).

Помимо кристаллографически ориентированных структурных элементов и межзеренных трещин различной конфигурации на поверхности микрошлифов образовывались дефекты округлой формы диаметром 30 ÷ 80 мкм (рис. 4,*a*). Было сделано два предположения об их происхождении. Сначала предполагалось, что данные дефекты образовались в процессе металлургического производства. Однако детальное изучение исходной микроструктуры прутка, из которого были изготовлены образцы для испытаний, не выявило подобных дефектов. Затем было сделано предположение о наличии крупномасштабного пластического течения металла с локальными разворотами структурных элементов ма-



Рис. 3. Откольные щели, образовавшиеся после удара с различной скоростью:  $a - V_0 = 189 \text{ м/c}, \ \delta - V_0 = 140 \text{ м/c}$ 



Рис. 4. Дефекты круглой формы, образующиеся при различных значениях скорости ударника:

 $a - V_0 = 94$  м/с, б -  $V_0 = 140$  м/с

териала мезоскопического масштаба. Предполагалось, что при наиболее благоприятных кристаллографических ориентациях наблюдаемые дефекты объединяются, образуя зоны пластического течения длиной до 100 мкм (рис.  $4, \delta$ ), ориентированные в направлении действия ударника. Если данное предположение верно, то в этих зонах пластическое течение должно возникать в результате согласованного движения вихрей, подобного движению гидродинамических струй. Данное предположение косвенно подтверждает форма откольной щели, которая образуется при слиянии пор округлой конфигурации (см. рис. 3).

Исследование образцов, в которых произошел откол, показало, что форма откольной щели в них существенно отличается от форм, характерных для сталей с различными прочностью и фазовым составом, алюминиевых и никелевых сплавов [8, 14, 16]. В этих металлах откольная щель представляет собой либо совокупность продольных (в направлении распространения ударной волны) и поперечных мезотрещин, либо объединение извилистых мезодефектов, форма которых подобна форме регулярной поверхности Коха.

В рассматриваемом случае откольная щель (магистральная трещина, пересекающая весь образец) образуется за счет слияния пор различной формы (см. рис. 3), что приводит к структурному макромасштабному (на уровне множественных трещин откола) "хаосу", обусловленному, по-видимому, неустойчивостью пластической деформации вследствие различия ее скоростей в смежных зонах пластического течения.

Полученные изображения рельефа на микрошлифах вблизи пластически "сопрягающихся" структурных элементов (рис. 5) свидетельствуют о локализации процесса деформирования, что в свою очередь указывает на наличие вихревого пластического течения,







Рис. 5. Микроструктура образца с откольной щелью, образовавшейся в нем после удара со скоростью  $V_0 = 117$  м/с (×50)

Рис. 6. Дислокационная структура образца в зоне деформации после удара со скоростью  $V_0=94~{\rm m/c}~(\times 16\,000)$ 

характеризующегося изменением профиля скоростей сдвига в пределах полосы деформации [17]. Следует отметить, что такие полосы пластического течения обнаруживаются только в тех мишенях, в которых скорость удара была достаточной для образования откольной щели. Аналогичный переход к вихревой пластической деформации наблюдается у меди марки МЗ в сходных условиях нагружения [13].

При нагружении с меньшими скоростями, когда протяженные откольные щели отсутствуют, на микрошлифах формируется рельеф, что свидетельствует о наличии в зернах гомогенной интенсивной и кристаллографически обусловленной деформации.

Методами просвечивающей электронной микроскопии в тонких фольгах, изготовленных из испытанных образцов, регистрировались дислокации, образующие равноосную мелкоячеистую структуру с неровными стенками (рис. 6). Плотность дислокаций в таких структурах составляла не менее  $10^{15}$  м<sup>-2</sup>. В некоторых областях наблюдались протяженные микрополосы локализованного сдвига шириной приблизительно 0,5 мкм.

В ряде случаев внутри зерен обнаружены цепочки пор (рис. 7), что в целом не противоречит предположению о гомогенном характере деформации в этих зернах, поскольку поры возникали вокруг частиц округлой формы, имеющих высокую прочность. На границах зерен обнаружено большое количество пор и микротрещин, что свидетельствует о непрочности этих границ.

При проведении детальных металлографических исследований образца (точнее, его откольной "тарелочки"), в процессе нагружения которого происходило плавное изменение интерференционного сигнала, установлено, что в исследуемой области образца (вблизи его тыльной поверхности) содержится большое количество почти идеально сферических микропор диаметром  $2\div3$  и  $5\div7$  мкм. Поры объединялись в цуги в виде лучей, направление которых совпадало с направлением распространения ударной волны. Расстояние между центрами пор составляло  $2\div10$  мкм (рис. 8). Наличие этих пор можно объяснить влиянием поворотных механизмов деформации вблизи тыльной поверхности образца, что приводило к ухудшению ее качества (полированная поверхность становилась матовой).

Результаты определения параметров поврежденности показали, что с увеличением скорости ударника общее количество микро- и мезодефектов увеличивается. При этом наблюдаются следующие эффекты.

1. При небольших скоростях ударника (когда откольная щель отсутствует) количество продольных дефектов, расположенных вдоль направления движения волны сжатия,



Рис. 7. Цепочки пор в образце, образовавшиеся после удара со скоростью  $V_0 = 184$  м/с

Рис. 8. Поры в откольной "тарелочке"

существенно превышает количество поперечных дефектов, расположенных параллельно свободной поверхности. Число дефектов круглой формы является промежуточным, однако количество и круглых, и продольных дефектов в несколько раз превышает количество поперечных дефектов.

2. При небольших скоростях удара дефекты с максимальной площадью, приближенно равной 50 000 мкм<sup>2</sup>, единичны.

3. С увеличением скорости ударника количество поперечных дефектов приближается к количеству круглых, а отношение количества продольных дефектов к количеству поперечных дефектов уменьшается в два раза. При этом общее число крупных дефектов увеличивается более чем на порядок.

Распределения по размерам, представленные в виде функций  $n/n_{\text{max}} = f(S/S_{\text{max}})$ , имели следующие особенности:

— при малых скоростях распределение продольных дефектов удовлетворяло нормальному закону, дефектов круглой формы — бимодальному распределению, поперечных пуассоновскому;

— при больших скоростях ударника распределение продольных дефектов становилось биномиальным, поперечных — экспоненциальным; распределение круглых дефектов оставалось бимодальным, однако характер их пиков и впадин, а также их расположение менялись произвольно; с увеличением скорости удара угол наклона кривой распределения увеличивался.

На рис. 9 приведены распределения относительных площадей дефектов при различных скоростях ударника.

Таким образом, в силу различных законов распределения при разных скоростях ударника автомодельность накопления повреждений отсутствует, что не позволяет получить аналитические зависимости вида  $n = f(V_0)$ .

При определении фрактальной размерности контура откольной щели по соотношению  $D_f = \lg L/\lg N$  при N = 12, 100, 1000 и скоростях ударника  $V_0 = 140, 177, 189, 261, 388$  м/с получены значения  $D_f = 1,36; 1,32; 1,30; 1,26; 1,09$  соответственно. Приближенная аналитическая зависимость фрактальной размерности от скорости удара имеет следующий вид:

$$D_f = 1.5 - 0.001 V_0. \tag{1}$$



а —  $V_0 = 62$  м/с, б —  $V_0 = 189$  м/с; 1 — поперечные дефекты, 2 — продольные дефекты, 3 — дефекты круглой формы

Анализ полученных результатов. Поскольку диссипация энергии разрушения на различных масштабных уровнях пропорциональна фрактальной размерности [18]:

$$W \sim k R^{3(D_f - 1)}$$

(k - размерный коэффициент; R - структурный размер, соответствующий рассматриваемому масштабу), из уравнения (1) следует, что доля энергии, обусловленной наличиемпроцессов диссипации на поверхностях откольной щели, уменьшается с увеличением скорости удара. Наибольшая рассеивающая способность имеет место в системах дефектов, $возникших в условиях квазистатического деформирования <math>(V_0 \rightarrow 0)$ .

Фрактальная размерность кластера характеризует степень заполнения им соответствующего пространства. В рассматриваемом случае это означает степень увеличения длины контура откольной щели по сравнению с ее проекцией. Иными словами, чем меньше фрактальная размерность, тем меньше фактическая длина контура.

Заключение. Проведенное исследование позволяет сделать следующие выводы.

При небольших скоростях ударника ( $V_0 = 45 \div 65 \text{ м/c}$ ) в меди реализуется внутризеренная гомогенная интенсивная и кристаллографически обусловленная пластическая деформация.

При  $V_0 > 65$  м/с пластическая деформация локализуется в виде микрополос сдвига шириной до 20 мкм, что может быть обусловлено термодинамической потерей устойчивости в системе дефектов, имеющих кристаллическое строение, при этом возникает вихревое пластическое течение.

При режимах нагружения, приводящих к образованию в образцах откольных щелей (V<sub>0</sub> ≥ 140 м/с), влияние вихревого пластического течения становится более существенным, что вызывает вращение (ротацию) крупных структурных элементов материала, которое прекращается при достижении предела его пластичности и локальном нарушении сплошности металла.

Автомодельность накопления повреждений в материале образцов отсутствует.

Форма контура откольной щели является фрактальной кривой, фрактальная размерность которой уменьшается по линейному закону в зависимости от скорости удара.

## ЛИТЕРАТУРА

 Барахтин Б. К., Мещеряков Ю. И., Савенков Г. Г. Статистические характеристики множественного разрушения металлических мишеней при динамическом нагружении и их связь с механическими параметрами материалов // Журн. техн. физики. 2010. Т. 80, вып. 1. С. 79–84.

- Батьков Ю. В., Игнатова О. Н., Кондрохина И. Н. и др. Особенности стадии зарождения поврежденности при интенсивном нагружении меди // Физика твердого тела. 2011. Т. 53, вып. 4. С. 716–720.
- 3. Иванов А. Г. О возможных причинах хрупких разрушений // ПМТФ. 1988. № 3. С. 137–141.
- Атрошенко С. А., Гладышев С. А., Мещеряков Ю. И. Исследование механизмов смен масштаба структурных уровней разрушения динамически нагружаемых сред // Докл. 4-го Всесоюз. совещ. по детонации. Телави: Б. и., 1988. Т. 1. С. 286–292.
- 5. **Физическая** мезомеханика и компьютерное конструирование материалов / Под ред. В. Е. Панина. Новосибирск: Наука. Сиб. издат. фирма, 1995. Т. 1.
- Мещеряков Ю. И., Диваков А. К. Интерференционный метод регистрации скоростной неоднородности частиц в упругопластических волнах нагрузки в твердых телах. Л., 1989. (Препр. / Ленингр. филиал Ин-та проблем машиноведения; № 25).
- 7. Мандельброт Б. Фрактальная геометрия природы. М.; Ижевск: Ижев. ин-т компьютер. исслед.: Науч.-издат. центр "Регулярная и хаотическая динамика", 2010.
- Савенков Г. Г. Фрактально-кластерная модель откольного разрушения // Журн. техн. физики. 2002. Т. 72, вып. 12. С. 44–48.
- Барахтин Б. К., Савенков Г. Г. Связь характеристик откола с размерностью фрактальной структуры разрушения // ПМТФ. 2009. Т. 50, № 6. С. 61–69.
- 10. Глушак Б. Л., Трунин И. Р., Новиков С. А., Рузанов А. И. Численное моделирование откольного разрушения металлов // Фракталы в прикладной физике. Арзамас-16: Всерос. науч.-исслед. ин-т эксперим. физики, 1995. С. 59–123.
- 11. Канель Г. И., Сугак С. Г., Фортов В. Е. О моделях откольного разрушения // Пробл. прочности. 1983. № 8. С. 40–44.
- 12. Савенков Г. Г., Васильев Н. Н. Пластичность и прочность меди при высокоскоростной деформации // Пробл. прочности. 1993. № 10. С. 47–52.
- Мещеряков Ю. И., Жигачева Н. И., Диваков А. К. и др. Переход металлов в структурно-неустойчивое состояние при ударно-волновом нагружении // ПМТФ. 2010. Т. 51, № 5. С. 132–146.
- Барахтин Б. К., Мещеряков Ю. И., Савенков Г. Г. Динамические и фрактальные свойства стали СП-28 в условиях высокоскоростного нагружения // Журн. техн. физики. 1998. Т. 68, вып. 10. С. 43–52.
- 15. **Разрушение** разномасштабных объектов при взрыве / Под ред. А. Г. Иванова. Саров: Всерос. науч.-исслед. ин-т эксперим. физики, 2001.
- 16. Савенков Г. Г. Механизмы деформации и разрушения пластичных и твердых тел при высокоскоростном взаимодействии: Дис. ... д-ра техн. наук. СПб., 2003.
- 17. Ханнанов Ш. Х. Структурная турбулентность в аморфных и кристаллических телах // Дисклинации и ротационная деформация твердых тел / Под ред. А. Е. Романова. Л.: Физ.техн. ин-т им. А. Ф. Иоффе, 1990. С. 215–224.
- Carpinteri A., Pugno N., Puzzi S. Strength vs. toughness optimization of microstructured composities // Chaos, Solitons Fractals. 2009. V. 39. P. 1210–1223.

Поступила в редакцию 25/VII 2012 г., в окончательном варианте — 17/X 2013 г.