АНКАРАМИТЫ ГОРНОГО АЛТАЯ: МИНЕРАЛОГО-ПЕТРОГРАФИЧЕСКИЕ И ПЕТРОХИМИЧЕСКИЕ ОСОБЕННОСТИ ДИОПСИД-ПОРФИРОВЫХ БАЗАЛЬТОВ УСТЬ-СЕМИНСКОЙ СВИТЫ

Кхлиф Н. Х., Вишневский А. В., Изох А. Э.

Аннотация

Рассматриваются минеральный состав, петрография и петрохимия среднекембрийских диопсидпорфировых базальтов усть-семинской свиты Горного Алтая в сопоставлении с анкарамитами, проявленными в различных геодинамических обстановках. Базальты усть-семинской свиты обогащены вкрапленниками высокомагнезиального клинопироксена Mg# до 94 (от 20 до 40–50 об. %) с высоким содержанием Cr2O3 до 1,11 мас. %, располагающимися в клинопироксенплагиоклазовой микролитовой основной массе. Помимо вкрапленников клинопироксена наблюдаются редкие вкрапленники соссюритизированного плагиоклаза (An49-71), оливина, замещённого вторичными минералами, амфибола с Mg# 55,7–68,2 и хромшпинели с хромистостью Cr# 36,2–41,7. Включения хромшпинели в высокомагнезиальном клинопироксене имеют более высокую хромистость (Cr# до 72,8). Базальты усть-семинской свиты весьма неоднородны по химическому составу, и делятся на две основные группы: высококальциевую (MgO 7,98–14,77 мас. % и CaO/Al2O3 1,0–1,8) и низкокальциевую (MgO 2,84–9,89 мас. % и CaO/Al2O3 0,2–0,9). Сопоставление полученных данных по высококальциевым базальтам усть-семинской свиты с анкарамитами в проведённом нами обзоре позволяет относить их к этому типу пород. Низкокальциевые базальты усть-семинской свиты, вероятно, образовались в результате фракционирования анкарамитового расплава в промежуточных камерах. Образование анкарамитов Горного Алтая связано с плавлением верлитизированной надсубдукционной литосферной мантии на этапе закрытия Палеоазиатского океана.

Ключевые слова:

Анкарамит, высококальциевая магма, клинопироксен, Сг-диопсид, Урало-Аляскинский тип, островодужный магматизм, аккреционный магматизм, Горный Алтай, средний кембрий.

АНКАРАМИТЫ ГОРНОГО АЛТАЯ: МИНЕРАЛОГО-ПЕТРОГРАФИЧЕСКИЕ И ПЕТРОХИМИЧЕСКИЕ ОСОБЕННОСТИ ДИОПСИД-ПОРФИРОВЫХ БАЗАЛЬТОВ УСТЬ-СЕМИНСКОЙ СВИТЫ

Н. Кхлиф^{1,3}, А.В. Вишневский^{1,2}, А.Э. Изох^{1,2}

¹Новосибирский государственный университет, 630090, Новосибирск, ул. Пирогова, 1, Россия ²Институт геологии и минералогии им. В.С. Соболева СО РАН, 630090, Новосибирск, просп. Академика Коптюга, 3, Россия ³Al-Furat University, Deir ez-Zur, Syria

Рассматриваются минеральный петрография состав, И петрохимия среднекембрийских диопсид-порфировых базальтов усть-семинской свиты Горного Алтая сопоставлении с анкарамитами, проявленными в различных геодинамических В Базальты усть-семинской обогащены обстановках. СВИТЫ вкрапленниками высокомагнезиального клинопироксена Mg# до 94 (от 20 до 40-50 об. %) с высоким содержанием Cr₂O₃ до 1,11 мас. %, располагающимися в клинопироксен-плагиоклазовой микролитовой основной массе. Помимо вкрапленников клинопироксена наблюдаются редкие вкрапленники соссюритизированного плагиоклаза (An₄₉₋₇₁), оливина, замещённого вторичными минералами, амфибола с Mg# 55,7-68,2 и хромшпинели с хромистостью Cr# 36,2–41,7. Включения хромшпинели в высокомагнезиальном клинопироксене имеют более высокую хромистость (Cr# до 72,8). Базальты усть-семинской свиты весьма неоднородны по химическому составу, и делятся на две основные группы: высококальциевую (MgO 7,98–14,77 мас. % и CaO/Al₂O₃ 1,0–1,8) и низкокальциевую (MgO 2,84–9,89 мас. % и CaO/Al₂O₃ 0,2–0,9). Сопоставление полученных данных по высококальциевым базальтам усть-семинской свиты с анкарамитами в проведённом нами обзоре позволяет относить их к этому типу пород. Низкокальциевые базальты усть-семинской свиты, вероятно, образовались в результате фракционирования анкарамитового расплава в промежуточных Образование анкарамитов камерах. Горного Алтая связано плавлением С верлитизированной надсубдукционной литосферной мантии на этапе закрытия Палеоазиатского океана.

Анкарамит, высококальциевая магма, клинопироксен, Cr-диопсид, Урало-Аляскинский тип, островодужный магматизм, аккреционный магматизм, Горный Алтай, средний кембрий.

введение

Весьма дискуссионной является природа базитового магматизма вендраннепалеозойского этапа развития Алтае-Саянской складчатой области, в частности среднекембрийских диопсид-порфировых базальтов усть-семинской свиты Горного Алтая [Buslov et al., 1993; Buslov et al., 2001; Гибшер и др., 1997; Добрецов и др., 2004; Зыбин, 2006, Симонов и др., 2010, Сафонова и др., 2011]. Они характеризуются большим количеством вкрапленников клинопироксена (их объёмная доля достигает в отдельных случаях 40–50 %). Некоторыми авторами эти породы были отнесены к бонинитам, поскольку характеризуются высокими содержаниями кремнезёма и магния, а также никеля и хрома [Добрецов и др., 2004]. Однако согласно критериям Международной комиссии по систематике изверженных пород (IUGS), эти породы нельзя считать бонинитами, а следует относить к базальтам, обогащенным вкрапленниками диопсида – диопсид-порфировым базальтам [Гибшер и др., 1997]. Согласно современной международной систематике и классификации изверженных горных пород, вулканические породы в которых пироксен преобладает над оливином относятся либо к анкарамитам, либо к бонинитам [Le Maitre et al., 2002]. Для бонинитов (как высоко- так и низкокальциевых) характерен ортопироксен (энстатит или бронзит) или клиноэнстатит, а для анкарамитов – клинопироксен (диопсид) [Le Maitre et al., 2002; Della-Pasqua, Varne, 1997].

Существование и происхождение анкарамитовой (высококальциевой) магмы является объектом активной и длительной дискуссии [Barsdell, Berry, 1990; Della-Pasqua, Varne, 1997; Schiano et al., 2000; Kogiso, Hirschmann, 2001; Green et al., 2004; Portnyagin et al., 2005ab; Médard et al., 2006; Elburg et al., 2007; Marchev et al., 2009; Sorbadere et al., 2013]. Эта магма представлена как собственными лавами (т.е. вулканическими породами), обогащёнными вкрапленниками клинопироксена, так и высококальциевыми расплавными включениями во вкрапленниках оливина или клинопироксена из анкарамитов или базальтов [Schiano et al., 2000]. Большой интерес к проблеме диагностики и выделения анкарамитов связан с тем, что родоначальной магмой для платиноносных габбропироксенит-дунитовых массивов Урало-Аляскинского типа некоторыми авторами предполагаются именно анкарамиты [Irvine, 1973; Пушкарев и др., 2018]. При изучении вулканогенных пород ирендыкской свиты в составе Гадельшинской и Карсаклыктаусской палеовулканических построек в составе меланжа Западно-Магнитогорской зоны в районе деревни Абзаково на Южном Урале Пушкаревым и Готтман были обнаружены и изучены необычайно высокой клинопироксеновые порфириты С долей вкрапленников клинопироксена, количество которых достигает 25–35 % и более [Пушкарев, Готтман, 2016]. Этими породами сложены вулканические бомбы разного размера в составе туфобрекчий. Они встречаются также в виде субвулканических тел, штоков, даек. Подобные особенности проявления характерны и для диопсид-порфировых базальтов усть-семинской свиты. Особенности эволюции состава клинопироксенов И хромшпинелидов ирендыкских порфиритов совпадают как с типичным анкарамитовым трендом, так и с первично-магматическим трендом эволюции хромшпинелида в дунитклинопироксенитовых комплексах Урало-Аляскинского типа, что подтверждает идею о том, что анкарамиты могут представлять собой первичную магмы для платиноносных массивов [Пушкарев, Готтман 2016]. Более того во вкрапленниках хромшпинели из анкарамитов Урала были обнаружены включения изоферроплатины, что является прямым доказательством их комагматичности платиноносным интрузивам Урала ГГоттман и др., 2016]. В Алтае-Саянской складчатой области – в Кузнецком Алатау, в Горной Шории и на Салаире установлены золото-ферроплатиновые россыпи [Изох и др., 2004; Жмодик и др., 2016]. Особенности состава платины в них не оставляют сомнения, что россыпная платиновая провинция обязана своим происхождением телам, генетически близким по составу к интрузиям Урало-Аляскинского типа, однако коренные источники платины не установлены [Толстых, 2004]. В Западной Монголии россыпи ферроплатины удалось связать с раннекембрийской урегнурской пикрит-базальтовой вулканно-плутонической ассоциацией, в составе которой принимают участие и диопсид-порфировые базальты,

весьма схожие с породами усть-семинской свиты [Оюунчимэг и др., 2009; Изох и др., 2010].

Целью настоящей статьи является показать, что по ряду минералогопетрографических и петрохимических особенностей, часть диопсид-порфировых базальтов усть-семинской свиты следует классифицировать как анкарамиты. Для этого необходимо выявить характеристики анкарамитов и провести сопоставление с исследуемыми объектами. В качестве объектов исследования выбраны наиболее хорошо сохранившиеся и детально исследованные палеовулканические постройки: Бийская и Усть-семинская [Buslov et al., 1991; Гибшер и др., 1997; Зыбин, 2006; Симонов и др., 2010; Сафонова и др., 2011].

ГЕОЛОГИЧЕСКОЕ И ГЕОДИНАМИЧЕСКОЕ ПОЛОЖЕНИЯ ДИОПСИД-ПОРФИРОВЫХ БАЗАЛЬТОВ УСТЬ-СЕМИНСКОЙ СВИТЫ

Усть-семинская свита входит в состав Катунского аккреционного комплекса (северная часть Горного Алтая), интерпретированного как часть аккреционной призмы Кузнецко-Алтайской островной дуги, сформированной на окраине Сибирского континента в результате поздне-неопротерозойско-кембрийской субдукции коры Палеоазиатского океана [Buslov et al., 2001; Добрецов и др., 2004].

Основной объём базальтов усть-семинской свиты сосредоточен в двух вулканических постройках центрального типа: Усть-Семинской в северо-западной части Катунской зоны и Бийской – в юго-восточной (рис. 1). Бийская постройка обнажается вдоль р. Катунь между реками Чобурак, Бийка, Тымкескен и Карасу, и имеет почти изометричную форму (6*8,5 км) (см. рис. 1, б). Базальты слагают также Анос-Емурлинскую линейную постройку между двумя вулканическими аппаратами [Зыбин, 2006], образуя, совместно, полосу протяжённостью более 90 км (см. рис. 1). В составе свиты присутствуют потоки пироксен- порфировых и пироксен-плагиоклаз-порфировых базальтов, их дифференциатов, лавокластитов, кластолавов и туфов. Здесь необходимо отметить, что базальты усть-семинской свиты из разных построек и удалённых выходов петрографически очень схожи по всей Катунской зоне [Зыбин, 2006].

Породы усть-семинской свиты, с одной стороны, залегают на венднижнекембрийских образованиях чепошской и манжерокской свит (см. рис. 1), а с другой – с угловым несогласием перекрываются образованиями еландинской свиты с фауной трилобитов, которая характерна для верхов среднего кембрия [Зыбин, 2006; Федак и др., 2011]. С вулканитами усть-семинской свиты ассоциируют дайки и субвулканические тела **ультрабазит-базитовых** массивов Барангольского комплекса: Апшияхтинского, Еландинского и Барангольского [Гибшер и др., 1997]. Концепции реконструкции геодинамической обстановки формирования этих вулканитов разнятся: на основании анализа их геологической позиции и ассоциации с венд-раннекембрийскими базальтами реконструируется обстановка задугового палеобассейна [Гибшер и др., 1997], а на основании синтеза геохимических и геологических данных предполагается сложный процесс при погружении океанической литосферы в зону субдукции, а затем плавление в надсубдукционной обстановке на границе коры и верхней мантии [Симонов и др., 2010; Сафонова и др., 2011]. Авторами были изучены диопсид-порфировые базальты Бийской вулканической постройки усть-семинской свиты и учтены имеющиеся аналитические

данные предыдущих исследований [Buslov et al., 1993; Гибшер и др., 1997; Симонов и др., 2010; Сафонова и др., 2011].

АНАЛИТИЧЕСКИЕ МЕТОДЫ

Образцы были отобраны в пределах Бийской вулканической постройки устьсеминской свиты в районе реки Бийка (14 образцов из пород ранних этапов формирования вулканической постройки) и удалённых к юго-востоку выходов пород этой свиты (2 образца) (см. рис. 1). Из образцов были изготовлены шлифы и полированные пластинки петрографических исследований. Отдельные отобранные для вкрапленники клинопироксена были смонтированы в шашки из эпоксидной смолы. Шашки и полированные шлифы были исследованы с помощью энерго-дисперсионного спектрометра (ЭДС) Oxford X-Max 80 на сканирующем электронном микроскопе (СЭМ) Tescan Mira 3 в Центре коллективного пользования многоэлементных и изотопных исследований СО РАН (ЦКП МИИ СО РАН) на базе Института геологии и минералогии им. В.С. Соболева (ИГМ СО РАН), г. Новосибирск. Время набора спектра варьировалось в диапазоне 20–30 секунд, напряжение 20 kV, ток 10 nA. Погрешность при измерении основных компонентов составляла 0,4–3 % для основных элементов и 4–7 % для элементпримесей. Предел обнаружения компонентов составил 0,01–0,02 % (Зо критерий) [Лаврентьев и др., 2015]. Обработка спектральных данных проводилась с помощью ПО INCA Energy. Валовый состав пород анализировался методом рентгенофлуоресцентного анализа (РФА) на приборе Thermo Scientific ARL–9900 XP также в ЦКП МИИ СО РАН.

ПЕТРОГРАФИЯ И МИНЕРАЛЬНЫЙ СОСТАВ ДИОПСИД-ПОРФИРОВЫХ БАЗАЛЬТОВ УСТЬ-СЕМИНСКОЙ СВИТЫ

Базальты Бийской вулканической постройки усть-семинской свиты характеризуются серым до темно-серого цвета с зелёным оттенком, массивной текстурой и порфировой структурой (рис. 2, *a*, *б*). Структура основной массы чаще всего микролитовая (см. рис. 2, *д*). Вкрапленниками являются клинопироксен и изменённый плагиоклаз (см. рис. 2, *a*, *б*, *д*). Иногда присутствуют полностью изменённые вкрапленники оливина и редкие зёрна хромшпинели и амфибола (см. рис. 2, *в*, *г*, *е*). Доля вкрапленников клинопироксена в пироксен-порфировых разностях достигает до 50 об. %, а в пироксен-плагиоклаз-порфировых разностях уменьшается (рис. 2, *a*, *б*).

Клинопироксен. Вкрапленники имеют удлиненно-призматическую форму размером 0,5–25 (чаще 2–5) мм, их объёмная доля варьирует от 15–25 об. % и может достигать в отдельных случаях 40–50% (см. рис. 2, а, б; рис. 3, а, г). Большинство вкрапленников отчётливо зональны как в проходящем свете, так и в изображениях в обратно-рассеянных электронах (см. рис. 2, а, б; рис. 3, а, г). Ядерные части вкрапленников состоят в основном из диопсида (En₄₂₋₄₉Wo₄₄₋₄₈Fs₄₋₁₁; Mg# 92,4-81,7 (Mg# = 100*Mg/(Mg+Fe)) с высоким содержанием Cr₂O₃ (до 1,11 мас. %) и низкими содержаниями TiO₂: 0,13–0,62 мас. %, Al₂O₃: 0,79–3,97 мас. % и Na₂O до 0,27 мас. % (см. рис. 3, *в*, *е*; рис. 4, табл. 1). Краевые части состоят из диопсида и авгита (En₃₄₋₄₅Wo₃₉₋₅₁Fs₉₋₂₁; Mg# 83,3–66,0), имеющего более высокие содержания TiO₂ 0,32–1,82 мас. %, Al₂O₃ 2,53–8,99 мас. % и Na₂O до 0,61 мас. % и более низкое значение Cr₂O₃ <0,5 мас. % (см. рис. 3, *в*, *е*; рис. 4, табл. 1). В основной массе клинопироксен образует мелкие кристаллы, имеющие высокие

содержания Al_2O_3 1,06–9,60 мас. %, TiO₂ 0,25–2,19 мас. % и Na₂O до 0,49 мас. % и более низкое содержание Cr_2O_3 , не превышающее 0,2 мас. % и представлен авгитом и диопсидом ($En_{31-49}Wo_{28-50}Fs_{7-26}$) с Mg# 80,4–53,3 (см. рис. 3, *б*; рис. 4, табл. 1). Иногда для вкрапленников наблюдаются обратная зональность, от ядра с Mg# 72,8 до края с Mg# 82,2, а в краевых частях крупных кристаллов и в мелких зернах наблюдается осцилляторная зональность с колебаниями магнезиальности от 69 до 81 во внутренних частях, и от 66 до 82 в периферийных. Состав клинопироксенов из Бийской постройки при сравнении с составом клинопироксена из Усть-Семинской постройки по данным [Buslov et al., 1993; Гибшер и др., 1997; Симонов и др., 2010] показывает, что для наиболее ранних клинопироксенов характерна высокая магнезиальность Mg# до 94, высокое содержание Cr_2O_3 до 1,1 мас. % и весьма низкие содержания TiO₂ (до 0,5 мас. %) и Al_2O_3 (до 3 мас. %) (см. рис. 4, *a–в*).

В целом состав клинопироксена из базальтов усть-семинской свиты показывает отрицательную корреляцию Mg# с TiO₂ и Al₂O₃ и положительную корреляцию с Cr₂O₃ ((см. рис. 4, a–e), табл. 1). Вариации состава Al₂O₃ с Mg# показывают основной тренд с резким увеличением содержания глинозёма от 2–3 мас. % Al₂O₃ в ядрах до 7–9 в каймах вкрапленников с последующим падением до 3–5 мас. % и менее 2 мас. % в микролитах основной массы (см. рис. 4, 6), что может свидетельствовать об наличии этапа значительного обогащения расплава алюминием с последующим присоединением плагиоклаза к оливин-клинопироксеновой котектике. Однако для некоторых образцов такого значительного накопления глинозема не прослеживается (см. рис. 4, 6).

Плагиоклаз. Образует мелкие вкрапленники (до 1 мм) в пироксен-плагиоклазпорфировых разностях, суммарное его количество в некоторых из них достигает до 50 об. % (см. рис. 2, б). В пироксен-порфировых разностях плагиоклаз преимущественно представлен в виде микролитов в основной массе. Для вкрапленников характерна таблитчатая и удлиненно-таблитчатая формы выделений, а также укороченные относительно длины микролиты в основной массе (см. рис. 2, д). Плагиоклаз в большинстве случаев полностью соссюритизирован, а в сохранившихся реликтах представлен битовнитом и лабрадором An₄₉₋₇₁ (см. рис. 2, д, табл. 2). Плагиоклаз основной массы по составу также соответствует битовниту-лабрадору An₅₀₋₇₁ (см. табл. 2).

Амфибол. Установлен в виде редких вкрапленников призматической формы (0,1–0,7 мм), содержание его в одном из изученных образцов достигает 5–10 об. % (см. рис. 2, e). Вкрапленники не обладают зональностью (см. рис. 2, e). Состав отвечает магнезиогастингситу и реже паргаситу (табл. 3). Для амфибола характерна магнезиальность Mg# 55,7–68,2 с высоким содержанием TiO₂ 2,32–3,97 мас. % (см. табл. 3)

Хромшпинель. Вкрапленники очень редки, был обнаружен единичный вкрапленник размером <1 мм, (см. рис. 2, *в*) и чаще встречается в виде мелких включений в клинопироксене (Mg# 90). Состав хромшпинели из вкрапленников и включений приведен в табл. 4. Для вкрапленника характерно относительно низкое содержание Cr_2O_3 <27 мас. % и MgO <3,75 мас. % с низкими Cr# 36,2–41,7 и Mg# <17, при высоком содержании Al_2O_3 8,11–12,47 мас. % и TiO₂ 4,67–5,35 мас. % с высокой Fe# 30,7–43,6 (см. табл. 4). Однако для включений характерны высокие Cr# 69,7–72,8 и Mg# 51,4–55,4 с низкими Fe# <13 и TiO₂ <1 мас. % (см. табл. 4).

Оливин. Вкрапленники редкие (<5 об. %, обычно до 1–2 %) размером до 1 мм (см. рис. 2, *г*). Он полностью замещен агрегатом хлорита, эпидота и магнетита (см. рис. 2, *г*).

Основная масса. Состоит из микролитов клинопироксена (авгитом и диопсидом (En₃₁₋₄₉Wo₂₈₋₅₀Fs₇₋₂₆)) и плагиоклаза (An₅₀₋₇₁) (см. рис. 2, *д*). Помимо клинопироксена и плагиоклаза наблюдаются ксеноморфные выделения кали-натриевого полевого шпата (Ab_{2,5-99,3}Or_{0,8-95,7}), апатита, кварца, мусковита, магнетита и кальцита (см. рис. 2, *д*).

ПЕТРОХИМИЯ ДИОПСИД-ПОРФИРОВЫХ БАЗАЛЬТОВ УСТЬ-СЕМИНСКОЙ СВИТЫ

Для выявления петрохимических особенностей состава базальтов усть-семинской свиты были отобраны представительные анализы пород, слагающих Бийскую и Усть-Семинскую постройки [Гибшер и др., 1997; Сафонова и др., 2011]), часть из которых приведена в табл. 5, а также использованы собственные данные по породам Бийской постройки. Базальты характеризуются широким диапазоном вариаций содержания кремнезема (SiO₂ 44,58–56,40 мас. %) и точки их составов на классификационной TAS диаграмме расположены в областях базальтов, андезибазальтов, трахибазальтов, реже пикробазальтов и трахиандезибазальтов (рис. 5, *a*). Характерны также широкие вариации по всем остальным петрогенным компонентам: MgO 2,84–11,58 мас. % (в единичном случае 14,77); TiO₂ 0,27–1,24 мас. % (в единичном случае 1,52); CaO 3,47–14,48 мас. %; Al₂O₃ 7,51–21,29 мас. %; Fe₂O₃ 6,72–13,52 мас. %; K₂O 0,09–4,43 мас. %; Na₂O 0,15–4,20 мас. % (см. рис. 5, б–е, табл. 5). Вследствие этих особенностей, диопсид-порфировые базальты усть-семинской свиты были разделены на несколько петрохимических групп: высокомагнезиальные, низкоглиноземистые, глиноземистые, титанистые, низкомагнезиальные и калиевые [Гибшер и др., 1997; Сафонова и др., 2011]. Однако в этих работах не принято во внимание повышенное содержание кальция и, соответственно, высокие CaO/Al₂O₃ отношения, типичные для вулканических пород, обогащенных вкрапленниками клинопироксена – анкарамитов (см. рис. 5, б, табл. 5).

На основании этого критерия выделяются две группы базальтов: высококальциевая и низкокальциевая, несмотря на то что абсолютные значения содержаний CaO в них значительно перекрываются (см. рис. 5, *e*, табл. 5). Вулканиты низкокальциевой группы имеют относительно высокие содержания SiO₂ 44,58–56,40 мас. %, Al₂O₃ 12,07–21,29 мас. %, Fe₂O₃ 6,72–13,52 мас. %, TiO₂ 0,39–1,52 мас. %, K₂O 0,09–4,43 мас. %, Na₂O 0,15–4,20 мас. % при низких концентрациях MgO 2,84–9,89 мас. %, CaO 3,47–13,77 мас. % и CaO/Al₂O₃ 0,2–0,9 (см. рис. 5, табл. 5). Породы высококальциевой группы характеризуются относительно высокими содержаниями MgO 7,98–14,77 мас. %, CaO 11,01–14,48 мас. % и CaO/Al₂O₃ 1,0–1,8 при низких концентрациях SiO₂ 44,78–50,96 мас. %, Al₂O₃ 7,51–13,41 мас. %, TiO₂ 0,27–1,10 мас. %, Fe₂O₃ 9,27–11,18 мас. %, K₂O 0,12–1,24 мас. %, Na₂O 0,77–2,30 мас. % (см. рис. 5, табл. 5).

Кроме анализов валового состава пород для выяснения петрохимических особенностей этих базальтов, были использованы данные по составу гомогенизированных расплавных включений, обнаруженных в высокомагнезиальным клинопироксене (Mg# >82) в базальтах усть-семинской постройки из двух местонахождений: на правом берегу реки Катунь между поселками Усть-Сема и Чепош [Buslov et al., 1993] и в восточной части Чергинского участка, в 16 км к юго-западу от поселка Усть-Сема [Симонов и др., 2010]. Точки составов этих включений в целом расположены в полях базальтов и андезибазальтов (см. рис.5, *а*). Состав гомогенизированных расплавных включений по данным с Чергинского участка имеет более ограниченный диапазон составов по всем

петрогенным компонентам (SiO₂ 49,22–50,29 мас. %, TiO₂ 0,54–0,76 мас. %, Na₂O 1,24–1,60 мас. %, MgO 7,01–9,48 мас. %, и CaO/Al₂O₃ 0,9–1,3), по сравнению с данными с правобережья Катуни (SiO₂ 45,75–56,95 мас. %, TiO₂ 0,15–0,63 мас. %, Na₂O 0,72–2,40 мас. %, MgO 7,76–14,08 мас. %, и CaO/Al₂O₃ 1,0–1,9) (см. рис. 5). На классификационной диаграмме TAS точки составов в основном попадают в поле базальтов и смещаются в сторону андезибазальтов (см. рис. 5, *a*). По соотношению CaO/Al₂O₃ (0,9–1,9 мас. %), составы этих включений близки к породам высококальциевой группы (CaO/Al₂O₃ 1,0–1,8) (см. рис. 5, *б*). Однако по содержаниям большинства петрогенных элементов (кроме некоторых данных по правобережью Катуни) перекрываются полями составов пород обоих групп (см. рис. 5).

КРИТЕРИИ ВЫДЕЛЕНИЯ И ГЕОДИНАМИЧЕСКИЕ ОБСТАНОВКИ ПРОЯВЛЕНИЯ АНКАРАМИТОВ

Термин «анкарамит» впервые был предложен французским геологом Лакруа в 1916 году для классификации толщ базальтов в районе коммуны Анкарами на северо-западе Мадагаскара [Lacroix, 1916]. Он предлагал под этим названием объединить породы, близкие к пикритам, и ассоциирующие с ними, но немного отличающиеся по химическому составу, и более заметно по минеральному составу (в анкарамитах пироксен преобладает над оливином, а в пикритах – наоборот). Согласно этим критериям, эта мадагаскарская формация была признана петротипом для выделения анкарамитов [Gunn et al., 1970]. Лазько и Шарков в 1988 с учетом петрохимии определили анкарамиты как умереннощелочные пикробазальты, имеющиеся низкую магнезиальность с содержаниями MgO порядка 15–17 мас. % [Лазько, Шарков, 1988]. Международным союзом геологических наук (IUGS), Подкомиссией по систематике изверженных пород, было решено, что анкарамитом является порфировый меланократовой базанит с обильными вкрапленниками пироксена и оливина [Le Maitre et al., 2002]. Далее для анкарамитов были установлены отношение CaO/Al₂O₃ лимитирующими высокое >1 И минеральный состав: высокомагнезиальный клинопироксен, высокомагнезиальный оливин, хромшпинель и реже основной плагиоклаз [Frey et al., 1978; Рингвуд, 1981; Della-Pasqua, Varne, 1997; Green et al., 2004; и др.].

Анкарамиты встречаются в разных геодинамических обстановках, это наглядно иллюстрируется тектонической схемой с нанесенными на неё проявлениями анкарамитов (рис. 6). Анкарамиты проявлены в молодых и современных островных дугах, Индийского, Атлантического и юго-западной окраины Тихого океанов (см. рис. 6). Такие как Вануату (острова Мерелава и Эпи) [Barsdell, 1988; Barsdell, Berry, 1990], Зондская (острова Бали и Ломбок) [Della-Pasqua, Varne, 1997; Elburg et al., 2007], Лихир (Папуа - Новая Гвинея) [Kennedy et al.. 1990] И Никарагуа в сегменте Коста-Рика-Никарагуа Центральноамериканской зоны субдукции [Сагг, Rose, 1984]. Анкарамиты в этих дугах ассоциируются с типичными породами островодужных систем как андезибазальты, трахибазальты, трахиандезиты и реже щелочные базальты. В связи с современными островными дугами, на перешейке Авачинского вулкана на южной оконечности Восточного сегмента дуги Камчатка были найдены оливин-клинопироксеновые крупнопорфировые базальты и пикриты, которые традиционно описываются там под названием авачиты [Portnyagin et al., 2005ab]. Эти вулканиты (по их особенностям) можно рассматривать как анкарамиты.

В древних островных дугах были выделены анкарамиты в комплексе Гринхиллз (Новая Зеландия) в виде даек [Mossman et al., 2000], на Южном Урале (медведевская свита) в виде даек и лавовых потоков ассоциированных с трахиандезитами и ультрамафитмафитовыми массивами Урало-Аляскинского типа [Пушкарев и др., 2017], в Джунгарии в ассоциации с пикритами, базальтами и андезибазальтами (Северо-Западной Китай) [Zhang et al., 2008], на Аляске (Бриджет Коув, залив Бернерс) в ассоциации с ультрамафитмафитовыми массивами Урало-Аляскинского типа [Irvine, 1973], в Восточном Среднегорье (Болгария) в виде лавовых потоков ассоциированных с абсарокитами и шошонитами [Marchev et al., 2009; Georgiev et al., 2009] и в Герреро (Мексика) в ассоциации с ультрамафическими кумулатами [Ortiz Hernández, 2000] (см. рис. 6).

С внутриплитными обстановками связаны анкарамиты Мадагаскара в ассоциации с пикритами [Lacroix, 1916], острова Анджоуан (архипелаг Коморских островов) с базальтами, трахибазальтами и трахитами [Flower, 1973], вулкана Халеакала (остров Мауи, Гавайи) с толеитовыми и щелочными базальтами [Hammer et al., 2016] и острова Ян-Майен к северу от Исландии с щелочными базальтами [Maaløe et al. 1986]. С зонами СОХ связаны анкарамиты острова Восточный (архипелаг Крозе, часть СОХ Индийского океана) с океанитами [Gunn et al., 1970] (см. рис. 6).

Расплавные включения в высокомагнезиальном оливине с отношением CaO/Al₂O₃> 1 были найдены в анкарамитах Вануату, Зондской [Della-Pasqua, Varne, 1997], в авачитах (анкарамитах) Авачинского вулкана [Portnyagin et al., 2005ab] и в известково-щелочных базальтах островов Батан (Лусон-Тайваньская дуга) [Schiano et al., 2000], Ява (Зондская дуга) [Sisson, Bronto, 1998] и Вулькано и Стромболи (Эолийская дуга, Италия) [Gioncada et al., 1998] (см. рис. 6). Расплавные включения в высокомагнезиальном клинопироксене с отношением CaO/Al₂O₃> 1 были найдены в анкарамитах Вануату, Зондской [Della-Pasqua, Varne, 1997] и как отмечено выше в диопсид-порфировых базальтах усть-семинской свиты [Buslov et al., 1993; Симонов и др., 2010]. Проведенный анализ проявлений анкарамитов показывает, что высококальциевый вулканизм может проявляться как в субдукционных, так и во внутриплитных обстановках. При этом он совмещается с типичным надсубдукционным или внутриплитным магматизмом.

МИНЕРАЛОГО-ПЕТРОГРАФИЧЕСКИЕ ОСОБЕННОСТИ АНКАРАМИТОВ

Чтобы выявить детальные минералого-петрографические характеристики анкарамитов были отобраны данные из работ по наиболее детально изученным анкарамитам из островодужных систем [Barsdell, Berry, 1990; Della-Pasqua, 1997; Ortiz Hernández, 2000; Zhang et al., 2008; Marchev et al., 2009; Пушкарев и др., 2017] с добавлением данных по авачитам [Portnyagin et al., 2005а] и собственных данных из высококальциевой группы диопсид-порфировых базальтов усть-семинской свиты.

Анкарамиты имеют порфировую структуру с вкрапленниками, представленными высокомагнезиальным клинопироксеном, высокомагнезиальным оливином, реже плагиоклазом и хромшпинелью, в микролитовой основной массе из клинопироксена и плагиоклаза (рис. 7).

Клинопироксен. Существует в виде вкрапленников и микролитов основной массы. Суммарное количество вкрапленников превышает 25 об. % (может достигать до 70 об. %) и представлены крупными кристаллами до 4 см (в среднем 1–6 мм) в виде больших идиоморфных кристаллов (см. рис. 2, *a*; рис. 3, *a*, *c*; рис. 7). Большинство вкрапленников

обладают прямой зональностью (см. рис. 3, *a*, *г*), гораздо реже зональность обратная. Магнезиальность варьирует от 75 до 94 для ядерных частей вкрапленников и уменьшается для более поздних до 53 (рис. 8). По составу он представлен диопсидом и авгитом (см. рис. 8, *e*). Вариации состава показывают отрицательную корреляцию значения Mg# с содержаниями TiO₂, Al₂O₃ и Na₂O и положительную с Cr₂O₃, CaO и SiO₂, что характерно для общего тренда эволюции состава клинопироксена при кристаллизации примитивных базальтовых магм (см. рис. 8 *a*–*d*). Содержание Al₂O₃ варьирует от 0,5 до 5 мас. %, однако для клинопироксенов из проявлений Восточного Среднегорья и по нашим данным для усть-семинской свиты может достигать до 9 мас. % (см. рис. 8, *б*). Для клинопироксенов из анкарамитов Урала и Джунгарии и авачитов Авачинского вулкана характерно наиболее низкое содержание Al₂O₃ <3 мас. % (см. рис. 8, *б*). Та же тенденция наблюдается для содержаний TiO₂ и Na₂O (см. рис. 8, *a*, *d*). Характерной особенностью клинопироксенов для анкарамитов является высокая магнезиальность и высокая хромистость (см. рис. 8, *г*). Содержание Cr₂O₃ достигает 1,1 мас. %, что позволяет классифицировать его как хромдиопсид (см. рис. 8, *г*).

Оливин. Доля вкрапленников оливина варьирует от 3 до 31%, однако не превышает долю клинопироксена. Здесь необходимо отметить, что в анкарамитах древних островодужных систем часто описываются вкрапленники оливина (предположительно), которые полностью замещены вторичными продуктами, например, в анкарамитах Южного Урала, Восточного Среднегорья и Джунгарии (см. рис. 2, *г*; рис. 7). Состав оливина был изучен в анкарамитах современных островных дуг (Вануату и Зондской) и авачитов Камчатки. Он образует скелетные, округлые и идиоморфные кристаллы размером 1–6 мм (изредка до 20 мм) и достаточно широко варьирует по составу Fo_{75-92} . Зональность редка, но иногда отмечается обратная зональность. Для него характерно высокое содержание CaO 0,10–0,55 мас. % и умеренное NiO до 0,3 мас. %. Содержание никеля положительно коррелирует с содержанием форстеритового компонента. Кроме того, в оливине Fo $_{85}$ достаточно часто отмечаются расплавные включения, на основе изучения которых было установлено существование высококальциевых анкарамитовых расплавов (CaO/Al₂O₃ >1).

Плагиоклаз. Вкрапленники редки (как правило, <1 об. %) и невелики по размеру (<1 мм). Встречается преимущественно в виде микролитов в основной массе (см. рис. 2, ∂). Состав вкрапленников изменяется в пределах An_{49-93} (см. рис. 2, ∂ , табл. 2). В наиболее мафических разностях плагиоклаз отсутствует вовсе (например, в анкарамитах Южного Урала). В основной массе состав микролитов может доходить до An_{90} , в наиболее примитивных разновидностях [Barsdell, 1988].

Хромшпинель. Вкрапленники редки и чаще всего отмечаются в виде включений во вкрапленниках высокомагнезиального оливина или высокомагнезиального клинопироксена. Хромистость варьирует в основном от 50 до 90, и может уменьшаться ниже 10 (рис. 9 *б*). Магнезиальность варьирует в пределах 30 - 70 и может достигать 80 в низкохромистых разностях (см. рис. 9, *б*). Не исключено что шпинелиды такого состава могут иметь ксеногенную природу. Вариации Al_2O_3 и TiO₂ показывают, что большинство составов хромшпинелидов попадают в поле типичных для островодужных систем (см. рис. 9 *а*).

Основная масса. Она микролитовая и состоит в основном из клинопироксена (диопсид-авгит и иногда пижонит) и в меньших количествах плагиоклаза An₇₀₋₉₄, титаномагнетита и/или оливина (отмечаются достаточно железистые разновидности Fo₄₃₋₄₉).

ПЕТРОХИМИЧЕСКИЕ ОСОБЕННОСТИ АНКАРАМИТОВ

Для выявления петрохимических характеристик анкарамитов были использованы данные по анкарамитам из типичных островодужных систем, петротипа анкарамитов (Анкарами, Мадагаскар) (табл. 6) и гомогенизированных высококальциевых расплавных включений в оливине из анкарамитов и базальтов (табл. 1 и 2 [Schiano et al., 2000], табл. 3 [Portnyagin et al., 2005b]).

Содержания SiO₂ и MgO для анкарамитов варьируют в пределах 43,27–51,74 и 7,98–18,44 мас. % соответственно, и на классификационной диаграмме TAS для высокомагнезиальных вулканических пород, они ложатся в поле базальтов, реже пикробазальтов (рис. 10, a, табл. 6). Породы высококальциевой группы усть-семинской свиты как уже было отмечено, охватывают весь спектр и точки их состава расположены в полях базальтов, реже пикробазальтов (см. рис. 10, a). По общей щелочности, анкарамиты Вануату, Южного Урала, Джунгарии, Авачинского вулкана и высококальциевой группы усть-семинской свиты тяготеют к умеренно-щелочному ряду, тогда как для пород Зондской дуги, Восточного Среднегорья и Мадагаскара – к щелочному ряду (см. рис. 10, a).

Точки состава гомогенизированных высококальциевых расплавных включений в оливине из анкарамитов, базальтов и авачитов расположены в областях базальтов смещаются в сторону базанитов и тефритов (см. рис. 10, *a*). Большинство из них попадают в поле пород щелочного ряда (см. рис. 10, *a*). Напротив, гомогенизированные высококальциевые расплавные включения в клинопироксене из базальтов усть-семинской свиты попадают в поле умеренно-щелочного ряда и смещаются по содержанию SiO₂ до 57 мас. % (см. рис. 10, *a*).

На основе детального изучения состава гомогенизированных высококальциевых расплавных включений в анкарамитах и базальтах из разных мест проявлений по щелочности были предложены два различных высококальциевых расплава [Schiano et al., 2000; Kogiso, Hirschmann, 2001]: гиперстен-нормативный, насыщенный кремнеземом и недосыщенный калием – в зонах срединно-океанических хребтов, задуговых бассейнах и на океанических островах, и нефелин-нормативный недосыщенный кремнеземом, насыщенный калием – в высококалиевых островодужных (шошонитовых) сериях.

На диаграммах, анкарамиты показывают широкие вариации по содержаниям CaO 8,82–21,12 мас. %, Al₂O₃ 6,02–13,80 мас. % и FeO 6,15–11,13 мас. % и относительно узкие по TiO₂ 0,13–1,10 мас. % (до 3 мас. % для анкарамитов Мадагаскара), Na₂O 0,07–2,30 мас. % и K₂O 0,01–1,85 мас. % (см. рис. 10, *б*–*ж*, табл. 6). Однако, гомогенизированные высококальциевые расплавные включения в оливине и клинопироксене характеризуются относительно низкими содержаниями MgO 4,39–15,85 мас. % и CaO 11,30–18,70 мас. % и высокими содержаниями Al₂O₃ 6,99–14,23 мас. %, TiO₂ 0,15–1,28 мас. %, Na₂O 0,72–3,49 мас. % и K₂O 0,54–2,12 мас. % (см. рис. 10, *б*–*ж*). Наиболее значимо гомогенизированные высококальциевые расплавные включения в оливине и клинопироксене отличаются от валовых составов анкарамитов по содержаниями FeO и SiO₂ (см. рис. 10, *e*, *ж*).

В принципе, состав гомогенизированных расплавных включений в ранних минералах анкарамитов может и не отвечать напрямую составу захваченных порций расплава [Danyushevsky et al., 2002; Portnyagin et al., 2005b]. Расплавные включения, захваченные при кристаллизации примитивных магм, могут претерпевать в дальнейшем

переуравновешивание с минералом-хозяином, частичную раскристаллизацию и декрепитацию при декомпрессии [Portnyagin et al., 2005b], которая сопровождалась потерей включениями флюидных компонентов (CO₂ и H₂O) и различного количества остаточного силикатного расплава [Danyushevsky et al., 2002; Portnyagin et al., 2005b]. По сравнению с составом пород, состав примитивных расплавов из включений в оливине характеризуются повышенными концентрациями A1₂O₃, Na₂O, K₂O и пониженными – SiO₂ (см. рис. 10). В работе [Portnyagin et al., 2005b] приведено описание методики изучения расплавных включений с учётом этих проблем, в частности для анкарамитов (авачитов).

Отличительной петрохимической характеристикой анкарамитов как породы, так и высококальциевых расплавных включений в оливине или клинопироксене является отношение CaO/Al₂O₃>1 что значительно выше значения 0,8–0,9 для выплавок из верхней мантии и в типичных пикритах (см. рис. 10, б, табл. 6) [Frey et al., 1978; Pингвуд, 1981; Della-Pasqua, Varne, 1997; Green et al., 2004]. Анкарамиты Южного Урала характеризуются более низкими содержаниями Al₂O₃ <7 мас. %, TiO₂ <0,2 мас. %, более высоким содержаниями Al₂O₃ отношением до 3,3 при сравнении с другими типичными анкарамитами как Вануату и Зондской (см. рис. 10, *б*–*д*). Базальты высококальциевой группы усть-семинской свиты по вариации всех петрогенных высококальциевых расплавных включений в клинопироксене из базальтов усть-семинской свиты также близок к составу анкарамитов как по отношению CaO/Al₂O₃, так и по абсолютным содержаниям петрогенных компонентов (см. рис. 10).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Обилие вкрапленников высокомагнезиального клинопироксена (> 25 об. %, Mg# до 94), высокая хромистость шпинелидов (до 91) и высокая основность плагиоклаза (An₄₉₋₉₃), типичные для типичных анкарамитов и относящихся к ним базальтов высококальциевой группы усть-семинской свиты (см. рис. 2, *a*, *d*; рис. 4; рис. 7; рис. 9, табл. 2). Вариации и тенденции эволюции состава клинопироксена из базальтов усть-семинской свиты также типичны для классических анкарамитов островных дуг, например, Вануату и Зондской (см. рис. 4; рис. 8), однако, при сравнении с составами клинопироксена из анкарамитов Урала, Джунгарии и авачитов Камчатки, наблюдаются различия в более высоких для алтайских эффузивов содержаниях TiO₂ и Al₂O₃ (см. рис. 4, *a*, *б*; рис. 8, *a*, *б*). Таким образом, базальты высококальциевой группы усть-семинской свиты по минералого-петрографическим характеристикам можно относить к анкарамитам. В базальтах низкокальциевой группы доля вкрапленников клинопироксена резко уменьшается за счет увеличения количества плагиоклаза, хотя для них характерен высокомагнезиальный клинопироксен, вариации состава клинопироксена и высокая хромистость хромшпинели типичные для анкарамитов.

По петрохимическим данным, анкарамиты характеризуются высоким отношением CaO/Al_2O_3 (>1), что характерно и для базальтов высококальциевой группы усть-семинской свиты. Состав гомогенизированных расплавных включений из вкрапленников клинопироксена из пород усть-семинской свиты по [Buslov et al., 1993; Симонов и др., 2010] также имеет отношение CaO/Al_2O_3 >1, типичное для анкарамитов. Таким образом, базальты высококальциевой группы усть-семинской свиты по совокупности минералого-петрографических и петрохимических характеристик являются анкарамитами. Эволюция

состава клинопироксена при кристаллизации анкарамитов идет в сторону увеличения железистости и содержания алюминия, титана и натрия при уменьшении концентрации хрома. Это позволяет предложить, что базальты низкокальциевой группы усть-семинской свиты вполне могли образоваться в результате фракционирования анкарамитового расплава в промежуточных камерах, что, однако не может исключить обогащения отдельных потоков базальтов кумулусным клинопироксеном (см. рис. 4; рис. 8).

Приведенные выше классификации анкарамитов и базальтов высококальциевой группы усть-семинской свиты с учетом минералого-петрографических и петрохимических характеристик и согласно рекомендацией [Le Maitre, 2002] позволяют определить анкарамиты как умеренно-щелочные оливин-клинопироксеновые высокомагнезиальные базальты с CaO/Al₂O₃ >1.

Так, по особенностям минерального и химического состава анкарамиты Горного Алтая наиболее близки к островодужным анкарамитам. В то же время в районе Бийской постройки базальты усть-семинской свиты ассоциируют с нижележащей манжерокской свитой, породы которой имеют внутриплитные геохимические характеристики [Сафонова и др., 2011]. То есть, по сути, вулканиты усть-семинской свиты надстраивают вулканическую постройку манжерокской с временным разрывом и формированием карбонатов чепошской свиты. Такая двойственная природа базальтов усть-семинской свиты заставляет рассмотреть модели образования высококальциевых расплавов, которые ответственны за формирование анкарамитов.

Высококальциевая природа анкарамитов интерпретировалась некоторыми исследователями как результат аккумуляции кристаллов клинопироксена из пикритовых или оливиновых базальтовых магм [Gunn et al., 1970; Hughes, 1982]. Однако, другие исследователи утверждали, что существуют, собственно, анкарамитовые магмы [Thompson, Flower 1971; Maaløe et al., 1986; Barsdell, Berry 1990; Della Pasqua, Varne, 1997; Schiano et al., 2000]. Ещё до обнаружения расплавных включений анкарамитового состава, была проведена серия экспериментов по частичному плавлению различных субстратов для объяснения и подтверждения существования анкарамитовых расплавов: 1 – при низком давлении (1 бар) показано, что анкарамиты могут образоваться не путем аккумуляции клинопироксена из базальтовых расплавов, а за счет продолжительной равновесной кристаллизации магмы при температурах от 1240 до 1275 °C [Thompson и Flower в 1971]; 2 – при давлении 19,5 кбар и температуре 1415 °C показано, что при низкой степени частичного плавления шпинелевого лерцолита также могут образоваться анкарамиты [Maaløe et al., 1986]; 3 – эксперименты при давлении около 5–10 кбар и температуре 1325 °С подтвердили, что источником анкарамитовых расплавов могут являться верлиты или клинопироксениты [Barsdell, Berry 1990].

Гомогенизация высококальциевых расплавных включений в высокомагнезиальном оливине из анкарамитов островных дуг Вануату и Зондской предоставила убедительные доказательства существования высококальциевых (анкарамитовых) расплавов, которые значительно отличаются от пикритовых [Della Pasqua, Varne, 1997]. Согласно [Della Pasqua, Varne, 1997], эти высококальциевые расплавы не могут быть получены путем частичного плавления обычных мантийных лерцолитов. Для них предложено модель образования при частичном плавлении лерцолита в присутствии флюидов, обогащенных CO₂ при давлении 10–30 кбар [Della Pasqua, Varne, 1997]. На основании изучения высококальциевых расплавных включений в оливине в известково-щелочном базальте с острова Батан [Schiano et al., 2000] был выделен особый тип примитивной нефелин-

нормативной анкарамитовой островодужной магмы, и была предложена модель их образования при средней и высокой степени частичного плавления пироксенитовых кумулатов (~10–40 мас. %) при давлениях от нижней коры до верхней мантии (до нескольких десятков килобар) [Schiano et al., 2000]. Таким образом, выделяются два типа высококальциевых анкарамитовых магм: гиперстен-нормативные и нефелин-нормативные и вероятно они могут иметь разный механизм формирования.

Как было отмечено, состав гомогенизированных высококальциевых расплавных включений в высокомагнезиальном оливине или высокомагнезиальном клинопироксене в анкарамитах или базальтов отличается от валового состава анкарамитов [Danyushevsky et al., 2002; Portnyagin et al., 2005b]. Обсуждение этих эффектов и применение новых методик для исследования расплавных включений для пород усть-семинской объектов исследования и для анкарамитов является нашем дальнейшем исследованием.

Образование гиперстен-нормативных высококальциевых расплавов объясняется следующим образом: 1 – при частичном плавлении клинопироксенита (при температурах выше 1350°С и давлении 10 кбар) с дополнительным процессом, включающем реакцию расплав-порода [Kamenetsky et al., 1998; Kogiso, Hirschmann, 2001]; 2 – при плавлении тугоплавкого источника, состоящего из оливина и клинопироксена ± ортопироксен при повышенных температурах мантии (по крайней мере, 1350–1400 °C) и давлении 12 кбар [Médard et al., 2004]; 3 – из реститового лерцолитового источника, обогащённого CaO; такой источник, судя по всему, легко получить из недеплетированного лерцолита (1300-1350 °C) путем первой стадии экстракции базальтового расплава и последующего обогащения доломитовым карбонатитовым расплавом, увеличивая CaO и Na₂O и, соответственно, долю диопсида без увеличения концентрации Al₂O₃[Green et al., 2004]; 4 – из клинопироксенового или безклинопироксенового реститового гарцбургита [Schmidt et al., 2004] при давлении 15 кбар и температурах 1300–1360°С в присутствии H₂O и CO₂, однако, для сухих условий необходима температура более 1400°С. Основной проблемой, с которой сталкиваются модели образования таких расплавов, является высокая температура (>1350 °C), необходимая для плавления, тогда как под «нормальными» срединно-океаническими хребтами оценка температуры даёт ~ 1280–1350 °C [White et al., 1992], а температурные оценки для мантийного клина ещё ниже - порядка 1100 °С [England, Wilkins, 2004].

Нефелин-нормативные высококальциевые расплавы как отмечено выше, не могут быть получены путем частичного плавления обычных мантийных лерцолитов. Для них предложены следующие модели образования: 1 – при частичном плавлении амфиболсодержащего верлита при относительно низких температурах (> 1190° С при 10 кбар) и низких степенях частичного плавления [Médard et al., 2006]; 2 – из метасоматизированного безгранатового мантийного источника, состоящего из клинопироксена и оливина (верлита), содержащего либо амфибол, либо жадеит [Elburg et al., 2007]; 3 – из амфиболсодержащих клинопироксенитов, находящихся в виде кумулатов в нижней коре и/или метасоматических жил в верхней мантии островных дуг [Sorbadere et al., 2013]. Амфибол считается важной фазой в формировании нефелин-нормативных анкарамитов по двум причинам. Во-первых, содержащаяся в нем вода значительно снижает температуру плавления клинопироксенита до условий, реалистичных для островодужных обстановок [Schiano et al., 2000; Médard et al., 2006]. Во-вторых, плавление амфибола также способствует увеличению количества щелочей и снижению содержания SiO₂ по сравнению с чистыми расплавами клинопироксенитов и верлитов, а полученные составы расплавы смещаются к нефелин-нормативным [Sorbadere et al., 2013].

Приведенный обзор моделей генезиса анкарамитов показывает, что получить анкарамитовый расплав непосредственно из лерцолитов невозможно. Их можно получить либо за счет верлитизации мантии, либо за счет плавления верлитов или клинопироксенитов присутствующих в мантии или нижней коре. В качестве агента верлитизации рассматриваются карбонаты, которые погружаются в зонах субдукции (для островодужных анкарамитов) или внутриплитные карбонатиты, связанные с глубинными мантийными плюмами (для внутриплитных анкарамитов). Для анкарамитов устьсеминской свиты причина верлитизации мантийного субстрата не вполне очевидна. Согласно представлениям Сафоновой [2011] и Симонова [2010], усть-семинские диопсидпорфировые базальты связаны с субдукционными процессами. В этом случае верлитизация мантии, очевидно, могла быть связана с затягиванием карбонатных пород в зону субдукции. В пользу этой модели свидетельствует тот факт, что подобные вулканиты и дайки образуют протяженный линейный пояс [Изох и др., 2004]. В то же время в Горном Алтае описаны среднекембрийские внутриплитные карбонатиты, которые могли вызывать верлитизацию литосферной мантии региона в это же время [Врублевский и др., 2012]. Вопрос о геодинамической обстановке излияния и источников вещества анкарамитов Горного Алтая требует дальнейшего исследования.

ЗАКЛЮЧЕНИЕ

Дискуссионным генезисом базитового магматизма венд-раннепалеозойского этапа развития Алтае-Саянской складчатой области являются среднекембрийские диопсидпорфировые базальты усть-семинской свиты Горного Алтая [Buslov et al., 1993; Buslov et al., 2001; Гибшер и др., 1997; Добрецов и др., 2004; Зыбин, 2006, Симонов и др., 2010, Сафонова и др., 2011]. Они характеризуются большим количеством вкрапленников высокомагнезиального клинопироксена (Mg# до 94, от 20 до 50 об. %). Помимо вкрапленников клинопироксена наблюдаются вкрапленники соссюритизированного плагиоклаза (An₄₉₋₇₁), оливина полностью замещённого агрегатом хлорита, эпидота и магнетита, реже амфибола с Mg# 55,7–68,2 и хромшпинели с хромистостью Cr# 36,2–41,7. Включения хромшпинели в высокомагнезиальном клинопироксене имеют высокую хромистость (Сг# до 72,8). Базальты усть-семинской свиты по химическому составу делятся на две основные группы: высококальциевую (CaO 11,01–14,48 мас. %, MgO 7,98– 14,77 мас. % и CaO/Al₂O₃ 1,0–1,8) и низкокальциевую (CaO 3,47–13,77 мас. %, MgO 2,84– и CaO/Al₂O₃ 0,2–0,9). Сопоставление полученных данных по 9.89 мас. % высококальциевым базальтам усть-семинской свиты с анкарамитами в проведённом нами позволяет обзоре относить ИХ Κ этому типу пород. Приведен детальный классификационный базальтами анализ анкарамитов при сопоставлении С высококальциевой группы усть-семинской свиты с учетом минералого-петрографических и петрохимических характеристик согласно рекомендаций [Le Maitre, 2002] позволяют анкарамиты умеренно-щелочные оливин-клинопироксеновые определить как высокомагнезиальные базальты с CaO/Al₂O₃ >1. Низкокальциевые базальты устьсеминской свиты, вероятно, образовались в результате фракционирования анкарамитового расплава в промежуточных камерах. Образование анкарамитов Горного Алтая связано с плавлением верлитизированной надсубдукционной литосферной мантии Центрально-Азиатского складчатого пояса.

Проявление анкарамитового магматизма усть-семинской свиты и наличие ультрабазит-базитовых массивов Барангольского комплекса, комагматичных ЭТИМ вулканитам косвенно указывает на возможность выделения интрузий, подобных массивам Уральско-Аляскинского типа в Алтае-Саянской складчатой области. Эволюция состава при кристаллизации анкарамитов идет в сторону увеличения клинопироксена железистости и содержания алюминия, титана и натрия при уменьшении концентрации хрома. Это направление контролируется фракционированием на оливинклинопироксеновой котектике и является типичным как для островодужных анкарамитов [Irvine,1973; Barsdell, Berry,1990; Della-Pasqua, Varne, 1997; Mossman et al., 2000], так и для ультрамафитов из комплексов Урало-Аляскинского типа [Irvine, 1973; Пушкарев и др., 2017]. Вплавление анкарамитовых расплавов возможно из мантийного источника с высоким отношением CaO/Al₂O₃, превышающим это отношение в лерцолитовой (пиролитовой) мантии. Такому составу отвечают верлиты, в целом, как считается, не характерные для мантии. Образование метасоматизированной верлитовой мантии может происходить либо в результате реакции лерцолита с мантийными карбонатитовыми расплавами, либо в процессе взаимодействия пород мантийного клина с флюидными компонентами субдуцирующего слэба. Эксперименты, направленные на выяснение генезиса анкарамитов, показали, что одним из наиболее вероятных механизмов их образования является плавление верлитов или клинопироксенитов в верхней мантии островных дуг с участием амфибола [Médard et al., 2006; Sorbadere et al., 2013].

Авторы выражают благодарность рецензентам – докторам геологоминералогических наук В.А. Симонову и П.Ю. Плечову за ценные замечания, позволившие значительно улучшить содержательную часть и структуру рукописи статьи, И.Ю. Сафоновой и А.С. Гибшеру за консультации по объектам предыдущих исследований, а также А.И. Ильину, Е.В. Михееву и Д.В. Элькиной, принимавшим участие в экспедиционных работах.

Работа выполнена по государственному заданию ИГМ СО РАН при поддержке Министерства образования и науки РФ (проект № 14.У26.31.0018).

ЛИТЕРАТУРА

Врублевский В.В., Крупчатников В.И., Изох А.Э., Гертнер И.Ф. Щелочные породы и карбонатиты Горного Алтая (комплекс эдельвейс): индикатор раннепалеозойского плюмового магматизма в Центрально-Азиатском складчатом поясе // Геология и геофизика, 2012, т. 53 (8), с. 945–963.

Гибшер А.С., Есин С.В., Изох А.Э., Киреев А.Д., Петрова Т.В. Диопсидсодержащие базальты кембрия Чепошской зоны Горного Алтая: модель фракционирования гибридных магм в промежуточных магматических камерах // Геология и геофизика, 1997, т. 38 (11), с. 1760–1772.

Готтман И.А., Пушкарев Е.В., Каменецкий В.С., Рязанцев А.В. Состав магматических включений в порфировых вкрапленниках хромшпинели из анкарамитов Южного Урала // Ежегодник- Тр. ИГГ УрО РАН, 2016, вып. 163, с. 86–91.

Добрецов Н.Л., Буслов М.М., Сафонова И.Ю., Кох Д.А. Фрагменты океанических островов в структуре Курайского и Катунского аккреционных клиньев Горного Алтая // Геология и геофизика, 2004, т. 45 (12), с. 1381–1403.

Жмодик С.М., Нестеренко Г.В., Айриянц Е.В, Белянин Д.К., Колпаков В.В., Подлипский М.Ю., Карманов Н.С. Минералы металлов платиновой группы из аллювия - индикаторы коренной минерализации (на примере россыпей юга Сибири) // Геология и геофизика, 2016, т. 57 (10), с. 1828–1860.

Зыбин В.А. Эталон усть-семинского комплекса порфировых базальтов и трахибазальтов (Горный Алтай). Новосибирск, СНИИГГиМС, 2006, 278 с.

Изох А.Э., Борисенко А.С., Говердовский В.А., Толстых Н.Д., Слуцкер Е.М. Ордовикский Кузнецко-Алатауско-Алтайский платиноносный пояс (Алтае-Саянская складчатая область - Западная Монголия) // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту): Материалы научного совещания по Программе фундаментальных исследований (г. Иркутск, 19–22 октября 2004 г.). Иркутск: Изд-во Ин-та географии СО РАН, 2004, т. 1., с. 141–142.

Изох А.Э., Вишневский А.В., Поляков Г.В., Калугин В.М., Оюунчимэг Т., Шелепаев Р.А., Егорова В.В. Урэгнурская платиноносная вулканоплутоническая пикритбазальтовая ассоциация Монгольского Алтая – индикатор кембро-ордовикской крупной изверженной провинции // Геология и геофизика, 2010, т. 51 (5), с. 665–681.

Лаврентьев Ю.Г., Карманов Н.С., Усова Л.В. Электронно-зондовое определение состава минералов: микроанализатор или сканирующий электронный микроскоп? // Геология и геофизика, 2015, т. 56 (8), с. 1473–1482.

Лазько Е.Е., Шарков Е.В. Магматические горные породы. Ультраосновные породы. М.: Наука, 1988, т. 5, 508 с.

Оюунчимэг Т., Изох А.Э., Вишневский А.В., Калугин В.М. Изоферроплатиновая ассоциация минералов из россыпи реки Бургастайн-Гол (Западная Монголия) // Геология и геофизика, 2009, т. 50 (10), с. 1119–1130.

Пушкарев Е.В., Готтман И.А. Состав порфировых вкрапленников хромшпинелида в клинопироксеновых порфиритах ирендыкской свиты на Южном Урале как индикатор анкарамитовой природы вулканогенных пород // Российское минералогическое общество. Вестник Уральского отделения, 2016, №. 13, с. 112–120.

Пушкарев Е.В., Рязанцев А.В., Готтман И.А. Анкарамиты присакмаровознесенской зоны на Южном Урале – геологическое положение и состав // Ежегодник-Тр. ИГГ УрО РАН, 2017, вып. 164, с. 166–175.

Пушкарев Е.В., Рязанцев А.В., Готтман И.А., Дегтярев К.Е., Каменецкий В.С. Анкарамиты – новый тип магнезиальных, высококальциевых примитивных расплавов в магнитогорской островодужной зоне на Южном Урале // Доклады академии наук, 2018, т. 479, с. 433–437.

Рингвуд А.Е. Состав и петрология мантии Земли. Москва, Изд-во Недра, 1981, 584 с.

Сафонова И.Ю., Буслов М.М., Симонов В.А., Изох А.Э., Комия Ц., Курганская Е.В., Оно Т. Геохимия, петрогенезис и геодинамическое происхождение базальтов из Катунского аккреционного комплекса Горного Алтая (Юго-Западная Сибирь) // Геология и геофизика, 2011, т. 52 (1), с. 541–567.

Симонов В.А., Сафонова И.Ю., Ковязин С.В., Курганская Е.В. Физикохимические параметры петрогенезиса базальтовых комплексов Катунской зоны, Горный Алтай // Литосфера, 2010, № 3, с. 111–117.

Толстых Н.Д. Минеральные ассоциации платиноносных россыпей и генетические корреляции с их коренными источниками: Автореф. дис. ... д.г.-м.н. Новосибирск, 2004. 33 с.

Федак С.И., Туркин Ю.А., Гусев А.И., Шокальский С.П. и др. Объяснительная записка. Государственная геологическая карта Российской федерации. Масштаб 1:1 000 000 (третье поколение). Серия Алтае-Саянская. Лист М-45– Горно-Алтайск / Ред. С.П. Шокальский. СПб., Изд-во ВСЕГЕИ, 2011, 567 с.

Barsdell M. Petrology and petrogenesis of clinopyroxene-rich olivine tholeiitic lavas from Merelava Volcano, Vanuatu // J. Petrol., 1988, v 29, p. 927–964.

Barasdell M., Berry R.F. Origin and evolution of primitive island arc ankaramites from Western Epi, Vanuatu // J. Petrol., 1990, v 31, p. 747–777.

Buslov M.M., Bersin N.A., Dobretsov N.L. Geology and tectonics of Gorny Altai Guide-book for post- Symposium excursion. The 4-th International Symposium of the IGCP Project 283 "Geodynamic Evolution of the Paleoasian Ocean". Novosibirsk, 1993, 123 p.

Buslov M.M., Saphonova I.Yu, Watanabe T., Obut O.T., Fujiwara Y., Iwata K., Semakov N.N., Sugai Y., Smirnova L.V., Kazansky A.Yu., Itaya T. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent // Geosci. J., 2001, v 5 (3), p. 203–224.

Carr M.J., Rose W.I. A data base of Central American volcanic rocks // J. Volcanol. Geotherm. Res., 1984, v 33, p. 239–240.

Danyushevsky L.V., McNeill A.W., Sobolev A.V. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: An overview of techniques, advantages and complications // Chemical Geology, 2002, v 183, p. 5–24.

Della-Pasqua F.N. Primitive ankaramitic magmas in volcanic arcs: evidence from melt inclusions. PhD Thesis, University of Tasmania, 1997.

Della-Pasqua F.N., Varne R. Primitive ankaramitic magmas in volcanic arcs: A melt inclusion approach // Can. Mineral., 1997, v 35, p. 291–312.

Elburg M.A., Kamenetsky V.S., Foden J.D., Sobolev A. The origin of medium-K ankaramitic arc magmas from Lombok (Sunda arc, Indonesia): Mineral and melt inclusion evidence // Chemical Geology, 2007, v 240, p. 260–279.

England F., Wilkins C. A simple analytical approximation to the temperature structure in subduction zones // Geophysical Journal International, 2004, v 159 (3), p. 1138–1154.

Flower F.J. Evolution of basaltic and differentiated lavas from Anjouan, Comores Archipelago // Contributions to Mineralogy and Petrology, 1973, v 38, p. 237–260.

Frey F.A., Green D.H., Roy S.D. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data // J. Petrol., 1978, v 19, p. 463–513.

Gioncada A., Clocchiatti R., Sbrana A., Bottazzi P., Massare D., Ottolini L. A study of melt inclusions at Vulcano (Aeolian islands, Italy): Insights on the primitive magmas and on the volcanic feeding system, Bull // Volcanol., 1998, v 60, p. 286–306.

Green D.H., Schmidt M.W., Hibberson W.O. Island-arc ankaramites: Primitive melts from fluxed refractory lherzolitic mantle // J. Petrol., 2004, v 45, p. 391–403.

Gunn M.B., Coy-Yll R., Watkins N.D, Abranson C.E., Nougier J. Geochemistry of the Oceanite–Ankaramite–Basalt Suite from East Island–Crozet Archipelago // Contr. Miner. Petrol., 1970, v 28, p. 319–339.

Hammer J., Jacob S., Welsch B., Hellebrand E., Sinton J. Clinopyroxene in postshield Haleakala ankaramite: 1. Efficacy of thermobarometry // Contr. Miner. Petrol., 2016, v 171 (7).

Hughes C.J. Igneous Petrology. Amsterdam, Elsevier, 551 p.

Irvine T.N. Bridget Cove volcanics, Juneau arc, Alaska: possible parental magma of Alaskan-type ultramafic complexes // Carnegie Institute Year-Book-72, 1973, p. 478–491.

Kamenetsky V.S., Eggins S.M., Crawford A.J., Green D.H., Gasparon M., Falloon T.J. Calcic melt inclusions in primitive olivine at 43°N MAR: evidence for melt-rock reaction/ melting involving clinopyroxene-rich lithologies during MORB generation // Earth and Planetary Science Letters, 1998, v 160, p. 115–132.

Kamenetsky V.S., Crawford A.J., Meffre S. Factors Controlling the Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks // J. Petrol., 2001, v 42, p. 655–671.

Kennedy A.K., Hart S.R., Frey F.A. Composition and isotopic constraints on the petrogenesis of alkaline arc lavas: Lihir Island, Papua New Guinea // J. Geophys. Res., 1990, v 95, p. 6929–6942.

Kogiso T., Hirschmann M.M. Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions // Contr. Miner. Petrol., 2001, v 142, p. 347–360.

Lacroix A. Sur quelques roches volcaniques melanocrates des possession franaises de l'ocean Indien et du Pacifique // C.R. Acad. Sci., 1916, v 158, p. 177–183.

Le Maitre R.W. Igneous rocks a Classification and Glossary of Terms Recommendations of the International Union of Geological Sciences, Sub-Commission on the Systematics of Igneous Rocks // Cambridge University Press, 2002, 236 p.

Maaløe S., Sorensen I., Hartogen J. The tachybasaltic suite of Jan Mayen // J. Petrol., 1986, v 27, p. 439–466.

Marchev P., Georgiev S., Zajacz Z., Manetti P., Raicheva R., Von Quadt A., Tommasini S. High-K ankaramitic melt inclusions and lavas in the Upper Cretaceous Eastern Srednogorie continental arc, Bulgaria: Implication for the genesis of arc shoshonites // Lithos, 2009, v 113, p. 228–245.

Médard E., Schmidt M.W., Schiano P. Liquidus surfaces of ultracalcic primitive melts: formation conditions and sources // Contr. Miner. Petrol., 2004, v 148, p. 201–215.

Médard E., Schmidt M.W., Schiano P., Ottolini L. Melting of amphibole-bearing wehrlites: An experimental study on the origin of ultra-calcic nepheline-normative melts // J. Petrol., 2006, v 47, p. 481–504.

Morimoto N. Nomenclature of pyroxenes // Am. Min., 1988, v 73, p. 1123–1133.

Mossman D.J., Coombs D.S., Kawachi Y., Reay A. High-Mg arc-ankaramitic dikes, Greenhills Complex, Southland, New Zealand // Can. Mineral., 2000, v 38, p. 191–216.

Ortiz Hernández L.E. An arc ankaramite occurrence in central Mexico // Revista Mexicana de Ciencias Geológicas, 2000, v 17 (1), p. 34–44.

Portnyagin M.V., Plechov P.Y., Matveev S.V., Osipenko A.B., Mironov N.L. Petrology of avachites, high-magnesian basalts of Avachinsky volcano, Kamchatka: I. General characteristics and composition of rocks and minerals // Petrology, 2005, v 13 (2), p. 99–121.

Portnyagin M.V., Mironov N.L., Matveev S.V., Plechov P.Y. Petrology of avachites, high-magnesian basalts of Avachinsky Volcano, Kamchatka: II. Melt inclusions in olivine // Petrology, 2005, v 13 (4), p. 322–351.

Schiano P., Eiler J.M., Hutcheon I.D., Stolper E.M. Primitive CaO-rich, silicaundersaturated melts in island arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas // Geochem. Geophys. Geosyst., 2000, v 1,1999GC000032.

Schmidt M.W., Green D.H., Hibberson W.O. Ultra-calcic magmas generated from Cadepleted mantle: an experimental study on the origin of ankaramites // J. Petrol., 2004, v 45, p. 531–554.

Sisson T.W., Bronto S. Evidence for pressure release melting beneath magmatic arcs from basalts at Galunggung, Indonesia // Nature, 1998, v 391, p. 883–886.

Sorbadere F., Schiano P., Métrich N. Constraints on the origin of nepheline-normative primitive magmas in island arcs inferred from olivine-hosted melt inclusion compositions // J. Petrol., 2013, v 54, p. 215–233.

Thompson N, Flower F.J. Evidence for upper-crust ankaramitic liquids // Am. Geophys. Union, Trans, v 52, (abstr.).

White R.S., McKenzie D., O'Nions R.K. Oceanic crustal thickness from seismic measurements and rare earth element inversions // J. Geophys. Res., 1992, v 97, p. 19683–19715.

Zhang Z., Mao J., Cai J., Kusky T.M., Zhou G., Yan S., Zhao L. Geochemistry of picrites and associated lavas of a Devonian island arc in the northern Junggar terrane, Xinjiang

(NW China): Implications for petrogenesis, arc mantle sources and tectonic setting $\prime\prime$ Lithos, 2008, v 105, p. 379–395.

Рис. 1. *а* – геологическая схема северной части Горного Алтая [Федак и др., 2011] с упрощениями, *б* – геологическая схема Бийской вулканической постройки усть-семинской свиты Горного Алтая [Зыбин, 2006] с упрощениями.

1 – четвертичные отложения; 2 – девонские отложения; 3 – ордовикские отложения; 4 – мощная флишоидная толща горноалтайской серии; 5 – алевролиты, песчаники и сланцы еландинской свиты; 6–9 – усть-семинская свита: 6 – нерасчлененная, 7 – верхняя толща (поздний этап вулканизма): пироксеновые, плагиоклаз-пироксеновые базальты и кластолавы, 8 – средняя толща (2-ая фаза): ортотуффиты, туффиты, туфы и туфобрекчии, 9 – нижняя толща (1-ая фаза): пироксеновые и пироксен-плагиоклазовые базальты; 10 – Барангольский комплекс (линейные трещинные тела и штоки габбро, пироксенитов и диоритов); 11 – алевролиты, кремнисто-глинистые и сланцы чемальской свиты; 12–14 – манжерокская свита: 12 – нерасчлененная, 13 – верхняя подсвита: красноцветные афировые и мелкопорфировые плагиоклазовые базальты, 14 – нижняя подсвита: зеленотемноцветные афировые и мелкопорфировые базальты; 15 – субвулканические тела нижнего кембрия; 16 – кремнисто-карбонатно-вулканогенные фации улусчергинской свиты; 17 – каспинская серия: объединяет чепошскую и шашкунарскую свиты, алевролиты, кремнистоглинистые сланцы и глинистые известняки; 18 – вендраннекембрийские отложения; 19, 20 – вулканические постройки усть-семинской свиты: 19 – Усть-семинская, 20 – Бийская (район исследования); 21 – места отбора образцов.

Рис. 2. Микрофотографии диопсид-порфировых базальтов Бийской вулканической постройки усть-семинской свиты.

а, б – оптические микрофотографии шлифов в проходящим свете: *а* – вкрапленники клинопироксена в пироксен-порфировых разностях, б – мелкие вкрапленники измененного плагиоклаза и вкрапленники клинопироксена в пироксен-плагиоклаз-порфировых разностях; *в*–*е* – микрофотографии в обратно-рассеянных электронах породообразующих минералов: *в* – единичный вкрапленник хромшпинели с включениями эпидота, апатита и титанита, *г* – эпидот-хлоритовые псевдоморфозы по вкрапленникам оливина, ∂ – мелкий вкрапленник измененного плагиоклаз и состав основной массы, *е* – вкрапленник амфибола с включением титанита. Индексы минералов: *Срх* – клинопироксен, *Cr-spl* – хромшпинель, *Ар* – апатит, *Ер* – эпидот, *Ttn* – титанит, *Ol* – оливин, *Opx* – ортопироксен, *Chl* – хлорит, *Kfs* – калиевой палевой шпат, *Pl* – плагиоклаз, *Amp* – амфибол.

Рис. 3. Вариации состава зональных вкрапленников клинопироксена из диопсидпорфировых базальтов Бийской вулканической постройки усть-семинской свиты.

а, *г* – микрофотографии в обратно-рассеянных электронах вкрапленников клинопироксена (общий вид); *б*, *д* – микрофотографии в обратно-рассеянных электронах увлечённого фрагмента краевой части вкрапленников клинопироксена с точками анализов; *в*, *е* – концентрации элементов (Ca, Mg, Al, Fe, Ti, Cr) даны в формульных единицах, пересчитанных на 6 атомов кислорода. *Cal* – кальцит.

Рис. 4. Состав клинопироксенов из диопсид-порфировых базальтов усть-семинской свиты.

а–в – вариации состава клинопироксена; *г* – классификация пироксенов [Morimoto, 1988]. 1–3 – из Бийской вулканической постройки [собственные данные]: 1 – центр вкрапленника, 2 – кайма вкрапленника, 3 – из основной массы; 4– из Усть-семинской постройки [Buslov et al., 1993; Гибшер и др., 1997; Симонов и др., 2010].

Рис. 5. Классификация и вариации химического состава диопсид-порфировых базальтов усть-семинской свиты.

1, 2 – диопсид-порфировые базальты усть-семинской свиты: 1 – высококальциевая группа (анкарамиты), 2 – низкокальциевая группа; 3, 4 – гомогенизированные расплавные включения в клинопироксенах из базальтов усть-семинской свиты: 3 – [Симонов и др., 2010], 4 – [Buslov et al., 1993].

Рис. 6. Проявления анкарамитового вулканизма на тектонической схеме [Schiano et al., 2000] с изменениями и дополнениями.

1–3 – Границы плит: 1 – оси срединно-океанических хребтов, 2 – зоны субдукции, 3 – трансформные разломы; 4–6 – проявления анкарамитового вулканизма: 4 – лавы, 5 – лавы с высококальциевыми расплавными включениями в оливине, 6 – высококальциевые расплавные включения в оливине.

Рис. 7. Микрофотография анкарамитов Южного Урала [Пушкарев и др., 2018]. *Срх* – вкрапленники хромдиопсида; *Срх II* – более мелкие вкрапленники диопсида; *Орх* – хлоритовые псевдоморфозы по вкрапленникам оливина (или ортопироксена); *Cr-Spl* – вкрапленники хромшпинели; *Srp* – микроксенолит серпентинита.

Рис. 8. Вариации состава и классификация клинопироксенов из анкарамитов. *а*–*д* – вариации состава клинопироксена; *е* – классификация пироксенов [Morimoto, 1988]. *1*–*6* – анкарамиты: *1* – Вануату [Barsdell, Berry, 1990; Della-Pasqua, 1997], *2* – Зондская дуга [Della-Pasqua, 1997], *3* – Джунгария [Zhang et al., 2008], *4* –Южный Урал [Пушкарев и др., 2017], *5* – Восточное Средногорие [Marchev et al., 2009], *6* – Герреро [Ortiz Hernández, 2000]; *7* – авачиты, Камчатка [Portnyagin et al., 2005а]; *8* – высококальциевая группа диопсид-порфировых базальтов усть-семинской свиты.

Рис. 9. Вариации состава хромшпинели из анкарамитов.

а – вариации Al₂O₃ и TiO₂ в связи с геодинамической обстановкой [Kamenetsky et al., 2001]; *б* – вариации хромистости Cr# = 100*Cr/(Cr+Al) и магнезиальности Mg# = 100*Mg/ (Mg+Fe⁺²). 1–4 – анкарамиты: 1 – Вануату [Barsdell, Berry, 1990; Della-Pasqua, 1997], 2 – Зондская дуга [Della-Pasqua, 1997], 3 – Джунгария [Zhang et al., 2008], 4 –Южный Урал [Пушкарев и др., 2017]; 5 – авачиты, Камчатка [Portnyagin et al., 2005а]; 6 – высококальциевая группа диопсид-порфировых базальтов усть-семинской свиты. *IAB* – базальты островных дуг; *OIB* – базальты океанических островов; *MORB* – базальты срединно-океанических хребтов; *LIP* – крупные магматические провинции.

Рис. 10. Классификация и вариации состава анкарамитов и высококальциевых расплавных включений.

а – классификационная диаграмма TAS для высокомагнезиальных вулканических пород [Le Maitre et al., 2002], красной линией отмечено разделение базальтов на умереннощелочной и щелочной ряды по [Le Maitre, 2002]; 6-ж – вариации состава пород. 1-5 – анкарамиты: 1 – Вануату [Barsdell, Berry, 1990; Della-Pasqua, Varne, 1997], 2 – Зондская дуга [Della-Pasqua, Varne, 1997], 3 – Джунгария [Zhang et al., 2008], 4 – Южный Урал [Пушкарев и др., 2017], 5 – Восточное Среднегорье [Marchev et al., 2009]; 6 – авачиты, Камчатка (средний состав) [Portnyagin et al., 2005а]; 7 – высококальциевая группа базальтов усть-семинской свиты, Горный Алтай [Гибшер и др., 1997; Сафонова и др., 2011; собственные данные]; 8-9 – гомогенизированные высококальциевые расплавные включения: 8 – в оливине из анкарамитов, базальтов и авачитов [Schiano et al., 2000; Portnyagin et al., 2005b], 9 – в клинопироксене из базальтов усть-семинской свиты [Buslov et al., 1993; Симонов и др., 2010]; 10 – анкарамиты Мадагаскара [Lacroix, 1916].

CIB COMPILICAC	M CBHIL	1								
№ анализа	SiO ₂	TiO ₂	Al_2O_3	Cr_2O_3	FeO*	MgO	CaO	Na ₂ O	Сумма	Mg#
1	53,61	н.о.	0,85	0,73	3,43	17,93	22,92	0,20	99,68	90,3
2	52,33	0,38	3,00	0,44	4,49	16,38	23,32	н.о.	100,35	87,0
3	53,36	0,23	1,21	0,29	3,16	17,30	23,84	н.о.	99,39	90,6
4	53,06	0,17	1,68	1,05	3,38	17,26	23,49	0,19	100,28	89,9
5	53,68	н.о.	0,87	0,79	2,83	17,96	23,58	н.о.	99,70	91,5
6	52,59	0,30	1,87	0,23	4,88	16,58	23,06	0,23	99,96	85,8
7	53,36	0,25	1,61	0,29	3,59	16,96	23,81	н.о.	99,87	89,5
8	52,63	0,23	1,78	0,35	4,04	16,82	23,10	0,12	99,07	88,0
9	54,06	0,18	1,21	0,70	3,58	17,74	23,06	0,20	100,74	89,2
10	49,03	0,73	5,03	н.о.	6,57	14,49	22,86	0,24	99,15	81,7
11	46,25	1,62	7,12	н.о.	8,75	12,24	22,60	0,44	99,02	76,8
12	50,77	0,77	4,12	0,37	6,12	15,34	23,00	0,23	100,87	82,8
13	51,15	0,52	2,99	0,19	7,59	15,07	21,83	0,30	99,77	78,7
14	49,21	1,03	3,34	н.о.	10,72	13,17	21,31	н.о.	99,20	71,8
15	45,63	1,63	8,67	н.о.	9,22	11,21	23,27	0,49	100,13	76,4
16	50,25	0,88	4,84	0,18	7,00	14,97	22,40	0,22	100,93	80,4
17	48,67	1,05	4,53	н.о.	9,67	13,48	21,07	0,40	99,21	73,6
18	55,90	н.о.	0,70	н.о.	13,25	16,28	13,18	0,18	99,74	56,0
19	52,35	0,50	1,87	н.о.	7,19	14,64	22,33	0,36	99,25	79,9
20	46,12	1,22	7,48	н.о.	10,09	11,18	23,00	0,39	99,74	74,5
21	47,60	1,23	6,29	н.о.	8,95	12,04	22,95	0,44	99,51	76,7
22	49,01	1,20	4,72	0,15	8,85	13,71	21,21	0,34	99,42	75,4
23	48,78	0,97	4,55	0,16	9,60	13,63	20,93	0,34	99,20	73,6

Табл. 1. Представительные анализы (мас. %) вкрапленников и микролитов клинопироксена из диопсид-порфировых базальтов Бийской вулканической постройки усть-семинской свиты

Примечание. *- содержание двух- и трехвалентного железа представлено в виде суммарного FeO; 1–10 – из центра вкрапленников; 11–17 – из каймы вкрапленников; 18–23 – микролиты из основной массы; н.о.– не обнаружено. Анализы выполнены с помощью ЭДС Oxford X-Max 80 на СЭМ Tescan Mira 3 в ИГМ СО РАН, г. Новосибирск.

Табл. 2. Представительные анализы (мас. %) вкрапленников и микролитов плагиоклаза из диопсид-порфировых базальтов Бийской вулканической постройки устьсеминской свиты

№ анализа	SiO ₂	Al_2O_3	FeO*	MgO	CaO	Na ₂ O	K ₂ O	Сумма	An
1	54,87	28,88	0,58	н.о.	9,73	4,84	1,11	100,01	49,1
2	50,30	25,87	2,28	0,28	17,25	3,61	0,41	100,00	71,1
3	51,45	29,63	1,33	н.о.	13,39	3,63	0,36	99,78	65,7
4	54,20	28,90	0,58	н.о.	9,88	4,81	0,90	99,27	50,3
5	48,87	31,43	1,51	0,42	14,42	2,85	0,49	99,99	71,5

Примечание. 1, 2 – вкрапленники; 3–5 – микролиты из основной массы; н.о.– не обнаружено. Анализы выполнены с помощью ЭДС Oxford X-Max 80 на СЭМ Tescan Mira 3 в ИГМ СО РАН, г. Новосибирск.

obbit disatibitob bittetion byttetion noetpotinit yerb eekintetion ebittb										
№ анализа	SiO ₂	TiO ₂	Al_2O_3	FeO*	MgO	CaO	Na ₂ O	K ₂ O	Сумма	Mg#
1	42,53	2,50	11,87	15,31	12,55	11,05	2,20	0,60	98,61	59,4
2	42,64	3,02	12,05	14,41	12,19	11,01	2,18	0,83	98,83	60,1
3	40,18	3,97	12,30	15,66	11,06	11,50	2,26	1,00	98,38	55,7
4	41,01	2,84	12,43	13,64	12,75	11,43	2,31	0,61	97,40	62,5
5	41,03	2,70	12,19	13,89	12,74	11,25	2,25	0,65	97,03	62,0
6	41,16	2,52	11,47	13,33	12,84	11,29	2,25	0,72	95,97	63,2
7	41,59	2,49	11,68	16,26	11,76	11,03	2,14	0,73	98,09	56,3
8	41,57	2,84	12,00	15,67	11,96	11,31	2,31	0,73	98,59	57,6
9	40,67	2,90	13,43	11,45	13,48	11,82	2,09	0,75	96,79	67,7
10	40,13	2,55	14,15	11,78	13,90	12,16	2,13	0,87	97,68	67,8
11	40,13	2,49	14,38	11,76	13,83	12,23	2,10	0,90	97,82	67,7
12	39,24	2,40	14,62	11,55	13,60	12,05	2,09	0,95	96,50	67,7
13	40,65	2,32	13,53	12,25	13,18	12,19	2,01	0,94	97,06	65,7
14	40,31	2,52	14,32	11,91	13,61	12,24	2,05	0,83	97,80	67,1
15	39,79	2,44	14,19	11,63	13,98	12,37	2,12	0,88	97,39	68,2

Табл. 3. Представительные анализы (мас. %) вкрапленников амфибола из диопсидпорфировых базальтов Бийской вулканической постройки усть-семинской свиты

Примечание. 1–3 – паргаситы; 4–15 – магнезиогастингситы; Mg# = 100*Mg/(Mg+Fe). Анализы выполнены с помощью ЭДС Oxford X-Max 80 на СЭМ Tescan Mira 3 в ИГМ СО РАН, г. Новосибирск.

Табл. 4. Представительные анализы (мас. %) вкрапленника и включений хромшпинели из диопсид-порфировых базальтов Бийской вулканической постройки устьсеминской свиты

№ анализа	SiO ₂	TiO ₂	Al_2O_3	Cr_2O_3	FeO*	Fe ₂ O ₃ *	V_2O_3	MnO	MgO	Сумма	Mg#	Cr#	Fe#
1	н.о.	4,67	12,47	26,63	21,06	32,02	н.о.	0,85	3,57	99,16	16,6	40,8	30, 7
2	н.о.	4,87	10,35	26,10	22,06	35,59	0,37	1,90	0,45	100,30	2,2	41,7	33, 6
3	0,41	5,35	8,11	21,62	27,42	36,25	0,57	1,90	0,39	100,35	1,9	36,2	43, 6
4	н.о.	0,87	8,12	54,78	8,84	17,81	0,16	0,48	10,58	100,75	51,4	72,8	11,2
5	н.о.	0,88	8,31	52,62	10,14	16,18	н.о.	0,56	11,29	99,51	55,4	70,5	12, 9
6	н.о.	0,97	8,77	52,27	10,19	16,66	н.о.	0,36	11,33	99,68	54,8	69,7	12, 9

Примечание. *– FeO и Fe₂O₃ пересчитаны из суммарного двухвалентного железа с использованием стехиометрий; 1–3 – вкрапленник; 4–6 – включения в клинопироксенах; н.о.– не обнаружено; Mg# = 100*(Mg/(Mg+Fe⁺²); Cr# = 100*Cr/(Cr+Al); Fe# = 100*Fe⁺³/ (Fe⁺³+Al+Cr). Анализы выполнены с помощью ЭДС Oxford X-Max 80 на СЭМ Tescan Mira 3 в ИГМ СО РАН, г. Новосибирск.

N₂	SiO ₂	TiO ₂	Al_2O_3	Fe_2O_3	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	П.п.п	Сумма	CaO/Al_2O_3
Анкарамиты (высококальциевая группа)													
E4053*	49,38	0,27	7,51	9,27	0,20	14,7 7	13,55	0,80	0,35	0,10	3,76	99,96	1,8
T4043*	49,21	0,46	10,43	10,77	0,22	11,15	13,02	1,80	0,12	0,17	2,60	99,94	1,2
T4048*	50,96	0,50	10,95	10,01	0,19	9,08	12,97	1,96	1,02	0,15	2,08	99,87	1,2
BIY-05-17***	48,61	1,10	10,45	10,43	0,16	10,9 7	12,09	2,30	0,49	0,12	2,40	99,33	1,2
BIY-04-17***	44,78	1,05	13,41	10,95	0,20	8,27	14,48	0,77	1,07	0,37	3,37	99,88	1,1
E4058*	49,16	0,43	10,33	10,71	0,24	11,21	11,01	1,27	0,91	0,13	4,61	100,01	1,1
С-72Ж-04**	49,93	0,46	11,31	11,18	0,18	9,33	12,04	1,14	1,24	0,13	2,77	99,70	1,1
E4048*	48,68	0,40	11,77	9,52	0,18	11,58	12,19	1,41	0,67	0,14	3,14	99,68	1,0
T4051*	50,44	0,52	12,68	10,37	0,19	7,98	12,19	1,50	0,98	0,19	2,90	99,94	1,0
			Диопсид	ц-порфир	овые ба	зальты	(низкока	альциев	ая груг	па)			
BIY-01-02-17***	46,37	1,00	15,80	9,74	0,16	7,03	11,86	1,78	1,63	0,12	3,68	99,53	0,8
BIY-07-15***	45,87	1,16	13,97	13,52	0,22	7,94	9,82	2,20	1,30	0,19	3,21	99,63	0,7
BIY-08-15***	47,09	1,00	14,61	12,04	0,19	7,80	9,47	2,23	2,72	0,18	2,52	100,07	0,6
BIY-02-15***	46,74	1,17	16,23	10,42	0,18	7,31	10,28	2,14	0,69	0,17	3,87	99,57	0,6
BIY-03-15***	45,51	1,16	16,86	11,86	0,18	7,67	9,43	1,64	1,78	0,17	3,24	99,76	0,6
BIY-06-17***	47,02	1,03	17,71	11,08	0,14	6,00	9,61	2,83	1,06	0,20	2,71	99,51	0,5
BIY-06-15***	47,36	1,24	17,49	11,12	0,21	6,01	8,32	2,28	0,84	0,13	4,23	99,53	0,5
BIY-05-15***	45,17	0,95	16,38	12,64	0,19	8,44	7,61	3,04	0,80	0,19	4,23	100,01	0,5
BIY-04-15***	47,89	1,23	17,58	8,61	0,18	8,26	8,13	2,62	1,47	0,23	3,49	99,95	0,5

Табл. 5. Представительные анализы (мас. %) базальтов усть-семинской свиты Горного Алтая

Примечание. *- по [Гибшер и др., 1997]; **- по [Сафонова и др., 2011]; ***- собственные данные; содержание двух- и трехвалентного железа представлено в виде суммарного Fe₂O₃. Анализы выполнены на приборе Thermo Scientific ARL-9900 XP в ИГМ СО РАН, г. Новосибирск.

Место	Ссылка	SiO ₂	TiO ₂	Al ₂ O ₃	FeO*	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	П.п.п	Сумма	CaO/Al ₂ O ₃
Мадагаскар	Lacroix, 1916	45,84	3,00	7,45	11,13	-	16,76	12,64	1,38	0,99	0,42	0,42	100,20	1,7
Мадагаскар	Lacroix, 1916	43,27	1,25	7,54	8,27	-	17,65	13,72	1,26	1,14	0,38	4,54	100,54	1,8
Джунгария, Китай	Zhang et al., 2008	50,66	0,50	9,51	9,33	0,21	16,64	10,03	1,64	0,84	0,26	5,45	99,62	1,1
Джунгария, Китай	Zhang et al., 2008	49,65	0,49	10,25	10,19	0,19	15,74	9,86	1,67	1,23	0,24	3,91	99,51	1,0
Джунгария, Китай	Zhang et al., 2008	49,72	0,48	9,84	10,54	0,20	15,46	10,24	1,90	0,86	0,24	4,01	99,48	1,0
Джунгария, Китай	Zhang et al., 2008	50,89	0,46	9,92	10,27	0,23	14,75	9,76	2,07	0,99	0,25	4,35	99,59	1,0
Джунгария, Китай	Zhang et al., 2008	50,54	0,41	8,96	10,33	0,20	17,54	9,14	0,48	1,85	0,24	5,54	99,69	1,0
Джунгария, Китай	Zhang et al., 2008	51,74	0,41	8,39	9,34	0,21	18,05	8,82	1,22	1,27	0,24	4,97	99,69	1,1
Мерелава, Вануату	Della-Pasqua, Varne, 1997	51,33	0,59	13,10	8,20	0,22	10,67	12,45	1,78	0,35	0,07	0,62	98,76	1,0
Мерелава, Вануату	Della-Pasqua, Varne, 1997	50,20	0,46	10,30	8,08	0,17	13,71	13,69	1,60	0,38	0,05	0,90	98,64	1,3
Эпи, Вануату	Barsdell, Berry, 1990	48,20	0,45	13,80	9,72	0,17	10,50	14,20	1,26	0,37	0,07	0,10	99,92	1,0
Эпи, Вануату	Barsdell, Berry, 1990	47,80	0,43	13,60	9,54	0,18	10,70	14,20	1,29	0,35	0,09	0,31	99,55	1,0
Эпи, Вануату	Della-Pasqua, Varne, 1997	48,20	0,39	11,50	8,91	0,16	13,50	14,40	1,05	0,31	0,07	0,10	98,49	1,3
Ринджани, Зондская дуга	Della-Pasqua, Varne, 1997	47,95	0,83	13,78	10,16	0,17	10,61	13,14	1,78	1,20	0,21	-	99,83	1,0
Ринджани, Зондская дуга	Della-Pasqua, Varne, 1997	48,32	0,69	10,53	9,19	0,17	14,02	14,38	1,50	0,90	0,15	-	99,85	1,4
Улакан, Зондская дуга	Della-Pasqua, Varne, 1997	46,44	0,56	9,12	10,30	0,20	17,48	11,78	1,22	0,61	0,21	0,41	97,92	1,3
Улакан, Зондская дуга	Della-Pasqua, Varne, 1997	46,86	0,79	11,84	10,20	0,19	13,30	11,84	1,59	0,94	0,28	0,42	97,83	1,0
Присакмаро-Вознесенская зона, Южный Урал	Пушкарев и др., 2017	46,14	0,18	7,01	8,58	0,24	16,60	17,08	0,11	0,01	0,13	3,50	99,97	2,4
Присакмаро-Вознесенская зона, Южный Урал	Пушкарев и др., 2017	45,43	0,17	6,60	8,47	0,20	17,70	16,79	0,10	0,01	0,11	3,70	99,75	2,5
Присакмаро-Вознесенская зона, Южный Урал	Пушкарев и др., 2017	46,08	0,16	6,02	8,37	0,19	18,44	16,50	0,10	0,04	0,12	3,40	99,94	2,7
Присакмаро-Вознесенская зона, Южный Урал	Пушкарев и др., 2017	43,89	0,15	6,24	8,15	0,29	17,68	20,01	0,07	0,00	0,12	3,10	100,30	3,2
Присакмаро-Вознесенская зона, Южный Урал	Пушкарев и др., 2017	46,32	0,13	6,36	7,70	0,20	15,05	21,12	0,18	0,02	0,06	2,50	100,04	3,3

Табл. 6. Представительные анализы (мас. %) анкарамитов, использованных в этой работе

Примечание. *— содержание двух- и трехвалентного железа представлено в виде суммарного FeO; «-» анализ не проводился, либо содержание компонента ниже предела обнаружения.

