2010. Том 51, № 1

Январь – февраль

C. 120 – 125

УДК 548.737

КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРА 1,1'-бис-(АЦЕТОАЦЕТИЛ)ФЕРРОЦЕНА

© 2010 А.Д. Васильев¹, О.А. Баюков¹, А.А. Кондрасенко², Е.Е. Сергеев³, П.В. Фабинский³*, В.А. Федоров³

¹Учреждение Российской академии наук Институт физики им. Л.В. Киренского СО РАН, Красноярск ²Специальное конструкторско-технологическое бюро "Наука" КНЦ СО РАН

³Сибирский государственный технологический университет, Красноярск

Статья поступила 21 января 2009 г.

Физико-химическими методами исследована кристаллическая и молекулярная структура 1,1'-бис-(ацетоацетил)ферроцена. Соединение кристаллизуется в виде двух кристаллографически независимых молекул с немного различающимися конформациями и вза-имно-перпендикулярной ориентацией. Кристаллы моноклинные; $C_{18}H_{18}FeO_4$; a = 35,68(1), b = 5,733(2), c = 30,30(1) Å; $\beta = 96,831(5)^\circ$; V = 6154(3) Å³, Z = 16, $d_x = 1,529$ г/см³, пространственная группа C2/c. Молекула состоит из ферроценового фрагмента и двух ацетилацетонильных заместителей.

Ключевые слова: 1,1'-бис-(ацетоацетил)ферроцен, ацетоацетилферроцен, кристаллическая и молекулярная структура, РСА, ИК, ЯМР, электронный спектр, эффект Мессбауэра.

Изучение ацетилацетонильных производных ферроцена в качестве лигандных систем предполагает исследование их физико-химических свойств в кристаллической фазе и в растворе. Интерес к этим соединениям обусловлен возможностью их практического использования в качестве катализаторов, экстрагентов, красителей и т.д. [1, 2]. Кроме того, в растворах ацетилацетонильных производных имеет место кето-енольная таутомерия, которая зависит от природы заместителя, в нашем случае ферроценильного фрагмента. Исследованию кристаллической и молекулярной структуры 18π -электронной сопряженной системы 1,1'-*бис*-(ацетоацетил)ферроцена (1), структурная формула которого приведена ниже, методами РСА, ИК, ЯМР, электронной и мессбауэровской ⁵⁷Fe спектроскопией посвящено настоящее сообщение.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединение 1 синтезировали путем сложноэфирной конденсации Кляйзена по измененной методике [3], которая приведена в работе [4]. Монокристаллы для рентгеноструктурного исследования получены медленной кристаллизацией при комнатной температуре из смеси *н*-бутанол—октан (1:10). Кристаллы вишневого цвета, игольчатой формы.

^{*} E-mail: chem.@sibstu.kts.ru

Таблица 1

Кристаллографические данные	основные характеристики	эксперимента и	і параметры	уточнения
	модели структуры	1		

Брутто-формула	$C_{18}H_{18}FeO_4$	Область сканирования, град.	$2{,}30 \le \theta \le 24{,}5$
Молекулярная масса	354,17	Метод сканирования	$\phi + \omega$
Сингония	Моноклинная	Число отражений изм. / незав.	19941 / 5114
Пространственная группа	C2/c	Число отражений [<i>I</i> > 2 σ (<i>I</i>)]	3801
<i>a</i> , <i>b</i> , <i>c</i> , Å	35,68(1), 5,733(2), 30,30(1)	$R_{\rm int}$ / R_{σ}	0,052 / 0,047
β, град.	96,831(5)	Число уточняемых параметров	435
$V, Å^3$	6154(3)	<i>R</i> 1: по $I > 2\sigma(I) /$ по всем	0,057 / 0,081
Ζ	16	wR2	0,1301
d_x , г/см ³	1,529	Качество подгонки (GOOF)	1,09
Т, К	288(2)	Номер в КБСД	714704
μ, см ⁻¹	0,1		

Рентгеноструктурное исследование кристаллического образца 1 выполнено с помощью монокристального автодифрактометра SMART APEX II (Bruker) с двухкоординатным CCDдетектором (Мо K_{α} -излучение, $\lambda = 0,71073$ Å). Модель структуры найдена и уточнена с использованием комплекса SHELXTL [5] с введенными поправками на поглощение, рассчитанными по программе SADABS [6]. Положения атомов водорода выявлены из разностных синтезов электронной плотности и уточнены при атомах углерода по модели "наездника", а на водородных связях уточнены свободно. Кристаллографические данные, основные характеристики эксперимента и параметры уточнения модели структуры 1 представлены в табл. 1.

ИК спектр поглощения кристаллического соединения **1** получен на ИК-Фурье спектрометре Tensor 27 (Bruker) в диапазоне $4000-400 \text{ см}^{-1}$ (в матрице KBr). Обработка спектральной информации выполнена по программе OPUS.3 (версия 2.2).

ЯМР спектр соединения 1 снят в КРЦКП СО РАН на NMR спектрометре Avance (Bruker) с частотой протонного резонанса 200 МГц, а на ядрах ¹³С 50 МГц в CDCl₃. Запись спектра ¹Н выполнена с использованием стандартного метода 90°-импульса (16 накоплений). Спектр ¹³С получен по методу 90°-импульса с подавлением протонов (8000 накоплений).

Электронный спектр поглощения в видимой и УФ-области регистрировался на спектрофотометре Cary 5000 (Varian) в диапазоне от 190 до 800 нм в CH₃CN.

Мессбауэровский ⁵⁷Fe-спектр поглощения получен на γ -резонансном спектрометре, работающем в режиме постоянного ускорения с источником ⁵⁷Co в матрице Cr. Спектр обработан в рамках метода наименьших квадратов.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Соединение 1 кристаллизуется в виде двух кристаллографически независимых молекул (*A* и *B*) с немного различающимися конформациями и взаимно перпендикулярной ориентацией (рис. 1).

В целом молекула 1 представляет собой сочетание ферроценового фрагмента и двух ацетилацетонильных заместителей, которые связаны с разными циклопентадиенильными кольцами (Ср-кольцами) (рис. 2). Ферроценовая часть молекулы имеет обычную сэндвичевую структуру [7], а заместители схожи с молекулярной структурой ацетилацетона [8].

Конформация сэндвичей близка к заслоненной, Ср-кольца повернуты относительно друг друга на угол 4,1(1) и 6,1(1)° для молекул A и B соответственно. Циклы фрагментов Ср—Fe— Ср' почти параллельны друг другу, двугранные углы между плоскостями Ср и Ср' для молекул A и B равны 1,8(3) и 2,8(3)°. Средние длины связей Fe—C для молекул A и B имеют значения 2,043(5) и 2,039(5) Å. Атом железа находится на расстоянии 1,651(2) и 1,648(2) Å от центроидов

Рис. 1. Проекция кристаллической ячейки соединения **1** на плоскость *ас* (атомы водорода не указаны)

Рис. 2. Структура одной из кристаллографически независимых молекул (A) соединения 1 в представлении атомов в виде эллипсоидов тепловых колебаний с вероятностью 0,5

Ср-колец молекул *А* и *В*. Средняя длина связи С—С в Ср-кольцах молекул *А* и *В* равна 1,415(7) и 1,411(7) Å соответственно.

Атомы заместителей в обеих молекулах находятся практически в одной плоскости (среднеквадратичное отклонение от планарности не превышает 0,007(3) Å для A и 0,003(3) Å для B), а сами заместители практически компланарны соседним Ср-кольцам. Заместители в молекулах расположены по одну сторону ферроцена, имеют одинаковую направленность и развернуты на угол 5,3(3)° A, и 7,3(3)° B, относительно друг друга. Молекулы в кристалле принимают U-образную форму. Геометрические параметры молекул соединения 1 очень схожи с параметрами молекулярной структуры ацетоацетилферроцена [9]. Длины связей и основные валентные углы в заместителях одной из кристаллографически независимых молекул (A) соединения 1 представлены в табл. 2.

В заместителях длина связи С—О является промежуточной между одинарной (1,417 Å) и двойной (1,221 Å), а длина связи С—С в цикле почти такая же, как и в бензоле (1,397 Å). Атомы кислорода в заместителях находятся в *цис*-позиции, что указывает на существование внутримолекулярной H-связи между ними. Атомы водорода на этой связи расположены примерно на равных расстояниях (~1,3 Å) от атомов кислорода, образуя тем самым подвижный шестичленный цикл структуры заместителя. Возникновение общей π -системы взаимодействия "псевдо-

Таблица 2

Связь	d	Связь	d	Связь	d
C(110)—C(115)	1,458(7)	C(117)—C(118)	1,475(8)	C(16)—O(11)	1,282(5)
C(115)—C(116)	1,383(6)	C(117)—O(14)	1,295(7)	C(17)—C(18)	1,372(7)
C(115)—O(13)	1,294(7)	C(11)—C(16)	1,455(6)	C(18)—C(19)	1,481(7)
C(116)—C(117)	1,382(7)	C(16)—C(17)	1,396(6)	C(18)—O(12)	1,293(6)
Угол	ω	Угол	ω	Угол	ω
C(110) - C(115) - C(116)	122,4(4)	C(118) - C(117) - O(14)	117,3(5)	C(16) - C(17) - C(18)	121,4(5)
C(110)—C(115)—O(13)	116,7(4)	C(116)—C(117)—O(14)	120,5(5)	C(17)-C(18)-C(19)	123,4(5)
C(116)—C(115)—O(13)	120,9(5)	C(11)—C(16)—C(17)	121,5(4)	C(19)—C(18)—O(12)	115,5(5)
C(115)—C(116)—C(117)	121,6(5)	C(11)—C(16)—O(11)	117,5(4)	C(17)—C(18)—O(12)	121,2(5)
C(116)—C(117)—C(118)	122,2(6)	C(17)—C(16)—O(11)	120,9(4)		

Длины связей d (Å) и основные валентные углы (о (град.) в заместителях молекулы A

Рис. 3. ИК спектр поглощения кристаллического соединения 1

Рис. 4. ЭСП ацетоацетил- (а) и 1,1'-бис-(ацетоацетил)ферроцена в CH₃CN (б)

ароматической" структуры заместителя с ароматической структурой ферроценового сэндвича создает сопряжение, приводящее к делокализации электронной плотности, снижая тем самым напряженность молекулы в кристалле.

Молекулярная структура соединения 1, установленная методом PCA, подтверждается четкими аналитическими признаками в ИК спектральном анализе. ИК спектр поглощения соединения 1 представлен на рис. 3.

Присутствие в ИК спектре полос поглощения (п.п.) в области 3094—3092 см⁻¹, а также 1421, 823, 503 и 483 см⁻¹ свидетельствует о наличии ферроценовой структуры в составе соединения [10]. Отсутствие п.п. 1108 см⁻¹ δ_{as} (Ср-кольца) и 1002 см⁻¹ δ (С—Н, Ср-кольца) доказывает, что заместители находятся в разных Ср-кольцах [11]. Существование ацетилацетонильных заместителей характеризуют широкие п.п. 1624 и 1563 см⁻¹, относящиеся к v(СО—СН₂—СО), появление дублета полос обусловлено механическим взаимодействием двух независимых колебаний v_{as} и v_s групп С=О. Наличие метильных групп, входящих в состав заместителей, характеризуют п.п. в области 2950—2910 см⁻¹ v(СН₃) и 1379 см⁻¹ δ_s (СН₃) [12, 13]. Полосы поглощения при 3420 см⁻¹ v(О—Н) и 1282 см⁻¹ v(С—О), согласно [13], указывают на существование енольной структуры заместителя. При этом группа ОН является связанной внутримолекулярной H-связью.

В растворе соединение 1 находится в двух изомерных формах, существование которых подтверждается ЯМР спектрами 1 Н и 13 С.

 δ (H, м.д.) (енольная форма) 2,09 (с, 6H, 2×CH₃), 4,48 (м, 4H, 2×C₅H₄), 4,76 (м, 4H, 2×C₅H₄), 5,65 (с, 2H, 2×CH), 15,86 (с, 2H, 4×COH); (дикето-форма) 2,33 (с, 6H, 2×CH₃), 3,82 (с, 4H, 2×CH₂), 4,52 (м, 4H, 2×C₅H₄), 4,80 (м, 4H, 2×C₅H₄).

 δ (С, м.д.) (енольная форма) 24,5 (с, 2×CH₃), 70,1 (с, 2×C₅H₄), 73,4 (с, 2×C₅H₄), 79,6 (с, 2×C₅H₄), 97,5 (с, 2×CH), 188,5 (с) и 189,2 (с) (4×COH); (дикето-форма) 30,9 (с, 2×CH₃), 55,8 (с, 2×CH₂), 71,5 (с, 2×C₅H₄), 74,6 (с, 2×C₅H₄), 80,2 (с, 2×C₅H₄), 196,9 (с) и 202,5 (с) (4×CO).

В ПМР спектре широкий синглет 15,86 м.д. является результатом миграции протона между двумя атомами кислорода карбонильных групп. Таутомерное равновесие, как и в случае ацетоацетилферроцена [9], смещено в сторону *цис*-енольной структуры, стабилизированной внутримолекулярной H-связью.

Дополнительное исследование молекулярной структуры соединения **1** проведено методом электронной спектроскопии в координирующем растворителе. Электронный спектр поглощения (ЭСП) ацетоацетил- и 1,1'-бис-(ацетоацетил)ферроцена в CH₃CN представлен на рис. 4.

Изменения в ЭСП ацетоацетил- и 1,1'-бис-(ацетоацетил)ферроцена примерно схожи. В области длин волн от 550 до 250 нм интенсивность п.п. 1,1'-бис-(ацетоацетил)ферроцена выше ацетоацетилферроцена, тогда как в области от 250 до 190 нм наблюдается прямо противоположная закономерность. В УФ области 1,1'-бис-(ацетоацетил)ферроцена имеет интенсивные

Рис. 5. Мессбауэровские ⁵⁷Fе-спектры поглощения: *a*) ацетоацетил- и *б*) 1,1'- *бис*-(ацетоацетил)ферроцена

п.п. 312, 266, 232 и 198 нм, отвечающие своеобразным переходам с внутримолекулярным переносом заряда с орбиталей атома железа на вакантные орбитали Ср-колец [14]. Аналогичным переходам ацетоацетилферроцена отвечают п.п. 305, 270, 232 и 198 нм, похожий спектр наблюдается и в других растворителях [15]. Причем п.п. 312 и 305 нм относят к полосам переноса заряда на заместитель. Полосы поглощения 232 и 198 нм обоих соединений сдвинуты батохромно и гипсохромно относительно п.п. ферроцена в этой области, которую относят к π — π *-переходам Ср-кольца. В видимой области спектра наблюдаются широкие п.п. 476 нм 1,1'-*бис*-(ацетоацетил)ферроцена, 468 нм ацетоацетилферроцена и 440 нм ферроцена [16]. Такие п.п. отвечают переходам электронов со связывающей на соответствующую разрыхляющую молекулярную орбиталь. Эти молекулярные орбитали образованы в основном из 3*d*-атомных орбиталей металла. Смещение п.п. в сторону длинных волн в видимой области спектра может рассматриваться как мера степени оттягивания π -электронов Ср-колец от атома металла и, следовательно, как критерий прочности связи металла с Ср-кольцами, несущими такие электроноакцепторные заместители.

Для исследования электронной структуры ацетоацетил- и 1,1'-*бис*-(ацетоацетил)ферроцена в области центрального атома изучены спектры Мессбауэра, способствующие глубже понять природу химической связи в этих соединениях.

На рис. 5. представлены мессбауэровские ⁵⁷Fe спектры поглощения ацетоацетил- и 1,1'*бис*-(ацетоацетил)ферроцена, из которых вычислены вероятности квадрупольных расщеплений. Симметричность их свидетельствует о том, что основной квадрупольный дублет принадлежит одной фазе железна.

Незначительное уменьшение химического сдвига ацетоацетил- 0,439(5) мм/с и 1,1'-бис-(ацетоацетил)ферроцена 0,433(5) мм/с по сравнению с незамещенным ферроценом [17] свидетельствует о том, что возмущения, которые испытывают собственные молекулярные орбитали Ср-колец с появлением заместителей, оказывают малое влияние на электронную структуру атома железа. Это связано с относительной устойчивостью π -орбиталей Ср-колец, определяющих электронную плотность около ядра металла. Увеличение электронной плотности на атоме железа происходит вследствие переноса малой доли электронов с молекулярных орбиталей Срколец на 4*s*-орбиталь атома железа. Уменьшение квадрупольного расщепления при переходе от ферроцена к ацетоацетил- 2,21(1) мм/с и 1,1'-бис-(ацетоацетил)ферроцену 2,12(1) мм/с свидетельствует о том, что обобщенная молекулярная орбиталь "Fe—Cp-кольца" становится пространственно более симметричной. Параметр эффекта Гольданского—Карягина, связанный с динамическими свойствами кристаллической решетки, для ацетоацетилферроцена равен 1,03, а для 1,1'-бис-(ацетоацетил)ферроцена 0,88.

СПИСОК ЛИТЕРАТУРЫ

- 1. Olsewski E.J., Martin D.F. // J. Organomet. Chem. 1966. 5, N 2. P. 203.
- 2. Врублевский А.И., Гапоник П.Н., Лесникович А.И., Орлик Ю.Г. // Тез. докл. XIII Всесоюз. Чугаевского совещ. по химии компл. соед. М., 1978. С. 91.
- 3. Cain C.E., Mashburn T.A., Hauser C.R. // J. Org. Chem. 1961. 26, N 4. P. 1030.

- 4. Поляков Б.В., Твердохлебов В.П., Целинский И.В. и др. // Журн. общ. химии. 1983. 53, № 9. С. 2046.
- 5. Sheldrick G.M. SHELXTL. Version 6.10. Bruker AXS Inc. Madison, Wisconsin, USA, 2004.
- 6. Sheldrick G.M. SADABS. Version 2.01. Bruker AXS Inc. Madison, Wisconsin, USA, 2004.
- 7. Takusagawa F., Koetzle T.F. // Acta Crystallogr. Sec. B. 1979. 35, N 5. P. 1074.
- 8. Boese R., Antipin M.Yu., Bläser D., Lyssenko K.A. // J. Phys. Chem. Sec. B. 1998. 102. P. 8654.
- 9. Bell W., Crayston J.A., Glidewell C. et al. // J. Organomet. Chem. 1992. 434. P. 115.
- 10. Lippincott E.R., Nelson R.D. // J. Amer. Chem. Soc. 1995. 77, N 19. P. 4990.
- 11. Несмеянов А.Н., Казицына Б.В., Локшин Б.В., Крицкая И.И. // Докл. АН СССР. 1957. 117, № 3. С. 433.
- 12. *Нейланд О.Я., Страдынь Я.П., Силиньш Э.А. и др.* Строение и таутомерные превращения β-дикарбонильных соединений. – Рига: Зинатне, 1977.
- 13. Беллами Л. Инфракрасные спектры сложных молекул. М.: ИЛ, 1963.
- 14. Заславская Г.Б., Яворский Б.М., Кочеткова Н.С., Гамбарян Н.П. // Докл. АН СССР. 1968. **179**, № 3. – С. 589.
- 15. Imai H., Yaehashi Y. // Nippon Kagaku Zasshi. 1970. 91, N 5. P. 452.
- 16. Hennig H., Gürtler O. // J. Organomet. Chem. 1968. 11, N 2. P. 307.
- 17. Wertheim G.K., Herber R.H. // J. Chem. Phys. 1963. 38, N 9. P. 2106.