ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ДИСПЕРСНОСТИ КОНДЕНСИРОВАННЫХ ПРОДУКТОВ СГОРАНИЯ АЭРОВЗВЕСИ ЧАСТИЦ АЛЮМИНИЯ

Д. А. Ягодников, Е. И. Гусаченко*

Московский государственный технический университет им. Н. Э. Баумана, 105005 Москва daj@mx.bmsty.ru

*Институт проблем химической физики РАН, 142432 Черноголовка

Исследованы форма, строение частиц и дисперсный состав конденсированных продуктов сгорания аэровзвеси частиц порошкообразного алюминия марок АСД-1, АСД-4 и АСД-6 при коэффициенте избытка окислителя 0,12 ÷ 0,4 и начальном давлении 0,05 ÷ 0,30 МПа. Субдисперсные частицы оксида алюминия составляют до 90 % суммарной массы конденсированных продуктов сгорания. Среднемассовый диаметр частиц 0,15 ÷ 0,18 мкм, с повышением давления размер частиц увеличивается. При атмосферном давлении начальная дисперсность порошков алюминия, а также соотношение компонентов в рабочем участке практически не влияют на дисперсность частиц к-фазы. Выполнен сравнительный анализ дисперсного состава частиц к-фазы, образующейся при горении алюминия в различных топливных композициях и установках. Показано, что основное влияние на дисперсный состав оказывают тип топливной композиции, газодинамический процесс горения и условия взаимодействия частиц алюминия между собой и с газовой фазой.

Ключевые слова: горение, аэровзвесь алюминия, конденсированные продукты сгорания.

При использовании алюминия в качестве горючего различных топливных композиций в продуктах сгорания образуется конденсированная фаза (к-фаза), что не позволяет полностью реализовать энергетический потенциал топлива. В связи с этим проводятся экспериментальные и теоретические исследования процессов образования к-фазы, которые дают возможность оценить двухфазные потери и разработать рекомендации для определения оптимального содержания металлических добавок. Как правило, такие исследования выполняются для одиночных частиц металлов [1, 2] или для металлсодержащих твердотопливных композиций [3-6]. Однако следует иметь в виду, что в первом случае не учитываются «коллективные» эффекты при горении, а во втором сильное влияние на дисперсный и химический составы к-фазы оказывает процесс агломерации, а также наличие в топливе связующих веществ и окислителя сложного химического состава. В связи с этим практический интерес представляют данные по дисперсному и химическому составам к-фазы, образованной при горении порошкообразного металлического горючего (ПМГ) в окислительной среде простого химического состава в отсутствие процесса агломерации. Эти условия могут быть реализованы, например, при сжигании ПМГ в воздухе, в частности, в процессе распространения пламени по аэровзвеси частиц ПМГ.

Данная работа посвящена исследованию дисперсного состава к-фазы продуктов сгорания аэровзвеси частиц порошкообразного алюминия различного исходного дисперсного состава при различном начальном давлении.

ЭКСПЕРИМЕНТ

В качестве порошкообразного горючего использовался алюминий марок АСД-1, АСД-4 и АСД-6. Фотографии частиц порошка АСД-1 представлены на рис. 1. Внешний вид частиц примечателен тем, что на их поверхности отчетливо различимы бороздки, которые можно считать трещинами в поверхностной оксидной пленке. Согласно принятым представлениям [7] именно их эволюция при нагреве определяет процесс воспламенения частиц алюминия. Для каждого образца исходного ПМГ проводился кондуктометрический дисперсный анализ. На основе плотности распределения коли-

Работа выполнена при финансовой поддержке Российского фунда фундаментальных исследований (номер проекта 99-15-96112).

Рис. 1. Фотография частиц ПМГ АСД-1

Рис. 2. Плотность распределения количества частиц

чества частиц по диаметру (рис. 2) рассчитывались среднестатистические диаметры: среднесчетный d_{10} , среднеквадратичный d_{20} , среднеобъемный d_{30} , диаметр Заутера d_{32} и среднемассовый d_{43} , значения которых приведены в табл. 1. Предельная погрешность определения средних диаметров составила ± 1 %.

Экспериментальные исследования проводились на установке постоянного объема [8], включающей вертикально установленную трубу диаметром 80 мм, длиной 1,5 м и ресивер объемом на порядок больше объема рабочего участка, подсоединенный сбоку к нижней части трубы. Навеска порошка алюминия распылялась в верхней части трубы. Фронт пламени инициировался у нижнего конца трубы и распространялся вверх к закрытому концу по оседающей аэровзвеси, что обеспечивало близкий к ламинарному режим распространения

Таблица 1
Среднестатистические диаметры частиц
исходного порошка алюминия

Марка	$d_{10},$	$d_{20},$	$d_{30},$	$d_{32},$	$d_{43},$
порошка	мкм	MKM	MKM	MKM	MKM
АСД-1	10,4	12,0	13,6	17,4	21,9
АСД-4	4,3	4,9	5,6	7,4	10,1
АСД-6	4,0	4,3	4,5	5,2	6,5

пламени. Частицы к-фазы, образовавшейся после прохождения пламени по рабочему участку, оседали на нижнюю крышку трубы, откуда извлекались через 1 ÷ 2 мин для последующего анализа по методике [3, 4], разработанной для определения дисперсных характеристик конденсированных продуктов сгорания смесевых металлизированных топлив. Эксперименты с порошками алюминия проводились при начальном давлении, равном атмосферному, а также выше и ниже атмосферного, и коэффициенте избытка окислителя $\alpha = 0.12 \div$ 0,4, погрешность определения которого ± 6 %. Необходимое разрежение в рабочем участке создавалось вакуумным насосом BH-461M, а повышенное давление — за счет наддува от баллона воздуха высокого давления. Давление измерялось датчиком МДД200-1000. Изменение давления в установке в течение эксперимента не превышало 15 %, из них приблизительно 12 % приходилось на стадию первоначального воспламенения и 3 % на стадию горения ПМГ.

С целью удаления недогоревшего алюминия образцы конденсированных продуктов сгорания обрабатывали слабым раствором соляной кислоты при комнатной температуре. Травление продолжалось практически до полного исчезновения пузырьков выделяющегося водорода. В связи с тем, что скорость реагирования алюминия в растворе соляной кислоты намного больше скорости реагирования оксида алюминия, можно считать, что потери массы связаны в основном с химическим превращением активного металла.

После промывки и сушки травленых образцов к-фазы проводилось их разделение седиментационным способом на две фракции — $0 \div 4$ и $4 \div 40$ мкм. Необходимость разделения порошка на фракции по размерам обусловлена большим диапазоном диаметров частиц (сотые доли — десятки микрометров) в исходной про-

Рис. 3. Плотность распределения количества (1) нетравленых частиц продуктов сгорания АСД-1 при p = 0,1 МПа, $\alpha = 0,21$; распределение исходных частиц алюминия (2)

бе, что недоступно для измерения каким-либо одним методом и прибором.

Седиментационное разделение выполнялось в процессе оседания частиц порошка из слоя жидкости — дистиллированной воды с поверхностно-активным веществом (карбоксметилцеллюлоза). Многократное повторение циклов оседания обеспечило качественное фракционирование образцов, а параметры процесса — высота слоя жидкости 2 см и время оседания 12 мин — были выбраны так, чтобы получить границу раздела фракций именно 4 мкм.

Частицы фракции 0 ÷ 4 мкм изучали по негативам, полученным с помощью электронного микроскопа УЭМВ-100К. Для этого частицы фотографировали, затем изображение негатива проецировалось на экран с общим увеличением 10⁵, на котором частицы измерялись трафаретом с шагом обмера по диаметру 0.01 мкм. Диаметр сферических частиц фракций 4 ÷ 40 мкм измерялся с помощью того же трафарета по теневому изображению частиц на матовом стекле оптического микроскопа МБИ-6 при увеличении 10³ с шагом 1 мкм. Общее число измеренных в каждой фракций частиц составило ≈ 1500. Затем на основе такой первичной информации рассчитывались перечисленные выше диаметры с погрешностью статистической обработки ±10 %. Для частиц, форма которых отличалась от сферической, размер также определялся указанным способом, только в этом случае визуально оценивалось соответствие площадей изображения частицы и площадей соседних окружностей трафарета.

ВЛИЯНИЕ ДИСПЕРСНОГО СОСТАВА ПМГ НА ДИСПЕРСНЫЙ СОСТАВ КОНДЕНСИРОВАННЫХ ПРОДУКТОВ СГОРАНИЯ АЭРОВЗВЕСИ

Эксперименты по горению алюминия марок АСД-1, АСД-4 и АСД-6 проводились при атмосферном давлении и $\alpha = 0,12 \div 0,26$. Первоначально выполнялся кондуктометрический дисперсный анализ всех исходных (нетравленых) образцов продуктов горения ПМГ марки АСД-1. Дифференциальное распределение частиц по размеру и их среднестатистические диаметры приведены на рис. 3. Из полученных данных следует, что после горения вид распределения существенно изменился: отчетливо наблюдается максимум частиц диаметром ≈ 5 мкм, а также возрастание дисперсности, в частности, среднемассовый диаметр уменьшился с 21,9 до 16,2 мкм.

Общий вид исходных частиц к-фазы, отобранных для анализа, представлен на рис. 4. На фотографии видны частицы округлой формы и конгломераты неправильной формы. Первые могут быть продуктами неполного сгорания алюминия, а вторые — совокупностью субдисперсных частиц, образующих конгломерат за счет сил аутогезионного взаимодействия. Поверхность частиц недогоревшего алюминия* либо имеет металлический блеск и покрыта тонким слоем прозрачного оксида, либо имеет матовую фактуру серого цвета, что свидетельствует об окисленной поверхности металла.

В пробе к-фазы после растворения активного алюминия кислотой остаются мелкодисперсные частицы оксида, прозрачные сферические частицы оксида алюминия, прозрачные оксидные скорлупки с тонкими стенками и относительно редкие частицы неполностью протравленного алюминия, покрытые оксидной пленкой. Фотографии травленых частиц, являющихся продуктами сгорания алюминия марки АСД-1, приведены на рис. 5. Как оказалось, субмикронные частицы к-фазы, полученные при сжигании всех марок ПМГ, по внешнему виду и размерам практически одинаковы. Из анализа фотографии можно заклю-

^{*}Данные о полноте сгорания алюминия в указанных условиях приведены в работе [8].

Таблица 2

Размер	Диаметр,	АСД-1		АСД-4			АСД-6	
фракции, мкм	MKM	$\alpha = 0,16$	$\alpha = 0,25$	$\alpha = 0,12$	$\alpha = 0,15$	$\alpha = 0,26$	$\alpha = 0,18$	$\alpha = 0,25$
	d_{10}	0,096	0,100	0,086	0,102	0,085	0,083	0,084
	d_{20}	0,103	0,108	0,093	0,108	0,092	0,090	0,093
$0 \div 4$	d_{30}	0,113	0,118	$0,\!104$	0,115	0,100	0,101	0,104
	d_{32}	$0,\!135$	0,140	$0,\!130$	0,131	$0,\!120$	0,127	0,131
	d_{43}	0,170	0,167	$0,\!175$	0,155	0,151	0,179	0,180
$4 \div 40$	d_{10}	8,3	9,4	10,9	7,4	10,3	9,2	10,9
	d_{20}	9,2	10,3	12,1	8,2	11,4	10,5	12,0
	d_{30}	10,3	11,3	$13,\!5$	9,2	12,7	12,2	13,1
	d_{32}	12,9	13,5	16,9	11,5	15,7	16,3	15,7
	d_{43}	16,1	16,5	21,1	15,0	19,1	21,2	18,7

Средние диаметры травленых частиц к-фазы

Таблица З

Массовое распределение травленых частиц по фракциям в к-фазе

Размер	АСД-1			АСД-4	АСД-6		
фракции, мкм	$\alpha = 0,16$	$\alpha=0{,}25$	$\alpha=0{,}12$	$\alpha=0{,}15$	$\alpha=0{,}26$	$\alpha=0{,}18$	$\alpha = 0,25$
$0 \div 4$	0,84	0,77	0,79	0,89	0,54	0,70	0,69
$4 \div 40$	0,16	0,23	0,21	0,11	0,46	0,30	0,31

чить, что форма частиц близка к сферической и их минимальный размер составляет ≈ 100 Å. Причем наночастицы оксида алюминия настолько малы, что становятся прозрачными для пучка ускоренных электронов, с помощью которого сделана фотография. Описанные выше прозрачные сферические частицы оксида, прозрачные оссидные скорлупки и относительно редкие частицы активного алюминия (см. рис. 5, δ), покрытые оксидной пленкой, оказались внутри фракции 4 ÷ 40 мкм. Дифференциальные распределения количества и объема частиц представлены на рис. 6 и 7, а среднестатистические диаметры — в табл. 2.

Как следует из приведенных данных, начальная дисперсность алюминия, а также соотношение компонентов в рабочем участке установки практически не влияют на средние размеры частиц к-фазы крупной и мелкой фракций. В этом заключается одно из отличий горения аэровзвесей от горения алюминизированных твердых топлив, когда дисперсность порошкообразного металла является определяюцим фактором процессов агломерации конденсированных продуктов сгорания [7].

Результаты фракционирования травленых образцов к-фазы свидетельствуют, что массовая доля субмикронных частиц, т. е. частиц в основном мелкой фракции, больше доли частиц фракции $4 \div 40$ мкм (табл. 3). Поскольку общепринято, что при горении одиночных частиц алюминия оксид металла образуется как по механизму парофазных реакций на многочисленных зародышах, так и по механизму гетерогенных реакций на поверхности горящей частицы металла [2, 7], то и при горении аэровзвеси порошкообразного алюминия оксид алюминия образуется преимущественно в результате парофазных реакций. Обратим внимание на незначительное снижение массовой доли субмикронных частиц Al₂O₃ в случае повышения дисперсности исходного порошка, которое может быть обусловлено увеличением доли оксида алюминия, образующегося в результате гетерогенных химических реакций на поверхности частиц.

ВЛИЯНИЕ ДАВЛЕНИЯ НА ДИСПЕРСНЫЙ

Рис. 4. Фотографии нетравленых частиц к-фазы: исходный порошок: *а* — алюминий АСД-1, *б* — алюминий АСД-4

Рис. 5. Фотографии травленых частиц к-фазы (исходный порошок — алюминий АСД-1): a — субмикронные частицы, δ — фракция 4 \div 40 мкм

Рис. 6. Плотность распределения количества (γ_n) и объема (γ_v) частиц субдисперсных конденсированных продуктов сгорания алюминия марки АСД-6

Рис. 7. Плотность распределения количества и объема частиц фракции 4 ÷ 40 мкм конденсированных продуктов сгорания алюминия марки АСД-6

СОСТАВ КОНДЕНСИРОВАННЫХ ПРОДУКТОВ СГОРАНИЯ АЭРОВЗВЕСИ

Эксперименты проводились при давлении, равном, выше и меньше атмосферного, и коэффициенте избытка окислителя в рабочем участке 0,12÷0,4. В качестве горючего использовался порошкообразный алюминий марки АСД-1.

С помощью электронного микроскопа установлено, что внешний вид субмикронных частиц к-фазы практически не зависит от давления в изученном диапазоне и совпадает с опи-

Рис. 8. Плотность распределения количества и объема частиц Al₂O₃ мелкой фракции: исходный порошок — алюминий АСД-1

санным выше (см. рис. 4,a). Помимо субмикронных частиц, в конденсированных продуктах в небольшом количестве представлены частицы в виде полых сферических оболочек диаметром $1 \div 2$ мкм. Данный факт может служить доказательством того, что два механизма образования к-фазы: конденсация на многочисленных зародышах и накопление оксида на поверхности горящей металлической частицы — реализуются не только при горении одиночных и относительно крупных частиц, но и при горении аэровзвеси мелких порошков алюминия.

Дифференциальные распределения частиц к-фазы по размеру (рис. 8) использовались для определения среднестатистических размеров. Как следует из данных табл. 4, к-фаза при p = 0.05 МПа состоит преимущественно из суб-

при горении порошка АСД-1 в воздухе при разных давлениях							
$p,{\rm M}\Pi{\rm a}$	α	$d_{10}, \text{мкм}$	$d_{20}, \text{мкм}$	$d_{30}, \text{мкм}$	$d_{32}, \text{мкм}$	d_{43} , мкм	
0,05	0,13	0,11	0,12	0,13	0,16	0,20	
	0,20	0,12	0,13	0,14	0,16	0,19	
	0,30	0,10	0,11	0,12	0,14	0,18	
0,075	0,12	0,10	0,12	0,15	0,25	0,56	
	0,17	0,12	0,13	0,17	0,28	0,77	
	0,23	0,11	0,13	0,19	0,43	1,21	
0,30	0,40	0,11	0,13	0,19	0,42	0,91	

Таблица 4 Среднестатистические диаметры частиц Al₂O₃ при горении порошка АСД-1 в воздухе при разных давлениях

микронных частиц, наибольший диаметр которых не превышает 0,5 мкм. С увеличением давления вероятность образования Al₂O₃ на поверхности частиц повышается и в продуктах горения появляются полые сферы диаметром $1\div 2$ мкм. При этом надо иметь в виду, что приведенные в таблице среднемассовые размеры d_{43} при p > 0.075 МПа в определенной степени условны, поскольку плотности субмикронных частиц и полых оболочек, очевидно, различны. Тем не менее среднесчетный (d_{10}) , поверхностный (d_{20}) и объемный (d_{30}) диаметры всех проб субмикронных продуктов горения алюминия в диапазоне $p = 0.05 \div 0.3$ МПа при $\alpha = 0.12 \div 0.4$ практически равны и их значения находятся в интервале $0,10 \div 0,19$ мкм.

АНАЛИЗ ВЛИЯНИЯ УСЛОВИЙ СЖИГАНИЯ ПОРОШКООБРАЗНОГО АЛЮМИНИЯ НА ДИСПЕРСНЫЙ СОСТАВ КОНДЕНСИРОВАННЫХ ПРОДУКТОВ СГОРАНИЯ

Представляет интерес сравнить полученные результаты с результатами исследований дисперсного состава к-фазы продуктов горения алюминия в различных средах и при различных условиях (табл. 5). При стабилизации ламинарного диффузионного газодисперсного пламени на срезе сопла бунзеновской горелки [9] конденсированные продукты горения алюминия (дисперсность исходного порошка соответствовала дисперсности АСД-1) представляют собой субдисперсные частицы оксида со среднемассовым диаметром 0,25 мкм. Изменение условий горения (сжигание при атмосферном давлении алюминия марки АСД-1 в камере сгорания модельной установки [4]) приводит к полимодальному распределению с широким

диапазоном размеров частиц. Такие качественные и количественные изменения дисперсного состава могут быть вызваны турбулизацией потока и образованием зон обратных токов за стабилизатором пламени, что обусловливает, с одной стороны, возникновение процессов агломерации (появление частиц к-фазы крупнее исходных частиц алюминия), а с другой — приводит к изменению характера взаимодействия отдельных частиц алюминия с кислородом и повышению доли оксида, образующегося на поверхности горящих частиц алюминия.

Горение алюминия в составе смесевых твердых топлив характеризуется образованием агломератов сложного химического состава и структуры, а также их многостадийным выгоранием.

Дисперсный состав к-фазы также является полимодальным, и для него характерны моды в диапазоне размеров частиц $0,3 \div 2, 4 \div 50$ и 50 ÷ 500 мкм [6], представляющих субдисперсный оксид, крупнодисперсный оксид и агломераты в виде каркасов на основе углерода, недогоревшего алюминия и оксида алюминия. Так, например, при сжигании смесевого топлива на основе перхлората аммония, алюминия марки АСД-4 и связки (поливинилтетразольный полимер) при давлении 4,5 МПа [10] среднемассовые диаметры частиц к-фазы фракций $0.5\div55$ мкм и крупнее 55 мкм составляют соответственно 19,7 и 127 мкм, что почти вдвое превышает соответствующие размеры в случае горения аэровзвеси алюминия в турбулентном потоке.

При исследовании дисперсного состава агломератов и высокодисперсных частиц оксида алюминия в продуктах сгорания твердого топ-

Таблица 5

		, ,				
Условия сжигания	Анализируемая фракция	<i>d</i> ₁₀ , мкм	$d_{20}, \text{мкм}$	d_{32} , мкм	$d_{43},$ мкм	
Ламинарное						
диффузионное						
газодисперсное	Менее 1 мкм	0,066	0,078	0,154	0,253	
пламя [9]						
Турбулентное	Менее 1 мкм	0,1	0,106	0,133	0,159	
аэродисперсное	$4 \div 50$ мкм	10,5	11,6	16,3	19,5	
пламя, $\alpha = 0.8$ [4]	Более 50 мкм	58	60	68	80	
27 % ПХА	0.5 ÷ 55 мкм	1.6	2.3	8.7	19.7	
35~%октогена	0,0 . 00	1,0	_,0	0,1	10,1	
20~% связки	55 ÷ 500 мкм	87	90	105	127	
18 % Al [10]				100		
64 % ПХА	$0 \div 2,5$ мкм				01.05	
12 % связки	$p = 1 \ M\Pi a \ [11]$				$0,1 \div 0,5$	
24 % Al	$55 \div 500$ мкм				100	
- 1 / 0 111	$p = 6 \text{ M}\Pi a \text{ [12]}$				120	

Средние диаметры частиц конденсированных продуктов сгорания алюминия в различных условиях

лива с добавками алюминия марки АСД-4 экспериментально установлено следующее. Среднемассовый диаметр высокодисперсного оксида составляет 0,1÷0,5 мкм при давлении в камере сгорания 1 МПа [11], а агломератов — 126 мкм при давлении в камере сгорания 6 МПа [12].

Таким образом, можно считать, что при горении алюминия в составе газовзвеси и в смесевых конденсированных системах качественные характеристики к-фазы (тип частиц, полимодальность распределения по размерам) подобны друг другу, а отличия заключаются в соотношении превалирующих реакций (поверхностные гетерогенные или парофазные), которое оказывает влияние на вид плотности распределения количества частиц к-фазы по размеру и на ее средние моменты.

На основании анализа результатов проведенных исследований и их сравнения с опубликованными данными можно сделать следующие выводы.

1. Определяющее влияние на дисперсный состав к-фазы оказывают газодинамика процесса горения частиц алюминия и условия их взаимодействия между собой и с газом. 2. При горении аэровзвеси частиц алюминия основная доля к-фазы (до 90 %) приходится на субмикронные частицы, размеры которых практически не зависят от начальной дисперсности алюминия и имеют тенденцию к увеличению при повышении давления.

Авторы выражают особую признательность сотруднику ИПХФ РАН В. И. Шевцову за помощь в работе и обсуждение полученных результатов, а также благодарят М. Г. Власова, С. С. Бусарову, В. А. Лесовникову за выполнение дисперсного анализа.

ЛИТЕРАТУРА

- 1. Бружустовский Т., Глассмен И. Спектроскопическое исследование горения металлов // Гетерогенное горение / Под ред. А. В. Ильинского; Пер. с англ. И. Н. Садовского. М.: Мир, 1967. С. 59–90.
- 2. Колесноков-Свинарев В. И., Истратов А. Г., Смирнов В. И. и др. Влияние параметров окружающей среды на горение капли алюминия // Физика аэродисперсных систем. 1987. Вып. 31. С. 57–63.
- 3. Стесик Л. Н., Гусаченко Е. И., Фурсов В. П. и др. Особенность формирования агломератов при горении смесевых композиций //

Физика аэродисперсных систем. 1982. Вып. 21. С. 62–66.

- 4. Ягодников Д. А., Гусаченко Е. И. Влияние внешнего электрического поля на дисперсный состав конденсированных продуктов сгорания аэровзвеси частиц алюминия // Физика горения и взрыва. 2002. Т. 38, № 4. С. 80–86.
- Бабук В. А., Васильев В. А., Свиридов В. В. Моделирование структуры смесевого твердого ракетного топлива // Физика горения и взрыва. 1999. Т. 35, № 2. С. 35–40.
- Глотов О. Г. Конденсированные продукты горения алюминизированных топлив. II. Эволюция частиц при удалении от поверхности горения // Физика горения и взрыва. 2000. Т. 36, № 4. С. 66–78.
- Горение порошкообразных металлов в активных средах / Похил П. Ф., Беляев А. Ф., Фролов Ю. В. и др. М.: Наука, 1972.
- 8. Ягодников Д. А., Воронецкий А. В., Лапицкий В. И. Распространение пламени по аэровзвеси алюминия при пониженных давлениях // Физика горения и взрыва. 1995. Т. 31, № 5. С. 23–31.

- 9. Золотко А. Н., Вовчук Я. И., Полетаев Н. И. и др. Синтез нанооксидов в двухфазных ламинарных пламенах // Физика горения и взрыва. 1996. Т. 32, № 3. С. 24–33.
- Glotov O. G., Zarko V. E., Shandakov V., Yagodnikov D. A. A study of the effect of polymer coating on aluminum agglomeration // Energetic Materials. Ignition, Combustion and Detonation: Proc. 32th Intern. Annual Conf. of ICT. Karlsruhe, Germany, 2001. P. 115-1–115-14
- Бабук В. А., Малахов М. С. Изучение закономерностей образования высокодисперсного оксида при горении частиц алюминия // Внутрикамерные процессы, горение и газовая динамика дисперсных систем. СПб., 1997. С. 147– 150.
- Бабук В. А. Рецептурные факторы и проблемы управления процессом агломерации при горении металлизированных твердых топлив // Unsteady Combustion and Interrior Ballistics: Lectuers of the III Intern. Workshop. S. Petersburg, 2000. V. 2. P. 308–319.

Поступила в редакцию 20/III 2003 г.