УДК 533.6.011.51

БЕГУЩАЯ ВОЛНА ПРИ УЧЕТЕ РАВНОВЕСНОГО ИЗЛУЧЕНИЯ

С. П. Баутин, А. П. Садов

Уральский государственный университет путей сообщения, 620034 Екатеринбург E-mails: sbautin@math.usart.ru, alsadov@yandex.ru

В рамках одной термодинамической модели в зависимости от скорости распространения фронта бегущей волны по нехолодному газу выделены три режима. В случае, когда указанная скорость невелика, переход от постоянных значений параметров газа по разные стороны от фронта бегущей волны осуществляется непрерывно. При увеличении скорости движения бегущей волны возникает изотермический скачок: плотность и скорость газа претерпевают сильный разрыв, а температура меняется непрерывно. При дальнейшем увеличении скорости бегущей волны изотермический скачок исчезает и течение газа вновь становится непрерывным.

Ключевые слова: лучистая теплопроводность, невязкий газ, бегущая волна, изотермический скачок.

Получение больших степеней сжатия газа имеет большое значение при решении многих технических проблем (см., например, [1]). При большом сжатии газа необходимо учитывать равновесное излучение [1–3]. В этом случае уравнения состояния газа принимают вид

$$p = R\rho T + \sigma T^4/3, \qquad e = c_v T + \sigma T^4/\rho, \qquad \sigma = \text{const} > 0.$$
 (1)

Здесь p — давление; ρ — плотность; T — температура; e — внутренняя энергия; c_v — удельная теплоемкость при постоянном объеме; R — газовая постоянная; σ — константа, связанная с постоянной Стефана — Больцмана σ_* соотношением $\sigma = 4\sigma_*/c_*$; c_* — скорость света в вакууме.

Газ, рассматриваемый как термодинамическая система, является двухпараметрической сплошной средой [4, 5]. В качестве независимых термодинамических переменных приняты плотность и температура, поэтому все остальные термодинамические параметры газа являются функциями ρ , T, как, например, давление и внутренняя энергия, заданные соотношениями (1).

При учете равновесного излучения в системе уравнений газовой динамики [4] уравнение, являющееся дифференциальной формой закона сохранения энергии, становится нелинейным уравнением теплопроводности в движущейся среде [5], а коэффициент теплопроводности имеет следующий вид:

$$\varkappa = 2 \, \frac{\sigma c_* \alpha_*}{\gamma - 1} \, \frac{T^3}{\rho} \tag{2}$$

 $(\alpha_* -$ положительная константа, зависящая от выбора системы единиц; $\gamma - 1 = R/c_v > 0$ - показатель политропы идеального газа).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 02-01-01122, 04-01-00205).

Плоскосимметричные течения теплопроводного невязкого газа с уравнениями состояния (1) и коэффициентом теплопроводности (2) описываются системой уравнений

$$\rho_t + u\rho_x + \rho u_x = 0,$$

$$u_t + uu_x + [T\rho_x + (\rho + \sigma_1 T^3)T_x]/(\gamma\rho) = 0,$$

$$(\beta + \sigma_2 T^3)(T_t + uT_x) + (\gamma - 1)T(\rho + \sigma_1 T^3)u_x = \varkappa_0 \frac{\partial}{\partial x} \left(\frac{T^3}{\rho} \frac{\partial T}{\partial x}\right).$$
(3)

Здесь t — время; x — пространственная координата; u — скорость газа;

$$\sigma_1 = \frac{4}{3} \sigma \frac{T_{00}^3}{R\rho_{00}}; \qquad \sigma_2 = 3(\gamma - 1)\sigma_1; \qquad \varkappa_0 = \frac{2\sigma c_* \alpha_* T_{00}^3}{R u_{00} \rho_{00}^2 x_{00}};$$

 $T_{00}, \rho_{00}, x_{00}$ — масштабные значения соответственно температуры, плотности и расстояния при введении стандартным образом безразмерных переменных. При этом в качестве масштабного значения скорости газа используется скорость звука в нетеплопроводном идеальном газе: $u_{00} = \sqrt{R\gamma T_{00}}$.

Физический механизм лучистой теплопроводности отличается от механизма молекулярной теплопроводности. В частности, при учете молекулярной теплопроводности необходимо учитывать и молекулярную вязкость, поскольку влияния этих эффектов соизмеримы. Об этом свидетельствует конечное значение числа Прандтля $\Pr = c_v \gamma \mu_{00} / \varkappa_{00}$, представляющего собой отношение коэффициентов вязкости μ_{00} и теплопроводности \varkappa_{00} , вычисленных при масштабных значениях ρ_{00} , T_{00} . Например, для воздуха обычно полагается $\Pr = 0,72$. В отличие от молекулярной теплопроводности механизм лучистой теплопроводности не предполагает возникновения в газе эффекта вязкости [1, 2, 6]. Поэтому в системе (3) отсутствуют слагаемые, учитывающие вязкое взаимодействие частиц газа. Формально система (3) получается из полной системы Навье — Стокса (см., например, [7]), в которой необходимо учитывать конкретный вид уравнений состояния (1) и коэффициента теплопроводности (2), а коэффициенты первой и второй вязкостей полагать равными нулю.

Если в системе (3) принять $\varkappa_0 = 0$, то она становится системой уравнений газовой динамики гиперболического типа. Поскольку в качестве независимых термодинамических переменных взяты ρ , T и уравнение энергии записано для температуры, система (3) при $\varkappa_0 = 0$ по виду отличается от традиционно используемой системы уравнений газовой динамики [4], но, естественно, эквивалентна ей. Скорость распространения звуковых C^{\pm} характеристик относительно потока определяется скоростью звука в нетеплопроводном невязком газе c. В случае, когда $p = p(\rho, T)$, $e = e(\rho, T)$, скорость звука в нетеплопроводном невязком газе задается соотношением

$$c = \sqrt{\frac{\partial p(\rho, T)}{\partial \rho} + \frac{T}{\rho^2} \left[\frac{\partial p(\rho, T)}{\partial T}\right]^2 / \frac{\partial e(\rho, T)}{\partial T}}.$$
(4)

С учетом уравнений состояния (1) формула, задающая скорость звука в нетеплопроводном газе (т. е. при $\varkappa_0 = 0$), имеет вид

$$c = \sqrt{\frac{T}{\gamma}} \sqrt{1 + (\gamma - 1) \frac{(1 + \sigma_1 T^3 / \rho)^2}{1 + \sigma_2 T^3 / \rho}}.$$
(5)

В случае $\varkappa_0 \neq 0$ тип системы (3) смешанный: первые два уравнения образуют гиперболическую часть, а последнее уравнение параболическое. Для этой системы имеется две звуковых C^{\pm}_{\varkappa} -характеристики [8], скорость распространения которых относительно потока равна скорости звука в теплопроводном невязком газе c_{\varkappa} :

$$c_{\varkappa} = \sqrt{\frac{\partial p(\rho, T)}{\partial \rho}} \,. \tag{6}$$

В случае уравнений состояния (1) эта величина в безразмерных переменных определяется соотношением

$$c_{\varkappa} = \sqrt{T/\gamma}.\tag{7}$$

В литературе (см., например, [2, 6, 9]) для величины (6) используется термин "изотермическая скорость звука". Заметим, однако, что величина $\sqrt{\partial p(\rho, T)/\partial \rho}$ определяет скорость звука в течениях теплопроводного невязкого газа независимо от того, постоянна температура потока или переменна.

Поскольку для обычных газов $\partial e(\rho, T)/\partial T > 0$, сравнение формул (4) и (6) приводит к неравенству

$$c > c_{\varkappa}.\tag{8}$$

Естественно, что неравенство (8) выполняется и в частном случае уравнений состояния (1), когда c и c_{\varkappa} задаются формулами (5) и (7) соответственно.

Далее рассматривается частный случай решений системы (3): бегущие по нехолодному газу волны — решения, зависящие от одной независимой переменной

$$z = x - Dt, \qquad D = \text{const} > 0, \tag{9}$$

при этом в области $z \to +\infty$ имеем однородный покоящийся газ со следующими значениями газодинамических параметров:

$$\rho\big|_{z \to +\infty} = 1, \qquad u\big|_{z \to +\infty} = 0, \qquad T\big|_{z \to +\infty} = T_0 > 0. \tag{10}$$

Константа *D* задает скорость движения бегущей волны, распространяющейся в данном случае слева направо.

Ранее рассматривались бегущие волны в теплопроводном ($\varkappa_0 \neq 0$) невязком газе. Для идеального теплопроводного газа, когда в соотношениях (1) $\sigma = 0$, но $\varkappa_0 \neq 0$, рассмотрены случаи $T_0 = 0$ (холодный фон) и $T_0 > 0$. В работе [10] показано, что при $T_0 = 0$ в бесконечно сильной волне реализуется течение с изотермическим скачком. В некоторой точке такого течения имеет место разрыв плотности, скорости газа и теплового потока, но температура во всем течении меняется непрерывно [2, 5, 6, 9]. Для случая $T_0 > 0$ в работах [2, 5, 6] установлено, что при малых D имеет место непрерывный переход, а при больших D изотермический скачок.

Бегущие волны в теплопроводном газе с уравнениями состояния (1) (т. е. при $\sigma \neq 0$, $\varkappa_0 \neq 0$) при $T_0 = 0$ рассмотрены в работах [2, 9]. Показано, что при малых D имеет место изотермический скачок, а при больших D — непрерывный переход, кроме того, справедливо соотношение

$$\lim_{T_1 \to +\infty} \frac{\rho_1}{\rho_0} = 7,\tag{11}$$

где ρ_1 , ρ_0 — плотности по разные стороны от бесконечно сильной бегущей волны.

В данной работе, в отличие от перечисленных выше исследований, в случае уравнений состояния (1) с $\sigma \neq 0$, $\varkappa_0 \neq 0$ рассмотрены бегущие волны при $T_0 > 0$.

Для анализа свойств бегущих по нехолодному фону волн рассматривается система обыкновенных дифференциальных уравнений

$$(u-D)\rho' + \rho u' = 0,$$

$$(u - D)u' + [T\rho' + (\rho + \sigma_1 T^3)T']/(\gamma\rho) = 0,$$

$$(\rho + \sigma_2 T^3)(u - D)T' + (\gamma - 1)T(\rho + \sigma_1 T^3)u' = \varkappa_0 (T^3 T'/\rho)',$$
(12)

получающаяся из системы (3) при замене (9).

Первые три интеграла системы (12) находятся стандартным образом [5]:

$$\rho(u-D) = C_1; \tag{13}$$

$$T\rho + \sigma_1 T^4 / 4 = \gamma Du + C_2; \tag{14}$$

$$\varkappa_0 T^3 T' / \rho = \gamma(\gamma - 1) D u^2 / 2 + (\gamma - 1) C_2 u - DT - \sigma_2 (D - u) T^4 / 4 + C_3.$$
⁽¹⁵⁾

Соотношения (13)–(15) являются условиями Гюгонио для теплопроводного невязкого газа [2, 5, 6], которые также можно получить из интегральных законов сохранения [5]. В левой части условия (15), являющегося одной из форм закона сохранения энергии, присутствует поток тепла, который в соответствии с законом Фурье для теплопроводности зависит, в частности, от градиента температуры. Если в (15) положить $\varkappa_0 = 0$ или T' = 0, то получатся традиционные условия Гюгонио для нетеплопроводного невязкого газа [4, 5].

Произвольные постоянные C_1, C_2, C_3 однозначно определяются из условий (10). Далее для наглядности расчетов полагается

$$T_0 = 1$$

поэтому

$$C_1 = -D,$$
 $C_2 = 1 + \sigma_1/4,$ $C_3 = D(1 + \sigma_2/4).$ (16)

Интеграл (13) позволяет исключить ρ из интеграла (14) и получить соотношение

$$u_{\pm}(T) = [\gamma D^2 + \sigma_1 T^4 / 4 - (1 + \sigma_1 / 4) \pm \sqrt{W(T)}] / (2\gamma D),$$
(17)

где

$$W(T) = [\sigma_1 T^4 / 4 - (\gamma D^2 + 1 + \sigma_1 / 4)]^2 - 4\gamma D^2 T.$$

Функция W(T) имеет два положительных корня T_*, T_{**} ($0 < T_* < T_{**}$), причем при $0 \leq T < T_*$ и $T > T_{**}$ она строго положительна, а при $T_* < T < T_{**}$ строго отрицательна. Поскольку в диапазоне $T_* < T < T_{**}$ значение функции $\sqrt{W(T)}$ не определено, необходимо рассматривать только интервал $0 \leq T \leq T_*$. В этом диапазоне и определена двузначная функция $u = u_{\pm}(T)$. Значение производной $du_{\pm}(T)/dx$ вычисляется по формуле

$$\frac{du_{\pm}(T)}{dx} = \frac{du_{\pm}(T)}{dT} \frac{dT}{dx} = \frac{1}{2\gamma D} \left[\sigma_1 T^3 \pm \frac{W'(T)}{2\sqrt{W(T)}} \right] \frac{dT}{dx}.$$

Таким образом, в точке $T = T_*$, где $W(T_*) = 0$, значение производной $du_{\pm}(T)/dx$ заведомо будет равно бесконечности, хотя значение скорости газа при $T = T_*$ конечно.

Из формул (13), (17) следует, что зависимость

$$\rho = \rho_{\pm}(T) \equiv D/(D - u_{\pm}(T)) \tag{18}$$

определена на полуинтервале $(0, T_*]$ и также является двузначной.

Найденные зависимости (17), (18) позволяют исключить плотность газа из левой части соотношения (15), а также скорость газа из правой части соотношения (15), обозначаемой далее как

$$q_{\pm}(T) = \gamma(\gamma - 1)Du_{\pm}^{2}(T)/2 + (\gamma - 1)(1 + \sigma_{1}/4)u_{\pm}(T) - DT - \sigma_{2}[D - u_{\pm}(T)]T^{4}/4 + D(1 + \sigma_{2}/4).$$
(19)

Рис. 1. Двузначная зависимость теплового потока q_{\pm} от температуры

При этом $q_{-}(1) = 0$, $q_{-}(T_{*}) = q_{+}(T_{*})$ и $q_{-}(T) < q_{+}(T)$ при $0 \leq T < T_{*}$. Предельные при $z \to +\infty$ значения плотности $\rho = 1$ и скорости газа u = 0 принадлежат нижним ветвям соответствующих кривых $\rho_{\pm}(T)$, $u_{\pm}(T)$ при T = 1, поэтому нулевое значение теплового потока при T = 1 также принадлежит нижней ветви кривой $q_{\pm}(T)$. На рис. 1 приведены зависимости $q_{\pm}(T)$ при D = 5 и следующих значениях используемых констант: $\gamma = 5/3$; $\varkappa_0 = 1,4842; \sigma_1 = 0,2366.$ (Эти же значения констант используются в дальнейшем.)

Пусть

$$D_0 = c(\rho, T)\big|_{\rho=T=1},$$

где $c(\rho, T)$ вычисляется по формуле (5). В рассматриваемом случае $D_0 \approx 1,00757$. При $D = D_0$ для кривой $q_{\pm}(T)$ значение T = 1 является корнем кратности два, принадлежащим нижней ветви: $q_{-}(1) = 0, q'_{-}(1) = 0.$

При $D > D_0$ на кривой $q_{\pm}(T)$ появляется второй корень $T = T_1 > 1$. Сначала он располагается на нижней ветви $(q_{-}(T_1) = 0)$, но с ростом D переходит на верхнюю ветвь $(q_{+}(T_{1}) = 0)$, а затем вновь возвращается на нижнюю. Расположение корня $T = T_{1}$ на разных ветвях кривой $q_{\pm}(T)$ приводит к принципиально различным течениям газа: без сильного разрыва или с сильным разрывом.

Пусть корень $T = T_1 > 1$, как и корень T = 1, располагается на нижней ветви: $q_{-}(T_{1}) = 0$. Тогда при решении задачи Коши для обыкновенного дифференциального уравнения

$$\varkappa_0 T^3 T' / \rho_-(T) = q_-(T), \qquad T \big|_{z=0} = T^0$$
(20)

определяется зависимость T = T(z) при $-\infty < z < +\infty$. Здесь значение константы T^0 должно быть выбрано в интервале от 1 до T_1 , например, $T^0 = (1 + T_1)/2$.

Ввиду громоздкости дифференциального уравнения решение задачи (20) выполняется численно. При этом приближение к предельным значениям $T|_{z=-\infty} = T_1, T|_{z=+\infty} = 1$ происходит достаточно быстро. При фиксированных значениях параметров $\gamma, \varkappa_0, \sigma_1$ скорость такого приближения зависит от константы D.

После определения зависимости T = T(z) функции $u = u(z) \equiv u_{-}(T(z)), \rho =$ $\rho(z) \equiv \rho_{-}(T(z))$ восстанавливаются по формулам (17), (18) со знаком "-". На рис. 2 приведена зависимость $\rho(z)|_{t=0} = \rho(x)$, найденная указанным способом при D = 1,1. Кривые $u(z)|_{t=0} = u(x), T(z)|_{t=0} = T(x)$ качественно аналогичны кривой зависимости

Рис. 2. Непрерывное распределение плотности газа в первом режиме

Рис. 3. Непрерывное распределение плотности газа при переходе от первого режима ко второму

 $\rho(z)|_{t=0} = \rho(x)$. В этом случае бегущая волна, как и решение Беккера [5], описывает монотонный безударный переход от предельных значений $\rho = \rho_1 \approx 1,1430, u = u_1 \approx 0,1376, T = T_1 \approx 1,0776$ при $z = -\infty$ к предельным значениям $\rho = 1, u = 0, T = 1$ при $z = +\infty$.

При достижении некоторого значения $D = D_1 > D_0$ корень $T = T_1$ займет граничное положение, т. е. будет одновременно принадлежать обеим ветвям кривой $q_{\pm}(T)$: $q_{-}(T_1) = q_{+}(T_1) = 0$. Естественно, что это будет иметь место только в случае, когда корень T_1 совпадет с граничной точкой области определения функций $q_{\pm}(T)$, $\rho_{\pm}(T)$, $u_{\pm}(T)$: $T_1 = T_*$. Поскольку корень T_1 находится на нижней ветви, переход от значений $\rho_0 = 1$, $u_0 = 0$, $T_0 = 1$ к значениям ρ_1 , u_1 , T_1 будет происходить непрерывно, но с бесконечными значениями производных плотности и скорости газа по переменной z на левой границе "размазанной" ударной волны. Поскольку в этом случае $q_-(T_1) = 0$, производная T'(z) непрерывна и на левой границе "размазанной" ударной волны равна нулю. При используемом варианте получены следующие значения констант: $D_1 \approx 1,366$; $T_* \approx 1,289702$; $\rho_1 = \rho_{-\infty} \approx 1,5520$; $u_1 = u_{-\infty} \approx 0,4859$; $T_1 = T_{-\infty} \approx 1,2897$. Поведение кривой $\rho|_{t=0} = \rho(x)$ в этом случае приведено на рис. 3.

При дальнейшем увеличении D корень $T = T_1$ переходит на верхнюю ветвь кривой $q_{\pm}(T)$: $q_{+}(T_1) = 0$. В этом случае с уменьшением z уже при некотором конечном значении $z = z_1$ функция T(z) принимает значение $T = T_1$. В точке $z = z_1$ для величин q, ρ и u необходимо ставить условие сильного разрыва — перехода от значений $q = q_2 = q_{-}(T_1)$, $\rho = \rho_2 = \rho_{-}(T_1)$ и $u = u_2 = u_{-}(T_1)$ к значениям $q = q_1 = q_{+}(T_1)$, $\rho = \rho_1 = \rho_{+}(T_1)$ и $u = u_1 = u_{+}(T_1)$ соответственно. При таком разрывном переходе с нижних ветвей на верхние все законы сохранения (13)–(15) будут выполнены, так как зависимости $\rho_{\pm}(T)$, $u_{\pm}(T)$, $q_{\pm}(T)$ определены при одном и том же наборе (16) констант C_1 , C_2 , C_3 .

Поскольку $q_+(T_1) = 0$, решением задачи Коши

$$\varkappa_0 T^3 T' / \rho_+(T) = q_+(T), \qquad T|_{z=z_1} = T_1$$

при $-\infty < z < z_1$ будет постоянное значение температуры $T = T_1$, что приведет к постоянным значениям параметров газа: $\rho = \rho_1 > 1$, $u = u_1 > 0$, $T = T_1 > 1$. На рис. 4 приведена зависимость $\rho|_{t=0} = \rho(x)$ при используемых значениях констант γ , \varkappa_0 , σ_1 и D = 5. В этом варианте $\rho_1 \approx 4,7416 > \rho_2 \approx 2,2016 > \rho_0 = 1$, $u_1 \approx 3,9455 > u_2 \approx 2,7289 > u_0 = 0$,

Рис. 4. Изотермический скачок плотности во втором режиме

 $T_1 \approx 3,9915 > T_0 = 1, T_* \approx 4,0934$. В этом случае значение температуры меняется непрерывно: $T(z) = T_1$ при $z \leq z_1$, а при $z \geq z_1$ функция T(z) с ростом z монотонно убывает от T_1 до единицы. Поведение зависимости T(z) такое же, как и $\rho(z)$ при D = 1,366 (см. рис. 3): с разрывом производной T'(z) в точке z_1 , но без бесконечного градиента в этой точке.

Течение перед полученным ударным переходом называют тепловым предвестником. В случае, когда температура покоящегося газа равна нулю (при $z = +\infty$), бегущая волна становится волной, распространяющейся с конечной скоростью по холодному газу [1, 2, 9, 10]. Тогда ширина теплового предвестника конечна: от $z = z_1$ до $z = z_0 > z_1$, где z_0 координата фронта тепловой волны.

В данной работе рассматривается вариант $T|_{z\to+\infty} > 0$. Поэтому в исследуемых случаях тепловая неоднородность распространяется с бесконечной скоростью и ширина теплового предвестника бесконечна: от $z = z_1$ до $z = +\infty$. Однако, как отмечено выше, приближение параметров газа в тепловом предвестнике к предельным при $z \to \pm\infty$ значениям происходит достаточно быстро (см. рис. 2–4).

При $D > D_1$ корень $T = T_1$ вновь переходит с ветви $q_+(T)$ на ветвь $q_-(T)$ и возникает "пограничная" ситуация: при некотором $D = D_2 > D_1$ корень $T = T_1$ совпадает с граничной точкой области определения кривой $q_{\pm}(T)$ и принадлежит одновременно обеим ветвям: $q_+(T_*) = q_-(T_*) = 0$. В этом случае, как и при $D = D_1$, сильный разрыв в течении газа отсутствует. На левой границе "размазанной" ударной волны производные плотности и скорости по пространственной переменной бесконечны, а производная T'(z) непрерывна и равна нулю в точке $T_* = 0$. При используемых в расчетах значениях констант $D_1 \approx 13,675$. Поведение кривой $\rho|_{t=0} = \rho(x)$ в этом случае такое же, как на рис. 3, но значение ρ_1 больше.

При дальнейшем увеличении D ($D > D_2$) сильный разрыв исчезает, бегущая волна, как и в случае $D_0 < D < D_1$, передает "размазанный" ударный переход со своими значениями параметров газа при $z = -\infty$.

Итак, в случае $\sigma \neq 0, \varkappa_0 \neq 0, T_0 > 0$ имеется три режима бегущей волны: непрерывный переход при $D_0 < D \leq D_1$, изотермический скачок при $D_1 < D < D_2$, вновь непрерывный переход при $D_2 \leq D$.

Значения параметров газа по разные стороны от бегущей волны

$$\boldsymbol{U}_0 = \boldsymbol{U}\big|_{z \to +\infty}, \qquad \boldsymbol{U}_1 = \boldsymbol{U}\big|_{z \to -\infty}, \qquad \boldsymbol{U} = (\rho, u, T)$$

связаны условиями Гюгонио (13)–(15), и, поскольку в рассматриваемых течениях

Рис. 5. Значения плотности газа по разные стороны от фронта бегущей волны $(\rho_{+\infty} = 1, \rho_{-\infty} = \rho_1)$ и в изотермическом скачке $(\rho_2 \div \rho_1)$ $(\rho = 7$ — предельное значение изменения плотности в бегущей по теплопроводному невязкому газу волне)

Рис. 6. Значения скорости газа по разные стороны от фронта бегущей волны $(u_{+\infty} = 0, u_{-\infty} = u_1)$ и в изотермическом скачке $(u_2 \div u_1)$

 $\lim_{z\to\pm\infty} T' = 0,$ эти условия совпадают с условиями Гюгонио для нетеплопроводного невязкого газа [4]. Поэтому, в частности, справедлива теорема определенности [4], в соответствии с которой по значениям U_0 и D однозначно определяются значения U_1 , причем независимо от того, имеется в течении теплопроводного невязкого газа изотермический скачок или нет. Вследствие того что при $D_0 < D < D_1$ и при $D_2 < D$ изотермический скачок отсутствует, газодинамические параметры в рассматриваемых бегущих волнах при этих значениях D изменяются непрерывно и монотонно от значений $U_1 = U|_{z\to-\infty}$ до значений $U_0 = U|_{z\to+\infty}$, которые связаны условиями Гюгонио для нетеплопроводного невязкого газа.

Так как при $D_1 < D < D_2$ в течении газа имеет место изотермический скачок, то, вопервых, значение температуры при $z \leq z_1$ постоянно $(T = T_1)$, а при $z \geq z_1$ температура изменяется непрерывно и монотонно от значения $T_1 = T|_{z=z_1}$ до значения $T_0 = T|_{z\to+\infty}$. Во-вторых, плотность и скорость газа ведут себя иначе: в тепловом предвестнике при уменьшении z (от $+\infty$ до z_1) они изменяются монотонно и непрерывно от значений $\rho_0 = \rho|_{z\to+\infty}$, $u_0 = 0 = u|_{z\to+\infty}$ до значений $\rho_2 = \rho_-(T_1) > \rho_0$ и $u_2 = u_-(T_1) > 0$ в точке $z = z_1$, а затем в точке $z = z_1$ происходит скачкообразный переход к значениям $\rho_1 = \rho_+(T_1) > \rho_2$ и $u_1 = u_+(T_1) > u_2$ соответственно. Далее на всей полуоси $(-\infty, z_1]$ плотность и скорость газа постоянны: $\rho = \rho_1$, $u = u_1$. Зависимости $\rho_1(D)$, $\rho_2(D)$ для выбранных значений констант γ , \varkappa_0 , σ_1 приведены на рис. 5, а зависимости $u_1(D)$, $u_2(D)$ — на рис. 6.

Для нетеплопроводного невязкого газа справедлива теорема Цемплена [4, 5] для ударных волн

$$|u_0 - D| > c_0, \qquad |u_1 - D| < c_1, \tag{21}$$

согласно которой фронт ударной волны догоняет слабые возмущения, возникающие перед ним, а слабые возмущения, имеющиеся за фронтом ударной волны, в свою очередь, догоняют его. В литературе это свойство иногда называется свойством эволюционности [6].

Естественно, если при заданных значениях U_0 , U_1 и D скорость звука вычислять по формулам (4), (5) (т. е. в случае нетеплопроводного газа с $\varkappa_0 = 0$), то теорема Цемплена имеет место. Однако если скорость звука вычислять по формулам (6), (7), справедливым для течений теплопроводного невязкого газа, то априори неизвестно, будет ли в таких течениях выполняться свойство эволюционности. Более того, непосредственные вычисления величин (21), когда в качестве скорости звука берется скорость звука в теплопроводном невязком газе, дают своеобразную картину выполнимости свойства эволюционности для бегущих по нехолодному фону волн в теплопроводном невязком газе.

Для потока перед фронтом бегущей волны с учетом значения $u_0 = 0$ свойство эволюционности записывается в виде

$$D > c_{\varkappa}(\rho_0, T_0)$$

и выполняется. Действительно, по теореме Цемплена $D > c(\rho_0, T_0)$. Тогда с учетом соотношения (8) получается цепочка неравенств

$$D > c(\rho_0, T_0) > c_{\varkappa}(\rho_0, T_0),$$

из которой следует утверждение об эволюционности потока перед фронтом бегущей волны. Следует отметить, что именно необходимость выполнения теоремы Цемплена в случае нетеплопроводного газа $(D > c(\rho_0, T_0))$ определяет значение $D_0 = c(\rho_0, T_0)$.

Для потока теплопроводного невязкого газа за фронтом бегущей волны расчеты для используемых значений параметров γ , \varkappa_0 , σ_1 показали следующее. Если в течении газа имеет место изотермический скачок (т. е. $D_1 < D < D_2$), то

$$c_{\varkappa}(\rho_1, T_1) > D - u_1,$$

т. е. теорема Цемплена выполняется и свойство эволюционности имеет место. Однако если в бегущей волне течение теплопроводного невязкого газа непрерывно $(D_0 < D < D_1$ и $D_2 < D)$, то справедливо неравенство

$$c_{\varkappa}(\rho_1, T_1) < D - u_1, \tag{22}$$

и, следовательно, слабые разрывы, которые по каким-либо причинам возникают за фронтом бегущей волны, могут и не догнать фронт волны.

Дело в том, что система (3) учитывает два механизма передачи возмущений: упругое взаимодействие и лучистую теплопроводность. Как известно, в случае фона с ненулевой температурой тепловая неоднородность распространяется с бесконечной скоростью. Именно это обстоятельство обусловливает бесконечную ширину теплового предвестника перед фронтом бегущей волны (см. рис. 2–4). Следовательно, наличие механизма теплопроводности вызывает прогрев газа и повышение температуры, что, в свою очередь, ведет к увеличению скорости звука в теплопроводном невязком газе. Поэтому, вообще говоря, несмотря на справедливость неравенства (22), слабые возмущения могут догнать фронт бегущей волны.

Однако имеются примеры течений (см. [8, 11]), когда слабые возмущения, вызванные плавным перемещением непроницаемого поршня в однородном газе ненулевой температуры, распространяются по однородному фону с постоянной скоростью c_{\varkappa} и не приводят к бесконечной скорости распространения тепловой неоднородности. Такой эффект возникает, когда на сжимающем поршне осуществляется сток тепла по специальному закону. Эти примеры свидетельствуют о том, что при $D_0 < D < D_1$ и $D_2 < D$ свойство эволюционности в течениях теплопроводного невязкого газа может не выполняться.

Далее рассмотрим влияние T_0 на течение газа. Выбор значения $T_0 = 1$, как отмечено выше, обусловлен только бо́льшей наглядностью результатов расчетов. Используемые в расчетах значения констант при $T_0 = 1$ [2, 12] соответствуют температуре порядка 1 кэВ, т. е. 10⁷ К. Очевидно, что в экспериментах по лазерному термоядерному синтезу такую температуру имеет не мишень в исходном состоянии, а уже сжатый и разогретый до очень большой температуры газ.

Расчеты со значениями T_0 , уменьшающимися вплоть до $T_0 = 10^{-6}$ К, показали, что при $T_0 > 0$ имеют место три режима распределения бегущих волн: непрерывное течение при $D_0(T_0) < D < D_1(T_0)$ и $D_2(T_0) < D$ и изотермический скачок при $D_1(T_0) < D < D_2(T_0)$. При этом если значение T_0 уменьшается до нуля, то $D_{0,1}(T_0) \to 0$ и

$$D_2(T_0) \to D_{2*} = \left[\frac{(8+4s)(4+s)^7}{\sigma_1 \gamma^3}\right]^{1/6}, \qquad s = \sqrt{\frac{3\gamma - 1}{\gamma - 1}}.$$

Следовательно, в пределе при $T_0 \to 0$ три режима непрерывно перейдут в два режима для бегущих по холодному фону волн [2, 9]. Это произойдет за счет того, что интервал значений D, при которых имеет место первый режим непрерывного течения ($D_0 < D < D_1$), уменьшается до нуля при $T_0 \to 0$.

Во всех рассчитанных вариантах с $T_0 > 0$ свойство эволюционности проявлялось так же, как в случае $T_0 = 1$: для течения перед фронтом волны, а также для течения за фронтом, но только при наличии изотермического скачка выполняется неравенство (21), в котором в качестве скорости звука берется c_{\varkappa} . В случаях непрерывных профилей газодинамических параметров в бегущей волне выполняется неравенство (22).

В литературе (см., например, [2]) приведены значения параметров газа (температуры, границы прозрачности и т. п.), при которых тепловое излучение оказывается существенным для течения как перед ударным переходом, так и во фронте и за фронтом ударной волны. Представляется, что построенные решения и значения введенных констант (в частности, при $T_0 \rightarrow 0$) позволяют в разных вариантах определить справедливость использования приближения лучистой теплопроводности. Кроме того, при использовании модели равновесного излучения следует учитывать, что при $\sigma \rightarrow 0$ предельный переход в соотношениях (1)–(3) не приводит к соответствующему переходу решений с $\sigma \neq 0$ в решения с $\sigma = 0$ (см., например, формулы (5) и (7)).

Авторы выражают благодарность А. Н. Крайко за полезные обсуждения вопросов, рассмотренных в данной работе.

ЛИТЕРАТУРА

- 1. Забабахин Е. И., Забабахин И. Е. Явления неограниченной кумуляции. М.: Наука, 1988.
- 2. Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966.
- 3. Долголева Г. В., Забродин А. В. Кумуляция энергии в слоистых системах и реализация безударного сжатия. М.: Физматлит, 2004.
- 4. Овсянников Л. В. Лекции по основам газовой динамики. М.; Ижевск: Ин-т компьютер. исслед., 2003.
- 5. Рождественский Б. Л., Яненко Н. Н. Системы квазилинейных уравнений и их приложения к газовой динамике. М.: Наука, 1968.
- 6. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. 6. Гидродинамика. М.: Физматлит, 2001.
- 7. Баутин С. П. Представление решений системы Навье Стокса в окрестности контактной характеристики // Прикл. математика и механика. 1987. Т. 51, вып. 4. С. 574–584.
- 8. Баутин С. П. Характеристические поверхности в течениях газа // Прикл. математика и механика. 2001. Т. 65, вып. 5. С. 862–875.

- 9. Белоконь В. А. Влияние радиации на амплитуду изотермического скачка // Докл. АН СССР. 1972. Т. 202, № 6. С. 1296–1299.
- 10. Забабахин Е. И., Симоненко В. А. Сходящаяся ударная волна в теплопроводном газе // Прикл. математика и механика. 1965. Т. 29, вып. 2. С. 334–336.
- Курдюмов С. П. Изучение взаимодействия гидродинамических и нелинейных тепловых процессов с помощью бегущих волн. Случай бегущих волн, удовлетворяющих условию *c*²_{γ0} ≥ (*D*₃ − *D*₀)² и волн с отрицательным потоком энергии. М., 1971. (Препр. / Ин-т прикл. математики АН СССР; № 55).
- 12. Анучин М. Г. Влияние теплопроводности на неограниченное безударное сжатие плоского газового слоя // ПМТФ. 1998. Т. 39, № 4. С. 25–32.

Поступила в редакцию 21/VI 2005 г., в окончательном варианте — 30/VIII 2005 г.